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RSA Encryption Scheme

• Designed by Rivest-Shamir-Adleman in 1977.

• One of the most widely used algorithms today, for both
signatures and public key encryption.

• Security requires hardness of integer factorisation.
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A few bits of Number Theory

• Euclidean division: given two integers a, b, with b 6= 0, there
exist unique q, r ∈ Z such that a = bq + r, with 0 ≤ r < |b|.

• Given a positive integer N and a ∈ Z, we denote by a (mod N)
the reminder of a when divided by N.

• Integers modulo N: given a positive integer N, we define ZN

as the set {[i]N | i = 0, . . . ,N − 1}, where [i]N is the subset of all
the integers having the same reminder of i when divided by N.

• We write i = j (mod N) if [i]N = [j]N .

• Two binary operations can be defined on ZN :

[a]N + [b]N := [a + b]N , [a]N [b]N := [ab]N .

It is easy to prove that they are well defined.
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A few bits of Number Theory

• (ZN ,+) is an abelian group ([0]N is the zero element).

• [a]N is invertible if there exists [b]N ∈ ZN s.t. [a]N [b]N = [1]N .

• Which are the invertible elements in ZN \ {[0]N}?

• We say that an integer a divides another integer b if b = ac for
some c ∈ Z.

• Given two integers, a and b, their greatest common divisor
gcd(a, b) is the largest integer dividing both a and b.

• Given a, b ∈ Z, there exist integers X,Y such that
aX + bY = gcd(a, b). Furthermore, gcd(a, b) is the smallest
positive integer that can be expressed in this way.
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A few bits of Number Theory

• Proposition: Let b,N integers, with b ≥ 1 and N > 1. Then [b]N
is invertible if and only if gcd(b,N) = 1 (i.e. b and N are
relatively prime).

• The set Z∗N = {[b]N ∈ ZN | gcd(b,N) = 1} contains all the
invertible elements in ZN \ {[0]N}.

• (Z∗N , ·) is a group.

• Define φ(N) as the cardinality of Z∗N (φ : N→ N is called the
Euler phi function).

• If N is a prime, then φ(N) = N − 1. If N = pq is a semi-prime
(i.e. it is the product of two primes), then φ(N) = (p− 1)(q− 1).
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A few bits of Number Theory

• Proposition: if G is a finite abelian group of order m, then
gm = 1 for each g ∈ G.

• For each [a]N ∈ Z∗N , we have ([a]N)φ(N) = [1]N .

• Fix a positive integers N and e, with gcd(e, φ(N)) = 1. Then the
map:

fe([x]N) = ([x]N)e

is a permutation of Z∗N . Indeed, its inverse is the map fd, with
[d]φ(N)[e]φ(N) = [1]φ(N), since ed = `φ(N) + 1 and
([x]N)`φ(N) = [1]N .

8 of 41



The factoring problem

Let GenModulus be a PPT algorithm that, on input n, outputs
(N, p, q), where N = pq and p, q are n-bit primes. (More on
generation of primes to come.)

• In the experiment FactorA,GenModulus(n), the adversary is given
the composite number N output by GenModulus on input n, and
it has to determine the divisors p, q.

• Factoring is hard relative to GenModulus if, for all PPT
adversaries A, the success probability in the above experiment
is negligible in n.

• The factoring assumption is the assumption that there exists a
GenModulus relative to which factoring is hard.
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The RSA problem
Let GenRSA be a PPT algorithm that, on input n, outputs
(N, p, q, e, d), where N = pq - p, q are n-bit primes - and
[e]ϕ(N)[d]ϕ(N) = [1]ϕ(N).

• In the experiment RSA− invA,GenRSA(n), GenRSA is run on
input n. The adversary is given N and e together with a uniform
element [y]N ∈ Z∗N . It has to determine [x]N ∈ Z∗N such that
([x]N)e = [y]N .

• The RSA problem is hard relative to GenModulus if, for all PPT
adversaries A, the success probability in the above experiment
is negligible in n.

• The RSA assumption is the assumption that there exists a
GenRSA relative to which the RSA problem is hard.
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Relationship between RSA and Factoring
Assumptions

If N is factored, it is possible to compute φ(N) and hence
[d]φ(N) = ([e]φ(N))

−1.

The other direction is still an open problem! The best we can
say is:

Theorem
Given as input a composite integer N and integers e, d such that
[e]φ(N)[d]φ(N) = [1]φ(N), there is a PPT algorithm that can output a
factor of N except with negligible probability (in ‖N‖).
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Plain RSA encryption algorithm

• KeyGen(n): a GenRSA algorithm is run on input n. The public
key is (N, e), the secret key is (N, d). (Recall that N = pq, where
p and q are two distinct odd primes, while [e]ϕ(N)[d]ϕ(N) is equal
to [1]ϕ(N)).

• Enc((N, e),m ∈ Z∗N): it computes the ciphertext c = me.

• Dec((N, d), c ∈ Z∗N): it computes m′ = cd.

Correctness: m′ = (me)d = med = m`ϕ(N)+1 = m.
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Plain RSA security

• The factoring assumption implies that it is computationally
infeasible to recover the private key from the public key.

• Solving the factorization problem might not be necessary for
other goals, such as decrypting without the private key.

• The RSA assumption implies that an eavesdropper cannot
recover m from (N, e, c) as long as m is chosen uniformly
from Z∗N .

• “Plain RSA” is insecure!
◦ What if m is not chosen uniformly from Z∗N?
◦ What if an attacker learns partial information about m?
◦ Plain RSA is deterministic, therefore, it is not CPA-secure!
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Padded RSA

• Idea: To encrypt a message m, first map it to an element
m̃ ∈ Z∗n.

• The sender can choose a uniform bit-string r ∈ {0, 1}`(n), and
sets m̃ = r||m (it is a reversible operation).

• The security of the padded scheme depends on the length `(n).
• For instance, `(n) = O(log n) is a bad choice, since the scheme

is not secure in this case.
• The scheme is provably secure based on the RSA problem

when m is just a single bit and ` is very large!
• For other cases, no security proofs based on the RSA problem,

BUT no attacks are known either!
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RSA-OAEP

• It is a construction that: is based on the RSA problem, is
CCA-secure and uses optimal asymmetric encryption padding
OAEP.

• Already standardized as a part of RSA PKCS#1 since
version 2.0.

• It employs three integer-valued functions `(n), k0(n), k1(n) with
k0(n), k1(n) = Θ(n). There is also a condition on
`(n) + k0(n) + k1(n), which has to be smaller than the minimum
bit-length moduli output by GenRSA(n).

• Two hash functions H and G are also used. They are modelled
as random oracles.

• OAEP is therefore a two-round Feistel network. G and H are
the round functions.
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RSA-OAEP

Source: Wikipedia
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RSA-OAEP

Fix n and let ` = `(n), k0 = k0(n), k1 = k1(n).

Consider H : {0, 1}`+k1 → {0, 1}k0 and G : {0, 1}k0 → {0, 1}`+k1 .

Given a message m ∈ {0, 1}`, the padding is done as follows:

• Set m′ ← m||0k1

• Choose a random r ∈ {0, 1}k0

• Compute s← m′ ⊕ G(r) ∈ {0, 1}`+k1

• Compute t← r ⊕ H(s) ∈ {0, 1}k0

• Finally, set m̃← s||t.
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RSA-OAEP

• KeyGen(n): run a GenRSA algorithm on input n to obtain the
public key (N, e) and the private key (N, d).

• Enc((N, e),m): pad m to get m̃. The ciphertext will be
c← ([m̃]N)e.

• Dec((N, d), c): compute m̃← [c]d. If |m̃| > `+ k0 + k1, output ⊥,
otherwise;
◦ parse m̃ as s||t, s ∈ {0, 1}`+k1 , t ∈ {0, 1}k0

◦ compute r ← H(s)⊕ t
◦ compute m′ ← G(r)⊕ s. If the least-significant k1 bits of m′ are not

all 0, output ⊥. Otherwise, output the ` most-significant bits of m̃.
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Security of RSA-OAEP

• It is CCA-secure assuming that G and H are modelled as
random oracles.

• There was an attack on PKCS# v2.0 in 2001 by James Manger,
that exploits its implementation - it is a side channel attack!

• The receiver receives the error message ⊥ in two different
cases!

• The time to return the message errors was not identical.
• The attacker can recover a message m using ONLY |N| queries.
• Lesson: side channels attacks are nasty! Implementations

should take into consideration every possibility of information
leakage!
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RSA weak key generator attack

• Suppose Alice computes a composite number NA = pqA, while
Bob computes NB = pqB. Is it safe?

• Everybody sees NA := pqA and NB := pqB.

• Alice can compute qB = NB/p.

• Bob can compute qA = NA/p.

• Anyone can compute gcd(NA,NB) = p and then qA and qA.

• Attack demonstrated in practice (2012):

Lenstra et al. Ron was wrong, Whit is right

showed that 2/1000 RSA keys are insecure.
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A CCA secure KEM in the ROM

We consider a KEM consisting of the following algorithms:

• KeyGen(1n): it runs a GenRSA algorithm on input n to obtain
the public key (N, e) and the private key (N, d). It also generates
a hash function H : Z∗N → {0, 1}n.

• Encaps(PK, 1n): it picks a random r ∈ Z∗N and outputs c← re

and the key k← H(r).

• Decaps(SK, c ∈ Z∗N): it first computes r ← cd and then outputs
k← H(r).

This is a part of ISO/IEC18033-2 standard for public-key
encryption. Its security relies on the RSA assumption.
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Quadratic Residues

Definition
For any positive integer m, we define the set of quadratic residues
modulo m as

QR(m) := {x ∈ Zm| ∃y ∈ Zm such that y2 = x}.

Theorem
Given a prime p > 2, every quadratic residue in Z∗p has exactly two
square roots (i.e., for each x ∈ QR(p)∩Z∗p there exist two elements
y, y′ ∈ Z∗p s.t. y2 = (y′)2 = x.)
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Quadratic Residues

Definition
For a prime p > 2 and an integer x s.t. [x]p ∈ Z∗p, we define the
Jacobi symbol of x modulo p as follows:

Jp(x) =

{
+1 if [x]p ∈ QR(p)

−1 if [x]p 6∈ QR(p).

Theorem
Given a prime p > 2 and an integer x s.t. [x]p ∈ Z∗p, we have

[Jp(x)]p = ([x]p)
p−1

2 .
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Quadratic Residues

Theorem
Let N = pq - where p and q are distinct primes - and let y be an
integer such that [y]N ∈ Z∗N . Then [y]N is a quadratic residue
modulo N iff [y]p is a quadratic residue modulo p and [y]q is a
quadratic residue modulo q, i.e. [y]p ∈ QR(p) and [y]q ∈ QR(q).

Theorem
Let N = pq, where p and q are two distinct odd primes. Given x, x̃
s.t. [x]2N = [y]N = [x̃]2N but [x]N 6= ±[x̃]N , it is possible to factor N in
time polynomial in ‖N‖.
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Quadratic Residues

Theorem
Let N = pq, where p and q are two distinct odd primes such that
[p]4 = [q]4 = [3]4. Then every quadratic residue modulo N has
exactly one square root that belongs to QR(N).
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Rabin Encryption Scheme

The Rabin encryption scheme consists of the following algorithms:

• KeyGen(1n): on input n, it runs GenModulus(1n) to obtain
(N, p, q) where N = pq, p and q are n-bit primes with
[p]4 = [q]4 = [3]4. The public key is N, the private key is (p, q).

• Enc(PK,m ∈ {0, 1}): it chooses a uniform [x]N ∈ QR(N) where
lsb(x) = m. It outputs the ciphertext c← ([x]N)2.

• Dec(SK, c): it computes the unique [x]N ∈ QR(N) s.t.
([x]N)2 = c, and outputs lsb(x) (assuming x < N − 1).

Theorem
If Factoring is hard relative to GenModulus, then this encryption
scheme is CPA-secure.
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Prime numbers

• If a positive integer a divides b ∈ Z, we call a a divisor of b. If
a /∈ {1, b}, a is said a non trivial divisor of b.

• A positive integer p is prime if it has only trivial divisors.

• There are infinitely many primes.

• Fundamental Theorem of Arithmetic: any integer n can be
decomposed uniquely has a product of prime numbers.

• Bertrand’s postulate: for any n > 1, the fraction of the n-bit
integers that are prime is at least 1/3n.

How to efficiently generate random n-bit primes?

29 of 41



Prime numbers

• If a positive integer a divides b ∈ Z, we call a a divisor of b. If
a /∈ {1, b}, a is said a non trivial divisor of b.

• A positive integer p is prime if it has only trivial divisors.

• There are infinitely many primes.

• Fundamental Theorem of Arithmetic: any integer n can be
decomposed uniquely has a product of prime numbers.

• Bertrand’s postulate: for any n > 1, the fraction of the n-bit
integers that are prime is at least 1/3n.

How to efficiently generate random n-bit primes?

29 of 41



Generating Random Primes

Primes can be generated by picking random n-bit integers and
checking whether they are prime:

Algorithm
Input: Length n, parameter t
For i = 1 to t:

p′ ← {0, 1}n−1

p := 1||p′
if Primality_test (p) = 1 return p

return fail
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Generating Random Primes

• Remember that for any n > 1, the fraction of the n-bit integers
that are prime is at least 1/3n.

• Now, set t = 3n2. Then the probability that the previous
algorithm does not output a prime in t iteration is(

1− 1
3n

)t

=

((
1− 1

3n

)3n
)n

≤ (e−1)n = e−n

• This probability is negligible in n.

We still need to study the algorithms that test primality!
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Primality testing

• Given a positive integer n, decide whether n is prime or not.

• There are deterministic algorithms for primality testing (see the
AKS test, proposed in 2002).

• In practice, we use probabilistic algorithms (having a small
probability to return “prime” for composite numbers), since they
are much faster.
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Fermat test

• Observation: if n is prime, then ([a]n)n−1 = [1]n for all [a]n ∈ Z∗n
(Fermat’s little theorem)

• Idea: choose random a ∈ Z and check whether ([a]n)n−1 = [1]n.
If not, then n is composite.

• We call a witness that n is composite any a ∈ Z such that
[a]n ∈ Z∗n and ([a]n)n−1 6= [1]n.
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Fermat test

Algorithm
Input: Integer n, parameter t
for i = 1 to t

a← {1, · · · , n− 1}
if ([a]n)n−1 6= [1]n return “composite”

return “prime”

Theorem
If n has a witness that it is composite, then

|{witnesses}n| ≥ |Z∗n|/2.

However, try 561 or 41041. Observe that the above theorem
requires at least a witness!
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Testing Primality

• Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

• Fermat’s test needs to be refined.

• Let n− 1 = 2ku, where u is odd and k ≥ 1 (n is odd).

• In Fermat’s test, we check if ([a]n)n−1 = ([a]n)2ku = [1]n.

• What about ([a]n)u, ([a]n)2u, · · · , ([a]n)2k−1u?
• Strong witness: a ∈ Z is a strong witness that n is composite if

[a]n ∈ Z∗n and
◦ ([a]n)u 6= ±[1]n
◦ ([a]n)2iu 6= [−1]n for all i ∈ {1, · · · , k − 1}
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Testing Primality

Theorem
Let n be an odd number that is not a prime power. Then we have
that at least half of the elements of Z∗n are strong witnesses that n
is composite.

Testing whether n is a perfect power (power of an integer, not
necessarily prime) can be done in polynomial time!
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Miller-Rabin test

Algorithm
Input: Integer n > 2, parameter t
If n is even, return “composite”
If n is a perfect power, return “composite”
Write n− 1 = 2ku, where u is odd and k ≥ 1
for j = 1 to t

a← {1, · · · , n− 1}
if ([a]n)u 6= ±[1]n and ([a]n)2iu 6= −[1]n for i ∈ {1, · · · , k − 1}

return “composite”
return “prime”
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Miller-Rabin test

Theorem
If n is prime, then the Miller-Rabin test always outputs “prime”. If n
is composite, the algorithm outputs “composite” except with
probability at most 2−t.
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