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RSA Encryption Scheme

» Designed by Rivest-Shamir-Adleman in 1977.

* One of the most widely used algorithms today, for both
signatures and public key encryption.

e Security requires hardness of integer factorisation.

4of 1



A few bits of Number Theory

Euclidean division: given two integers a, b, with b # 0, there
exist unique ¢, r € Z such that a = bg + r, with 0 < r < |b|.

Given a positive integer N and a € Z, we denote by a (mod N)
the reminder of a when divided by N.

Integers modulo N: given a positive integer N, we define Zy
astheset{[ily|i=0,...,N — 1}, where [i]y is the subset of all
the integers having the same reminder of i when divided by N.

We write i =j (mod N) if [i]ly = [j]n-
Two binary operations can be defined on Zy:
[a]N + [b]N = [a + b]N, [a]N[b]N = [ab]N.

It is easy to prove that they are well defined.
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A few bits of Number Theory

(Zn,+) is an abelian group ([0]y is the zero element).
[a]n is invertible if there exists [b]y € Zy s.t. [a]n[b]y = [1]N-
Which are the invertible elements in Zy \ {[0]x}?

We say that an integer «a divides another integer b if b = ac for
some c € Z.

Given two integers, a and b, their greatest common divisor
gcd(a, b) is the largest integer dividing both a and b.

Given a,b € Z, there exist integers X, Y such that
aX + bY = gcd(a, b). Furthermore, gcd(a, b) is the smallest
positive integer that can be expressed in this way.
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A few bits of Number Theory

* Proposition: Let b, N integers, with b > 1 and N > 1. Then [b]y
is invertible if and only if gcd(b,N) =1 (i.e. b and N are
relatively prime).

e The set Zy = {[b]y € Zy | gcd(b,N) = 1} contains all the
invertible elements in Zy \ {[0]n}.

* (Zy,-) is a group.

* Define ¢(N) as the cardinality of Zy (¢ : N — N is called the
Euler phi function).

e If Nis aprime, then ¢(N) =N — 1. If N = pq is a semi-prime
(i.e. it is the product of two primes), then ¢(N) = (p — 1)(¢ — 1).
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A few bits of Number Theory

e Proposition: if G is a finite abelian group of order m, then
g" = 1foreach g € G.

o For each [a]y € Z,, we have ([a]y)?™) = [1]y.

* Fix a positive integers N and e, with gcd(e, #(N)) = 1. Then the
map:
fe(lxln) = (Ix]n)¢
is a permutation of Zy,.. Indeed, its inverse is the map f;, with
[d] g lelpvy = [Lpv)» Since ed = £p(N) + 1 and
() ™) = (1]
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The factoring problem

Let GenModulus be a PPT algorithm that, on input n, outputs

(N,p,q), where N = pq and p, q are n-bit primes. (More on
generation of primes to come.)

* In the experiment Factor 4 genmodulus (1), the adversary is given
the composite number N output by GenModulus on input n, and
it has to determine the divisors p, q.

e Factoring is hard relative to GenModulus if, for all PPT
adversaries A, the success probability in the above experiment
is negligible in n.

e The factoring assumption is the assumption that there exists a

GenModulus relative to which factoring is hard.
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The RSA problem

Let GenRSA be a PPT algorithm that, on input n, outputs
(N,p,q,e,d), where N = pq - p, q are n-bit primes - and
[e]go(N) [d]go(N) = [”ap(N)-

* In the experiment RSA — inv 4 genrsa (), GenRSA is run on
input n. The adversary is given N and e together with a uniform
element [y]y € Zy. It has to determine [x]y € Zjy such that
(Kw)* = Dlw-

* The RSA problem is hard relative to GenModulus if, for all PPT
adversaries A, the success probability in the above experiment
is negligible in n.

e The RSA assumption is the assumption that there exists a
GenRSA relative to which the RSA problem is hard.
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Relationship between RSA and Factoring
Assumptions

If N is factored, it is possible to compute ¢(N) and hence
ooy = ([e)om)) ™

The other direction is still an open problem! The best we can
say is:

Given as input a composite integer N and integers e, d such that
lelov)[dlovy = [1gv), there is a PPT algorithm that can output a
factor of N except with negligible probability (in |N||).
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Plain RSA encryption algorithm

* KeyGen(n): a GenRSA algorithm is run on input n. The public
key is (N, e), the secret key is (N, d). (Recall that N = pg, where
p and g are two distinct odd primes, while [e], ) [d],(v) is equal
to [l]go(N))-

* Enc((N,e),m € Zy): it computes the ciphertext ¢ = m°.

 Dec((N,d),c € Z}): it computes m’ = ¢,

Correctness: m' = (m¢)? = m*d = m** M+ =,
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Plain RSA security

e The factoring assumption implies that it is computationally
infeasible to recover the private key from the public key.

» Solving the factorization problem might not be necessary for
other goals, such as decrypting without the private key.

e The RSA assumption implies that an eavesdropper cannot
recover m from (N, e, c) as long as m is chosen uniformly
from Zy.

e “Plain RSA” is insecure!

o What if m is not chosen uniformly from Zy?
o What if an attacker learns partial information about m?
o Plain RSA is deterministic, therefore, it is not CPA-secure!
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Padded RSA

 Idea: To encrypt a message m, first map it to an element
m e Zy.

* The sender can choose a uniform bit-string » € {0, 1}, and
sets i = r||m (it is a reversible operation).

» The security of the padded scheme depends on the length ¢(n).

 Forinstance, ¢(n) = O(logn) is a bad choice, since the scheme
is not secure in this case.

* The scheme is provably secure based on the RSA problem
when m is just a single bit and / is very large!

» For other cases, no security proofs based on the RSA problem,
BUT no attacks are known either!
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RSA-OAEP

e Itis a construction that: is based on the RSA problem, is
CCA-secure and uses optimal asymmetric encryption padding
OAEP.

* Already standardized as a part of RSA PKCS#1 since
version 2.0.

¢ |t employs three integer-valued functions ¢(n), ko(n), ki (n) with
ko(n),ki(n) = ©(n). There is also a condition on
£(n) + ko(n) + ki (n), which has to be smaller than the minimum
bit-length moduli output by GenRSA(n).

e Two hash functions H and G are also used. They are modelled
as random oracles.

e OAERP is therefore a two-round Feistel network. G and H are
the round functions.
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RSA-OAEP
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RSA-OAEP

Fix n and let ¢ = 4(n), ko = ko(n), ki = ki(n).
Consider H : {0, 1} — {0, 1}* and G : {0, 1}* — {0, 1}*.

Given a message m € {0, 1}%, the padding is done as follows:

Set m’ + ml|oh

Choose a random r € {0, 1}%0
Compute s « m’ @ G(r) € {0,1}¢h
Compute < r & H(s) € {0, 1}%
Finally, set i < s|z.
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RSA-OAEP

» KeyGen(n): run a GenRSA algorithm on input » to obtain the
public key (N, e) and the private key (N, d).

e Enc((N,e),m): pad m to get m. The ciphertext will be

¢ < ([m]n)°.

 Dec((N,d),c): compute i < [c]?. If || > £ + ko + ki, output L,
otherwise;
o parse i as s||t, s € {0,1}7 r € {0, 1}F
o compute r < H(s) Bt
o compute m’ < G(r) @ s. If the least-significant k, bits of m’ are not
all 0, output L. Otherwise, output the ¢ most-significant bits of 7.
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Security of RSA-OAEP

e It is CCA-secure assuming that G and H are modelled as
random oracles.

e There was an attack on PKCS# v2.0 in 2001 by James Manger,
that exploits its implementation - it is a side channel attack!

» The receiver receives the error message L in two different
cases!

e The time to return the message errors was not identical.
» The attacker can recover a message m using ONLY |N| queries.

e Lesson: side channels attacks are nasty! Implementations
should take into consideration every possibility of information
leakage!
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RSA weak key generator attack

* Suppose Alice computes a composite number N4 = pga, while
Bob computes Ng = pgp. Is it safe?
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RSA weak key generator attack

* Suppose Alice computes a composite number N4 = pga, while
Bob computes Ng = pgp. Is it safe?

» Everybody sees N4 := pgs and Np := pgp.
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RSA weak key generator attack

* Suppose Alice computes a composite number N4 = pga, while
Bob computes Ng = pgp. Is it safe?

e Everybody sees N4 := pga and N := pgs.
* Alice can compute gz = Ng/p.

e Bob can compute g4 = N /p.
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RSA weak key generator attack

* Suppose Alice computes a composite number N4 = pga, while
Bob computes Ng = pgp. Is it safe?

e Everybody sees N4 := pga and N := pgs.

* Alice can compute gz = Ng/p.

e Bob can compute g4 = N /p.

e Anyone can compute ged(N4, Np) = p and then g4 and g,.

» Attack demonstrated in practice (2012):
Lenstra et al. Ron was wrong, Whit is right
showed that 2/1000 RSA keys are insecure.
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A CCA secure KEM in the ROM

We consider a KEM consisting of the following algorithms:

e KeyGen(1"): it runs a GenRSA algorithm on input n to obtain
the public key (N, e) and the private key (N, d). It also generates
a hash function H : Zy, — {0, 1}".

e Encaps(PK,1"): it picks a random r € Zjy, and outputs ¢ < r°
and the key k < H(r).

* Decaps(SK, c € Z}): it first computes r < ¢? and then outputs
k< H(r).

This is a part of ISO/IEC18033-2 standard for public-key

encryption. Its security relies on the RSA assumption.
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Outline

a Rabin Encryption Scheme
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Quadratic Residues

Definition
For any positive integer m, we define the set of quadratic residues
modulo m as

OR(m) := {x € Z,,| 3y € Z,, such that y* = x}.

Theorem

Given a prime p > 2, every quadratic residue in Z, has exactly two
square roots (i.e., for each x € QR(p) NZ, there exist two elements

vy €2 sty =(y)* =x.)

| A

4
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Quadratic Residues

Definition

For a prime p > 2 and an integer x s.t. [x], € Z,, we define the
Jacobi symbol of x modulo p as follows:

—1 if[x], Z OR(p).

T = {+1 if [x], € OR(p)

Given a prime p > 2 and an integer x s.t. [x], € Z,, we have

4

7@y = (K],)7 -
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Quadratic Residues

Theorem

Let N = pq - where p and g are distinct primes - and let y be an
integer such that [yly € Z},. Then [y]y is a quadratic residue
modulo N iff [y], is a quadratic residue modulo p and [y, is a
quadratic residue modulo q, i.e. [y], € OR(p) and [y], € OR(q).

Theorem

Let N = pq, where p and q are two distinct odd primes. Given x,x
s.t. x5 = [ylv = []% but [x]y # +[X]w, it is possible to factor N in
time polynomial in ||N||.
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Quadratic Residues

Let N = pq, where p and g are two distinct odd primes such that
[pla = [g]s = [3]s. Then every quadratic residue modulo N has
exactly one square root that belongs to QR(N).
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Rabin Encryption Scheme

The Rabin encryption scheme consists of the following algorithms:

* KeyGen(1"): on input n, it runs GenModulus(1") to obtain
(N,p,q) where N = pq, p and ¢ are n-bit primes with
[pls = [g]4 = [3]s. The public key is N, the private key is (p, q).

e Enc(PK,m € {0,1}): it chooses a uniform [x]y € OR(N) where
Isb(x) = m. It outputs the ciphertext ¢ < ([x]y)>.

e Dec(SK,c): it computes the unique [x]y € OR(N) s.t.
([x]n)? = ¢, and outputs Ish(x) (assuming x < N — 1).

If Factoring is hard relative to GenModulus, then this encryption
scheme is CPA-secure.
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Outline

e Generation of Prime Numbers
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Prime numbers

e |f a positive integer a divides b € Z, we call a a divisor of b. If
a ¢ {1,b}, ais said a non trivial divisor of b.

A positive integer p is prime if it has only trivial divisors.

There are infinitely many primes.

Fundamental Theorem of Arithmetic: any integer n can be
decomposed uniquely has a product of prime numbers.

Bertrand’s postulate: for any n > 1, the fraction of the n-bit
integers that are prime is at least 1/3n.
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Prime numbers

e |f a positive integer a divides b € Z, we call a a divisor of b. If
a ¢ {1,b}, ais said a non trivial divisor of b.

e A positive integer p is prime if it has only trivial divisors.
e There are infinitely many primes.

e Fundamental Theorem of Arithmetic: any integer n can be
decomposed uniquely has a product of prime numbers.

e Bertrand’s postulate: for any n > 1, the fraction of the n-bit
integers that are prime is at least 1/3n.

How to efficiently generate random rn-bit primes?
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Generating Random Primes

Primes can be generated by picking random r-bit integers and
checking whether they are prime:

Input: Length n, parameter t

Fori=1tot:
p/ — {O,l}n_l
p=1|p’

if Primality test (p) = 1 return p
return fail
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Generating Random Primes

* Remember that for any n > 1, the fraction of the n-bit integers
that are prime is at least 1/3n.

« Now, set t = 3n. Then the probability that the previous
algorithm does not output a prime in ¢ iteration is

() = ((-2)) e

e This probability is negligible in n.

31 of 41



Generating Random Primes

* Remember that for any n > 1, the fraction of the n-bit integers
that are prime is at least 1/3n.

« Now, set t = 3n. Then the probability that the previous
algorithm does not output a prime in ¢ iteration is

() = ((-2)) e

e This probability is negligible in n.
We still need to study the algorithms that test primality!
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Primality testing

e Given a positive integer n, decide whether n is prime or not.

e There are deterministic algorithms for primality testing (see the
AKS test, proposed in 2002).

* In practice, we use probabilistic algorithms (having a small
probability to return “prime” for composite humbers), since they
are much faster.
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Fermat test

* Observation: if n is prime, then ([a],)""! = [1], for all [4], € Z
(Fermat’s little theorem)

* ldea: choose random a € Z and check whether ([a],)""! = [1],..
If not, then n is composite.

* We call a witness that n is composite any a € Z such that
la], € Z;; and ([a],)" ™" # [1],.
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Fermat test

Input: Integer n, parametert
fori=1tot

a+{l,--- ,n—1}

if ([a),)"~' # [1], return “‘composite”
return ‘prime”

v

If n has a witness that it is composite, then

|{ witnesses},| > |Z;|/2.
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Fermat test

Input: Integer n, parametert
fori=1tot

a+{l,--- ,n—1}

if ([a),)"~' # [1], return “‘composite”
return ‘prime”

v

If n has a witness that it is composite, then

|{witnesses},| > |Z;|/2.

However, try 561 or 41041. Observe that the above theorem

requires at least a witness!
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Testing Primality

e Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.
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Testing Primality

e Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

e Fermat’s test needs to be refined.
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Testing Primality

e Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

e Fermat’s test needs to be refined.

o Letn — 1 =2*u, where u is odd and k > 1 (n is odd).
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Testing Primality

Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

Fermat’s test needs to be refined.

Let n — 1 = 2u, where u is odd and k > 1 (n is odd).

In Fermat's test, we check if ([a],)" " = ([a],)2" = [1]..
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Testing Primality

Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

Fermat’s test needs to be refined.
Let n — 1 = 2u, where u is odd and k > 1 (n is odd).

In Fermat's test, we check if ([a],)" ' = ([a]n)zku — (1],
What about ([a],), ([a])%, -, ([a],)* 2
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Testing Primality

Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

Fermat’s test needs to be refined.
Let n — 1 = 2u, where u is odd and k > 1 (n is odd).
In Fermat's test, we check if ([a],)" " = ([a],)2" = [1]..

What about ([a],)*, ([a].)*,- - , (Ja]a)* “?

Strong witness: « € Z is a strong witness that n is composite if
[a]l, € Z;, and

© ([a]n)u_?é (1],

o ([a],)*" # [-1], forallie {1,---  k—1}
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Testing Primality

Let n be an odd number that is not a prime power. Then we have
that at least half of the elements of Z;, are strong witnesses that n

is composite.

Testing whether n is a perfect power (power of an integer, not
necessarily prime) can be done in polynomial time!

36 of 41



Miller-Rabin test

Input: Integer n > 2, parameter t
If n is even, return “composite”
If n is a perfect power, return “‘composite”
Write n — 1 = 2*u, where u is odd and k > 1
forj=1tot
a+{l,---,n—1} .
if ([a],)" # £[1], and ([a],)*" # —[1], fori € {1,--- ;k—1}
return “composite”
return ‘prime”
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Miller-Rabin test

If n is prime, then the Miller-Rabin test always outputs ‘prime”. If n
is composite, the algorithm outputs “composite” except with
probability at most2~".
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