
Public Key Cryptography

Federico Pintore 1

1 Mathematical Institute,
Oxford University

1 of 41



Outline

1 RSA Encryption Scheme

2 Rabin Encryption Scheme

3 Generation of Prime Numbers

2 of 41



Outline

1 RSA Encryption Scheme

2 Rabin Encryption Scheme

3 Generation of Prime Numbers

3 of 41



RSA Encryption Scheme

• Designed by Rivest-Shamir-Adleman in 1977.

• One of the most widely used algorithms today, for both
signatures and public key encryption.

• Security requires hardness of integer factorisation.

4 of 41



A few bits of Number Theory

• Euclidean division: given two integers a, b, with b 6= 0, there
exist unique q, r ∈ Z such that a = bq + r, with 0 ≤ r < |b|.

• Given a positive integer N and a ∈ Z, we denote by a (mod N)
the reminder of a when divided by N.

• Integers modulo N: given a positive integer N, we define ZN

as the set {[i]N | i = 0, . . . ,N − 1}, where [i]N is the subset of all
the integers having the same reminder of i when divided by N.

• We write i = j (mod N) if [i]N = [j]N .

• Two binary operations can be defined on ZN :

[a]N + [b]N := [a + b]N , [a]N [b]N := [ab]N .

It is easy to prove that they are well defined.
5 of 41



A few bits of Number Theory

• (ZN ,+) is an abelian group ([0]N is the zero element).

• [a]N is invertible if there exists [b]N ∈ ZN s.t. [a]N [b]N = [1]N .

• Which are the invertible elements in ZN \ {[0]N}?

• We say that an integer a divides another integer b if b = ac for
some c ∈ Z.

• Given two integers, a and b, their greatest common divisor
gcd(a, b) is the largest integer dividing both a and b.

• Given a, b ∈ Z, there exist integers X,Y such that
aX + bY = gcd(a, b). Furthermore, gcd(a, b) is the smallest
positive integer that can be expressed in this way.

6 of 41



A few bits of Number Theory

• Proposition: Let b,N integers, with b ≥ 1 and N > 1. Then [b]N
is invertible if and only if gcd(b,N) = 1 (i.e. b and N are
relatively prime).

• The set Z∗N = {[b]N ∈ ZN | gcd(b,N) = 1} contains all the
invertible elements in ZN \ {[0]N}.

• (Z∗N , ·) is a group.

• Define φ(N) as the cardinality of Z∗N (φ : N→ N is called the
Euler phi function).

• If N is a prime, then φ(N) = N − 1. If N = pq is a semi-prime
(i.e. it is the product of two primes), then φ(N) = (p− 1)(q− 1).

7 of 41



A few bits of Number Theory

• Proposition: if G is a finite abelian group of order m, then
gm = 1 for each g ∈ G.

• For each [a]N ∈ Z∗N , we have ([a]N)φ(N) = [1]N .

• Fix a positive integers N and e, with gcd(e, φ(N)) = 1. Then the
map:

fe([x]N) = ([x]N)e

is a permutation of Z∗N . Indeed, its inverse is the map fd, with
[d]φ(N)[e]φ(N) = [1]φ(N), since ed = `φ(N) + 1 and
([x]N)`φ(N) = [1]N .

8 of 41



The factoring problem

Let GenModulus be a PPT algorithm that, on input n, outputs
(N, p, q), where N = pq and p, q are n-bit primes. (More on
generation of primes to come.)

• In the experiment FactorA,GenModulus(n), the adversary is given
the composite number N output by GenModulus on input n, and
it has to determine the divisors p, q.

• Factoring is hard relative to GenModulus if, for all PPT
adversaries A, the success probability in the above experiment
is negligible in n.

• The factoring assumption is the assumption that there exists a
GenModulus relative to which factoring is hard.

9 of 41



The RSA problem
Let GenRSA be a PPT algorithm that, on input n, outputs
(N, p, q, e, d), where N = pq - p, q are n-bit primes - and
[e]ϕ(N)[d]ϕ(N) = [1]ϕ(N).

• In the experiment RSA− invA,GenRSA(n), GenRSA is run on
input n. The adversary is given N and e together with a uniform
element [y]N ∈ Z∗N . It has to determine [x]N ∈ Z∗N such that
([x]N)e = [y]N .

• The RSA problem is hard relative to GenModulus if, for all PPT
adversaries A, the success probability in the above experiment
is negligible in n.

• The RSA assumption is the assumption that there exists a
GenRSA relative to which the RSA problem is hard.

10 of 41



Relationship between RSA and Factoring
Assumptions

If N is factored, it is possible to compute φ(N) and hence
[d]φ(N) = ([e]φ(N))

−1.

The other direction is still an open problem! The best we can
say is:

Theorem
Given as input a composite integer N and integers e, d such that
[e]φ(N)[d]φ(N) = [1]φ(N), there is a PPT algorithm that can output a
factor of N except with negligible probability (in ‖N‖).

11 of 41



Plain RSA encryption algorithm

• KeyGen(n): a GenRSA algorithm is run on input n. The public
key is (N, e), the secret key is (N, d). (Recall that N = pq, where
p and q are two distinct odd primes, while [e]ϕ(N)[d]ϕ(N) is equal
to [1]ϕ(N)).

• Enc((N, e),m ∈ Z∗N): it computes the ciphertext c = me.

• Dec((N, d), c ∈ Z∗N): it computes m′ = cd.

Correctness: m′ = (me)d = med = m`ϕ(N)+1 = m.

12 of 41



Plain RSA security

• The factoring assumption implies that it is computationally
infeasible to recover the private key from the public key.

• Solving the factorization problem might not be necessary for
other goals, such as decrypting without the private key.

• The RSA assumption implies that an eavesdropper cannot
recover m from (N, e, c) as long as m is chosen uniformly
from Z∗N .

• “Plain RSA” is insecure!
◦ What if m is not chosen uniformly from Z∗N?
◦ What if an attacker learns partial information about m?
◦ Plain RSA is deterministic, therefore, it is not CPA-secure!

13 of 41



Padded RSA

• Idea: To encrypt a message m, first map it to an element
m̃ ∈ Z∗n.

• The sender can choose a uniform bit-string r ∈ {0, 1}`(n), and
sets m̃ = r||m (it is a reversible operation).

• The security of the padded scheme depends on the length `(n).
• For instance, `(n) = O(log n) is a bad choice, since the scheme

is not secure in this case.
• The scheme is provably secure based on the RSA problem

when m is just a single bit and ` is very large!
• For other cases, no security proofs based on the RSA problem,

BUT no attacks are known either!

14 of 41



RSA-OAEP

• It is a construction that: is based on the RSA problem, is
CCA-secure and uses optimal asymmetric encryption padding
OAEP.

• Already standardized as a part of RSA PKCS#1 since
version 2.0.

• It employs three integer-valued functions `(n), k0(n), k1(n) with
k0(n), k1(n) = Θ(n). There is also a condition on
`(n) + k0(n) + k1(n), which has to be smaller than the minimum
bit-length moduli output by GenRSA(n).

• Two hash functions H and G are also used. They are modelled
as random oracles.

• OAEP is therefore a two-round Feistel network. G and H are
the round functions.

15 of 41



RSA-OAEP

Source: Wikipedia
16 of 41



RSA-OAEP

Fix n and let ` = `(n), k0 = k0(n), k1 = k1(n).

Consider H : {0, 1}`+k1 → {0, 1}k0 and G : {0, 1}k0 → {0, 1}`+k1 .

Given a message m ∈ {0, 1}`, the padding is done as follows:

• Set m′ ← m||0k1

• Choose a random r ∈ {0, 1}k0

• Compute s← m′ ⊕ G(r) ∈ {0, 1}`+k1

• Compute t← r ⊕ H(s) ∈ {0, 1}k0

• Finally, set m̃← s||t.

17 of 41



RSA-OAEP

• KeyGen(n): run a GenRSA algorithm on input n to obtain the
public key (N, e) and the private key (N, d).

• Enc((N, e),m): pad m to get m̃. The ciphertext will be
c← ([m̃]N)e.

• Dec((N, d), c): compute m̃← [c]d. If |m̃| > `+ k0 + k1, output ⊥,
otherwise;
◦ parse m̃ as s||t, s ∈ {0, 1}`+k1 , t ∈ {0, 1}k0

◦ compute r ← H(s)⊕ t
◦ compute m′ ← G(r)⊕ s. If the least-significant k1 bits of m′ are not

all 0, output ⊥. Otherwise, output the ` most-significant bits of m̃.

18 of 41



Security of RSA-OAEP

• It is CCA-secure assuming that G and H are modelled as
random oracles.

• There was an attack on PKCS# v2.0 in 2001 by James Manger,
that exploits its implementation - it is a side channel attack!

• The receiver receives the error message ⊥ in two different
cases!

• The time to return the message errors was not identical.
• The attacker can recover a message m using ONLY |N| queries.
• Lesson: side channels attacks are nasty! Implementations

should take into consideration every possibility of information
leakage!

19 of 41



RSA weak key generator attack

• Suppose Alice computes a composite number NA = pqA, while
Bob computes NB = pqB. Is it safe?

• Everybody sees NA := pqA and NB := pqB.

• Alice can compute qB = NB/p.

• Bob can compute qA = NA/p.

• Anyone can compute gcd(NA,NB) = p and then qA and qA.

• Attack demonstrated in practice (2012):

Lenstra et al. Ron was wrong, Whit is right

showed that 2/1000 RSA keys are insecure.

20 of 41



RSA weak key generator attack

• Suppose Alice computes a composite number NA = pqA, while
Bob computes NB = pqB. Is it safe?

• Everybody sees NA := pqA and NB := pqB.

• Alice can compute qB = NB/p.

• Bob can compute qA = NA/p.

• Anyone can compute gcd(NA,NB) = p and then qA and qA.

• Attack demonstrated in practice (2012):

Lenstra et al. Ron was wrong, Whit is right

showed that 2/1000 RSA keys are insecure.

20 of 41



RSA weak key generator attack

• Suppose Alice computes a composite number NA = pqA, while
Bob computes NB = pqB. Is it safe?

• Everybody sees NA := pqA and NB := pqB.

• Alice can compute qB = NB/p.

• Bob can compute qA = NA/p.

• Anyone can compute gcd(NA,NB) = p and then qA and qA.

• Attack demonstrated in practice (2012):

Lenstra et al. Ron was wrong, Whit is right

showed that 2/1000 RSA keys are insecure.

20 of 41



RSA weak key generator attack

• Suppose Alice computes a composite number NA = pqA, while
Bob computes NB = pqB. Is it safe?

• Everybody sees NA := pqA and NB := pqB.

• Alice can compute qB = NB/p.

• Bob can compute qA = NA/p.

• Anyone can compute gcd(NA,NB) = p and then qA and qA.

• Attack demonstrated in practice (2012):

Lenstra et al. Ron was wrong, Whit is right

showed that 2/1000 RSA keys are insecure.
20 of 41



A CCA secure KEM in the ROM

We consider a KEM consisting of the following algorithms:

• KeyGen(1n): it runs a GenRSA algorithm on input n to obtain
the public key (N, e) and the private key (N, d). It also generates
a hash function H : Z∗N → {0, 1}n.

• Encaps(PK, 1n): it picks a random r ∈ Z∗N and outputs c← re

and the key k← H(r).

• Decaps(SK, c ∈ Z∗N): it first computes r ← cd and then outputs
k← H(r).

This is a part of ISO/IEC18033-2 standard for public-key
encryption. Its security relies on the RSA assumption.

21 of 41



Outline

1 RSA Encryption Scheme

2 Rabin Encryption Scheme

3 Generation of Prime Numbers

22 of 41



Quadratic Residues

Definition
For any positive integer m, we define the set of quadratic residues
modulo m as

QR(m) := {x ∈ Zm| ∃y ∈ Zm such that y2 = x}.

Theorem
Given a prime p > 2, every quadratic residue in Z∗p has exactly two
square roots (i.e., for each x ∈ QR(p)∩Z∗p there exist two elements
y, y′ ∈ Z∗p s.t. y2 = (y′)2 = x.)

23 of 41



Quadratic Residues

Definition
For a prime p > 2 and an integer x s.t. [x]p ∈ Z∗p, we define the
Jacobi symbol of x modulo p as follows:

Jp(x) =

{
+1 if [x]p ∈ QR(p)

−1 if [x]p 6∈ QR(p).

Theorem
Given a prime p > 2 and an integer x s.t. [x]p ∈ Z∗p, we have

[Jp(x)]p = ([x]p)
p−1

2 .

24 of 41



Quadratic Residues

Theorem
Let N = pq - where p and q are distinct primes - and let y be an
integer such that [y]N ∈ Z∗N . Then [y]N is a quadratic residue
modulo N iff [y]p is a quadratic residue modulo p and [y]q is a
quadratic residue modulo q, i.e. [y]p ∈ QR(p) and [y]q ∈ QR(q).

Theorem
Let N = pq, where p and q are two distinct odd primes. Given x, x̃
s.t. [x]2N = [y]N = [x̃]2N but [x]N 6= ±[x̃]N , it is possible to factor N in
time polynomial in ‖N‖.

25 of 41



Quadratic Residues

Theorem
Let N = pq, where p and q are two distinct odd primes such that
[p]4 = [q]4 = [3]4. Then every quadratic residue modulo N has
exactly one square root that belongs to QR(N).

26 of 41



Rabin Encryption Scheme

The Rabin encryption scheme consists of the following algorithms:

• KeyGen(1n): on input n, it runs GenModulus(1n) to obtain
(N, p, q) where N = pq, p and q are n-bit primes with
[p]4 = [q]4 = [3]4. The public key is N, the private key is (p, q).

• Enc(PK,m ∈ {0, 1}): it chooses a uniform [x]N ∈ QR(N) where
lsb(x) = m. It outputs the ciphertext c← ([x]N)2.

• Dec(SK, c): it computes the unique [x]N ∈ QR(N) s.t.
([x]N)2 = c, and outputs lsb(x) (assuming x < N − 1).

Theorem
If Factoring is hard relative to GenModulus, then this encryption
scheme is CPA-secure.

27 of 41



Outline

1 RSA Encryption Scheme

2 Rabin Encryption Scheme

3 Generation of Prime Numbers

28 of 41



Prime numbers

• If a positive integer a divides b ∈ Z, we call a a divisor of b. If
a /∈ {1, b}, a is said a non trivial divisor of b.

• A positive integer p is prime if it has only trivial divisors.

• There are infinitely many primes.

• Fundamental Theorem of Arithmetic: any integer n can be
decomposed uniquely has a product of prime numbers.

• Bertrand’s postulate: for any n > 1, the fraction of the n-bit
integers that are prime is at least 1/3n.

How to efficiently generate random n-bit primes?

29 of 41



Prime numbers

• If a positive integer a divides b ∈ Z, we call a a divisor of b. If
a /∈ {1, b}, a is said a non trivial divisor of b.

• A positive integer p is prime if it has only trivial divisors.

• There are infinitely many primes.

• Fundamental Theorem of Arithmetic: any integer n can be
decomposed uniquely has a product of prime numbers.

• Bertrand’s postulate: for any n > 1, the fraction of the n-bit
integers that are prime is at least 1/3n.

How to efficiently generate random n-bit primes?

29 of 41



Generating Random Primes

Primes can be generated by picking random n-bit integers and
checking whether they are prime:

Algorithm
Input: Length n, parameter t
For i = 1 to t:

p′ ← {0, 1}n−1

p := 1||p′
if Primality_test (p) = 1 return p

return fail

30 of 41



Generating Random Primes

• Remember that for any n > 1, the fraction of the n-bit integers
that are prime is at least 1/3n.

• Now, set t = 3n2. Then the probability that the previous
algorithm does not output a prime in t iteration is(

1− 1
3n

)t

=

((
1− 1

3n

)3n
)n

≤ (e−1)n = e−n

• This probability is negligible in n.

We still need to study the algorithms that test primality!

31 of 41



Generating Random Primes

• Remember that for any n > 1, the fraction of the n-bit integers
that are prime is at least 1/3n.

• Now, set t = 3n2. Then the probability that the previous
algorithm does not output a prime in t iteration is(

1− 1
3n

)t

=

((
1− 1

3n

)3n
)n

≤ (e−1)n = e−n

• This probability is negligible in n.

We still need to study the algorithms that test primality!

31 of 41



Primality testing

• Given a positive integer n, decide whether n is prime or not.

• There are deterministic algorithms for primality testing (see the
AKS test, proposed in 2002).

• In practice, we use probabilistic algorithms (having a small
probability to return “prime” for composite numbers), since they
are much faster.

32 of 41



Fermat test

• Observation: if n is prime, then ([a]n)n−1 = [1]n for all [a]n ∈ Z∗n
(Fermat’s little theorem)

• Idea: choose random a ∈ Z and check whether ([a]n)n−1 = [1]n.
If not, then n is composite.

• We call a witness that n is composite any a ∈ Z such that
[a]n ∈ Z∗n and ([a]n)n−1 6= [1]n.

33 of 41



Fermat test

Algorithm
Input: Integer n, parameter t
for i = 1 to t

a← {1, · · · , n− 1}
if ([a]n)n−1 6= [1]n return “composite”

return “prime”

Theorem
If n has a witness that it is composite, then

|{witnesses}n| ≥ |Z∗n|/2.

However, try 561 or 41041. Observe that the above theorem
requires at least a witness!

34 of 41



Fermat test

Algorithm
Input: Integer n, parameter t
for i = 1 to t

a← {1, · · · , n− 1}
if ([a]n)n−1 6= [1]n return “composite”

return “prime”

Theorem
If n has a witness that it is composite, then

|{witnesses}n| ≥ |Z∗n|/2.

However, try 561 or 41041. Observe that the above theorem
requires at least a witness!

34 of 41



Testing Primality

• Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

• Fermat’s test needs to be refined.

• Let n− 1 = 2ku, where u is odd and k ≥ 1 (n is odd).

• In Fermat’s test, we check if ([a]n)n−1 = ([a]n)2ku = [1]n.

• What about ([a]n)u, ([a]n)2u, · · · , ([a]n)2k−1u?
• Strong witness: a ∈ Z is a strong witness that n is composite if

[a]n ∈ Z∗n and
◦ ([a]n)u 6= ±[1]n
◦ ([a]n)2iu 6= [−1]n for all i ∈ {1, · · · , k − 1}

35 of 41



Testing Primality

• Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

• Fermat’s test needs to be refined.

• Let n− 1 = 2ku, where u is odd and k ≥ 1 (n is odd).

• In Fermat’s test, we check if ([a]n)n−1 = ([a]n)2ku = [1]n.

• What about ([a]n)u, ([a]n)2u, · · · , ([a]n)2k−1u?
• Strong witness: a ∈ Z is a strong witness that n is composite if

[a]n ∈ Z∗n and
◦ ([a]n)u 6= ±[1]n
◦ ([a]n)2iu 6= [−1]n for all i ∈ {1, · · · , k − 1}

35 of 41



Testing Primality

• Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

• Fermat’s test needs to be refined.

• Let n− 1 = 2ku, where u is odd and k ≥ 1 (n is odd).

• In Fermat’s test, we check if ([a]n)n−1 = ([a]n)2ku = [1]n.

• What about ([a]n)u, ([a]n)2u, · · · , ([a]n)2k−1u?
• Strong witness: a ∈ Z is a strong witness that n is composite if

[a]n ∈ Z∗n and
◦ ([a]n)u 6= ±[1]n
◦ ([a]n)2iu 6= [−1]n for all i ∈ {1, · · · , k − 1}

35 of 41



Testing Primality

• Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

• Fermat’s test needs to be refined.

• Let n− 1 = 2ku, where u is odd and k ≥ 1 (n is odd).

• In Fermat’s test, we check if ([a]n)n−1 = ([a]n)2ku = [1]n.

• What about ([a]n)u, ([a]n)2u, · · · , ([a]n)2k−1u?
• Strong witness: a ∈ Z is a strong witness that n is composite if

[a]n ∈ Z∗n and
◦ ([a]n)u 6= ±[1]n
◦ ([a]n)2iu 6= [−1]n for all i ∈ {1, · · · , k − 1}

35 of 41



Testing Primality

• Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

• Fermat’s test needs to be refined.

• Let n− 1 = 2ku, where u is odd and k ≥ 1 (n is odd).

• In Fermat’s test, we check if ([a]n)n−1 = ([a]n)2ku = [1]n.

• What about ([a]n)u, ([a]n)2u, · · · , ([a]n)2k−1u?

• Strong witness: a ∈ Z is a strong witness that n is composite if
[a]n ∈ Z∗n and
◦ ([a]n)u 6= ±[1]n
◦ ([a]n)2iu 6= [−1]n for all i ∈ {1, · · · , k − 1}

35 of 41



Testing Primality

• Carmichael numbers: composite numbers that pass the test
for all 0 < a < n, since they don’t have any witnesses.

• Fermat’s test needs to be refined.

• Let n− 1 = 2ku, where u is odd and k ≥ 1 (n is odd).

• In Fermat’s test, we check if ([a]n)n−1 = ([a]n)2ku = [1]n.

• What about ([a]n)u, ([a]n)2u, · · · , ([a]n)2k−1u?
• Strong witness: a ∈ Z is a strong witness that n is composite if

[a]n ∈ Z∗n and
◦ ([a]n)u 6= ±[1]n
◦ ([a]n)2iu 6= [−1]n for all i ∈ {1, · · · , k − 1}

35 of 41



Testing Primality

Theorem
Let n be an odd number that is not a prime power. Then we have
that at least half of the elements of Z∗n are strong witnesses that n
is composite.

Testing whether n is a perfect power (power of an integer, not
necessarily prime) can be done in polynomial time!

36 of 41



Miller-Rabin test

Algorithm
Input: Integer n > 2, parameter t
If n is even, return “composite”
If n is a perfect power, return “composite”
Write n− 1 = 2ku, where u is odd and k ≥ 1
for j = 1 to t

a← {1, · · · , n− 1}
if ([a]n)u 6= ±[1]n and ([a]n)2iu 6= −[1]n for i ∈ {1, · · · , k − 1}

return “composite”
return “prime”

37 of 41



Miller-Rabin test

Theorem
If n is prime, then the Miller-Rabin test always outputs “prime”. If n
is composite, the algorithm outputs “composite” except with
probability at most 2−t.

38 of 41



Further Reading (1)

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali.
Public-key encryption in a multi-user setting: Security proofs
and improvements.
In Bart Preneel, editor, Advances in Cryptology —
EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 259–274. Springer Berlin
Heidelberg, 2000.

Dan Boneh.
Simplified OAEP for the RSA and Rabin Functions.
In Joe Kilian, editor, Advances in Cryptology — CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science,
pages 275–291. Springer Berlin Heidelberg, 2001.

39 of 41



Further Reading (2)

Ronald Cramer and Victor Shoup.
Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

Whitfield Diffie and Martin E Hellman.
New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654,
1976.

40 of 41



Further Reading (3)

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir.
New attacks on feistel structures with improved memory
complexities.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, pages 433–454, 2015.

Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi
Satoh, and Adi Shamir.
Collision-based power analysis of modular exponentiation
using chosen-message pairs.
In Cryptographic Hardware and Embedded Systems - CHES
2008, 10th International Workshop, Washington, D.C., USA,
August 10-13, 2008. Proceedings, pages 15–29, 2008.

41 of 41


	RSA Encryption Scheme
	Rabin Encryption Scheme
	Generation of Prime Numbers

