
Digital Signatures

Federico Pintore 1

1 Mathematical Institute,
Oxford University

1 of 58

Outline

1 Definitions

2 Factoring-based Signatures

3 Dlog-based Signatures

4 Hash-based Signatures

5 Certificates

6 SSL/TLS

2 of 58

An Overview

• Digital signatures are used to provide integrity (or authenticity)
in the public-key setting.

• They are the public-key analogue of MACs.

• For instance, software companies use them to allow the clients
to verify that the software updates are authentic.

• Companies sign their updates using their secret keys. Then
clients can verify the authenticity of the updates by verifying the
validity of the signatures against the companies’ public keys
(are already known to the clients).

3 of 58

An Overview

• The owner of the public key acts as the sender, producing
digital signatures using its private key SK.

• If a signature σ on a message m is verified correctly against a
given public key PK, it ensures that the message was indeed
sent by the owner of this public key (already known to potential
verifiers) and the message was NOT modified in transit.

• In comparison to message authentication codes (MACs):
◦ key distribution and management is hugely simplified;
◦ signatures are publicly verifiable⇒ they are transferable (essential

for certificates);
◦ non-repudiation: signers cannot deny having signed a message;
◦ MACs are shorter and more efficient to generate/verify.

4 of 58

Syntax

A digital signature scheme S consists of the following PPT
algorithms:

• KeyGen(1n): it takes the security parameter as input and
returns a pair of keys (PK,SK), the public key PK and its
matching secret key SK.

• Sign(SK,m): it takes a secret key SK, a message m from the
message spaceM and returns a signature σ.

• Verify(PK,m, σ): it is a deterministic algorithm that takes a
public key PK and a signature σ, and returns a bit, 1 for a valid
signature and 0 for an invalid one.

Correctness: ∀m ∈M, and except with negligible probability over
(PK,SK)← KeyGen(1n), we have Verify(PK,m,Sign(SK,m)) = 1.

5 of 58

Security Definition: Unforgeability Experiment

We are assuming that parties are able to obtain a legitimate copy
of the signer’s public key.

Algorithm (UnforgA,S(n))
• KeyGen(1n): it returns the keys (PK,SK).
• Signing Queries: the adversary A is given access to PK and to

a signing oracle Sign(SK, ·). Let Q be the set of all messages
that A asked its oracle to sign.

• A’s output: a pair (m∗, σ∗).
• If Verify(PK,m∗, σ∗) = 1 and m∗ 6∈ Q, return 1,

else return 0.

6 of 58

Security Definition: Unforgeability Experiment

Definition
A signature scheme S = (KeyGen,Sign,Verify) is existentially
unforgeable under an adaptive chosen-message attack, if for
all PPT adversaries A, we have

Pr[UnforgA,S(n) = 1] ≤ negl(n)

7 of 58

Hash-and-Sign Paradigm
Let S = (KeyGen,Sign,Verify) be a digital signature scheme with
message space {0, 1}`(n), and let H be a hash function with output
length `(n).

We define a signature scheme S′ = (KeyGen′,Sign′,Verify′) for
arbitrary length messages as follows:

• KeyGen′(1n): it runs KeyGen(1n) to get a pair of keys (PK,SK),
and KeyGenH(1

n) to get s. The public key is (PK, s), the secret
key is (SK, s).

• Sign′((SK, s),m ∈ {0, 1}∗): it returns a signature
σ := Sign(SK,Hs(m)).

• Verify′((PK, s),m, σ): it that takes a public keys (s,PK), a
message m and a signature σ, and ouptus 1 iff
Verify((PK, s),Hs(m), σ) = 1.

8 of 58

Hash-and-Sign Paradigm

Theorem
If S is a secure digital signature scheme for messages of length
`(n) and H is a collision resistant hash function, then S′ is a secure
digital signature scheme for arbitrary-length messages.

9 of 58

Outline

1 Definitions

2 Factoring-based Signatures

3 Dlog-based Signatures

4 Hash-based Signatures

5 Certificates

6 SSL/TLS

10 of 58

RSA Signatures: Plain RSA
We define the plain RSA signature as follows:

• KeyGen(1n): it runs a PPT algorithm GenRSA which, on input
the security parameter n, returns a modulus N = pq, where p, q
are two n-bit primes. It also outputs two integers e, d s.t.
e · d = 1 (mod φ(N)). PK = (N, e) is the public key, SK = (N, d)
is the secret key.

• Sign(SK,m): it takes a secret key SK, a message m ∈ Z∗N and
returns a signature

σ := md

• Verify(PK,m, σ): it takes the public key PK, a message m and a
signature σ, and returns a bit, 1 iff

m = σe
11 of 58

Security Analysis of Plain RSA

• The RSA assumption relative to GenRSA implies hardness of
computing an eth root, i.e. of computing a signature for a
uniform message m.

• What if the adversary can learn signatures on other messages?

• What about forging signatures on messages that the adversary
can choose?

• No message attack: given a public key (N, e), pick σ ∈ Z∗N ,
compute the message as m← σe and output the forgery (m, σ).

• Malleability: knowing two valid signatures σ1, σ2 on two
messages m1,m2, we can construct a valid signature on a new
message m = m1 · m2 as σ ← σ1 · σ2.

12 of 58

RSA-Full Domain Hash (RSA-FDH)
The RSA-FDH signature scheme is defined as follows:
• KeyGen(1n): it runs a PPT algorithm GenRSA which, on input

the security parameter n, returns a modulus N = pq, where p, q
are two n-bit primes, and two integers e, d s.t. e · d = 1
(mod φ)(N). PK = (N, e) is the public key, SK = (N, d) is the
secret key. A function H : {0, 1}∗ → Z∗N is also generated.

• Sign(SK,m): it takes a secret key SK, a message m ∈ {0, 1}∗
and returns a signature

σ := H(m)d

• Verify(PK,m, σ): it takes the public key PK, a message m and a
signature σ, and returns a bit, 1 iff

H(m) = σe

13 of 58

Security of RSA-FDH

Theorem
If the RSA problem is hard relative to GenRSA and H is modelled
as a random oracle, then the digital signature RSA-FDH is secure.

14 of 58

The RSA problem
Let GenRSA be a PPT algorithm that, on input n, outputs
(N, p, q, e, d), where N = pq - p, q are n-bit primes - and
[e]ϕ(N)[d]ϕ(N) = [1]ϕ(N).

• In the experiment RSA− invA,GenRSA(n), GenRSA is run on
input n. The adversary is given N and e together with a uniform
element [y]N ∈ Z∗N . It has to determine [x]N ∈ Z∗N such that
([x]N)e = [y]N .

• The RSA problem is hard relative to GenModulus if, for all PPT
adversaries A, the success probability in the above experiment
is negligible in n.

• The RSA assumption is the assumption that there exists a
GenRSA relative to which the RSA problem is hard.

15 of 58

Security of (RSA-FDH)

Proof.
Let A be a PPT adversary against the UnforgA,S(n) experiment.
We make the following assumptions during the security proof:
• If A queries the signing oracle for a signature on a message m,

then it previously queried H for m.
• Same when A outputs a forgery (m, σ).
• A makes exactly q(n) distinct queries to H.
We build an adversary A′ against the RSA− invA,GenRSA(n)
experiment as follows:

16 of 58

Security of RSA-FDH

Proof.
A′(N, e, y):
• It chooses uniform j ∈ {1, · · · , q}
• It sends PK = (N, e) to A.
• It manages a storage table for triples of the form (mi, σi, yi),

where yi = σe
i mod N and A′ has set H(mi) = yi.

• Hash queries: When A makes its i-th query, it answers as
follows:
◦ if i = j, the query is answered by y.
◦ else a uniform σi ← Z∗N is chosen and yi ← σe

i is computed. Then
the tuple (mi, σi, yi) is stored in the table and yi is returned (recall
that fe is a permutation of Z∗N).

17 of 58

Security of (RSA-FDH)

Proof.
• Signing queries: when A makes its signing query on m, by

hypothesis m = mi, where mi is already in the table, and A′
answers as follows:
◦ if i = j, then aborts.
◦ else it finds the entry (mi, σi, yi) from the table, and returns σi to A.

• A outputs its forgery (m, σ). If m = mj and σe = y mod N, then
A′ outputs σ as an answer to the RSA experiment.

We observe that:

Pr[RSA− invA′,GenRSA(n) = 1] =
Pr[UnforgA,S(n)]

q(n)

18 of 58

More on RSA-FDH

• A signature scheme that can be viewed as a variant of
RSA-FDH is included in the RSA PKCS #1 v2.1 standard.

• Some practical attacks on RSA-FDH are known if H has small
output length (the range of H should be close to all Z∗N).

• Therefore, cryptographic hash functions such as SHA-1 are not
suitable.

19 of 58

Outline

1 Definitions

2 Factoring-based Signatures

3 Dlog-based Signatures

4 Hash-based Signatures

5 Certificates

6 SSL/TLS

20 of 58

Schnorr Identification Scheme

• A three round interactive protocol that can be used to allow one
party to authenticate itself.

• We will have two parties, a prover (e.g. a user) and a verifier
(e.g a web server).

• The prover has a public key, together with the corresponding
secret key. The verifier only knows the prover’s public key.

• Security of an identification scheme: given an adversary that
can eavesdrop on multiple executions of the protocol and who
doesn’t know the prover’s secret key, it should NOT be able to
fool the verifier into accepting.

21 of 58

Schnorr Identification Scheme

Let G be a PPT algorithm that, on input a security parameter n,
outputs (G, q, q):
• G is a cyclic group G;
• q is the order of G, with ||q|| = n;
• g is a generator of G.

The prover runs G(n) and then generates its keys by choosing a
uniform element x ∈ Zq: the public key PK is gx, the secret key SK
is x.

22 of 58

Schnorr Identification Scheme

Prover(x) Verifier(G, q, g, y = gx)

k←$Zq

I ← gk

I

Challenge c←$Zq

c

s← cx + k (mod q)

s

gs · y−c ?
= I

23 of 58

Security of Schnorr Identification Scheme

Theorem
If the discrete logarithm problem is hard relative to G, then the
Schnorr identification is secure.

Sketch proof.
Does learning an honest transcript (I, c, s) help the adversary?

The adversary can simulate the transcript himself by reversing
the order of the steps:
• It chooses uniform and independent c∗, s∗ ∈ Zq

• It sets I∗ := gs∗y−c∗ .
• The transcript (I∗, c∗, s∗) is indistinguishable from an honest one

(consider that fs∗ is a permutation of Z∗N , and the ElGamal’s
main idea).

24 of 58

Security of Schnorr Identification Scheme

Sketch proof.
Assuming that the adversary can, on input y, I ∈ G, output a
response s for any challenge c with high probability, then it can in
particular respond with correct responses s1, s2 to two distinct
challenge values c1, c2 ∈ Zq. But this means that we now have

gs1 · y−c1 = I = gs2 · y−c2

Therefore, one can solve the discrete logarithm problem by finding

y = g
s2−s1
c2−c1 .

25 of 58

Fiat-Shamir Transform

• It can be used to transform an interactive identification scheme
into a (non-interactive) signature scheme.

• The signer runs the whole protocol by itself.

• It applies a hash function to (m, I) in order to generate the
challenge c.

• The signature on m is now (c, s).

• The verifier can recompute I and check if the c = H(I,m).

26 of 58

The Schnorr Signature Scheme

• KeyGen(1n): it runs G on the security parameter n to obtain
(G, q, g). It chooses a uniform x ∈ Z∗q and sets y = gx. The
secret key is SK = x, whereas the public key is PK = (G, q, g, y).
It also generates a hash function H : {0, 1}∗ → Zq.

• Sign(SK,m ∈ {0, 1}∗): on input a secret key SK and a message
m ∈ Z∗N , it chooses a uniform k ∈ Zq, sets I = gk and computes
c := H(I,m) and s := cx + k mod q. It finally returns a signature

σ := (c, s)

• Verify(PK,m, σ): it takes the public key PK, a message m and a
signature σ, and computes I := gs · y−c and output 1 if

H(I,m)
?
= c

27 of 58

Security of the Schnorr Signature Scheme

Theorem
If the discrete logarithm problem is hard relative to G and H is
modelled as a random oracle, then the Schnorr signature scheme
is secure.

28 of 58

Digital Signature Algorithm (DSA) and
(ECDSA)

• Some of their versions go back to 1991.

• Both in the Digital Signature Standard (DSS) published by
NIST.

• They are based on an identification protocol that is secure if
discrete logarithm problem is hard.

29 of 58

DSA: underlying identification scheme

Prover(x) Verifier(G, q, g, y = gx)

k←$Z∗q
I ← gk

I

Challenge c, α←$Zq

c, α

s← k−1 · (α+ xc) ∈ Zq

s

s
?

6= 0

gαs−1
· ycs−1 ?

= I
30 of 58

DSA: underlying identification scheme

• Correctness of the scheme: It is correct as long as s 6= 0, which
only happens if α = −xc mod q. The probability that this
happens is negligible.

• Security: based on the hardness of the discrete logarithm
problem. Assume that the adversary A, after it outputs an initial
message I, can output correct responses (s1, s2) for two
different challenges (c1, α) and (c2, α). An easy computation
leads to logg y.

31 of 58

DSA
• KeyGen(1n): it takes the security parameter n and runs G ot

obtain (G, q, g). It chooses a uniform x ∈ Z∗q and sets y = gx.
The secret key is SK = x, whereas the public key is
PK = (G, q, g, y). It also generates two functions,
H : {0, 1}∗ → Zq and F : G→ Zq.

• Sign(SK,m ∈ {0, 1}∗): given a secret key SK and a message
m ∈ {0, 1}∗, it chooses a uniform k ∈ Z∗q, sets c := F(gk) and
computes s := k−1 · (H(m) + xc) in Zq. If s = 0 or c = 0, it starts
again by choosing a fresh k. It finally returns the signature
σ := (c, s).

• Verify(PK,m, σ): it takes a public key PK, a message m and a
signature σ = (c, s) with c, s 6= 0. It outputs 1 if

gH(m)·s−1 · yc·s−1 ?
= c

32 of 58

Security of DSA/ECDSA

• Can be proven secure assuming the hardness of the discrete
logarithm problem relative to G and modelling H and F as
random oracles.

• Fine with H, but not with F. No known proofs for F as it is
specified in the standard (F is a simple function, not intended to
act as a random one).

• Choosing k properly is crucial. Knowing k, you can recover the
secret key x.

• Using the same k leads to the private key as well!

• This is what the hackers did to recover the master secret key of
Sony PS3 in 2010!

33 of 58

Bonus slide: Bilinear Maps (Pairings)

Let G1,G2 and GT be three groups of the same prime order p. A
pairing is an efficiently computable function e : G1 ×G2 → GT ,
satisfying the following conditions:

1 e(ga
1, g

b
2) = e(g1, g2)

ab, for all g1 ∈ G1, g2 ∈ G2 and all a, b ∈ Zp.

2 Non-degeneracy: if g1 is a generator of G1, g2 is a generator of
G2, then e(g1, g2) is a generator of GT .

The Tate/Weil pairing maps any pair of elements from two groups
of points on an elliptic curve, to an element in a subgroup of the
multiplicative group of a finite field.

34 of 58

Pairing-based signatures

• Boneh-Lynn-Shacham signatures.

• Boneh-Boyen signatures.

• ...

35 of 58

Outline

1 Definitions

2 Factoring-based Signatures

3 Dlog-based Signatures

4 Hash-based Signatures

5 Certificates

6 SSL/TLS

36 of 58

Hash-based Signatures

• Signature schemes that are based on hash functions.

• No reliance on number-theoretic hardness assumptions.

• No reliance on random oracles.

• Believed to be post-quantum secure.

37 of 58

Lamport’s Signature Scheme

• This was introduced by Leslie Lamport in 1979.

• It is a one-time secure signature scheme.

• By one-time we mean that the adversary A can only query the
signing oracle on exactly one message during the UnforgA,S(n)
experiment.

• One-time secure signature schemes are usually used to build
other cryptosystems (including digital signatures) that achieve
stronger notions of security.

38 of 58

Lamport’s Signature Scheme

Example (Katz-Lindell book)
• Let’s consider the example of a 3-bit message.
• Let the private key and public keys be as follows:

PK =

(
y1,0 y2,0 y3,0
y1,1 y2,1 y3,1

)
SK =

(
x1,0 x2,0 x3,0
x1,1 x2,1 x3,1

)
• H is a cryptographic hash function, {xi,j} are chosen uniformly

at random from {0, 1}n and yi,j = H(xi,j), for i = 1, 2, 3; j = 0, 1.
• Given m = 011, the signature will be σ = (x1,0, x2,1, x3,1).
• Verification: given m = 011 and σ = (x1,0, x2,1, x3,1),

Check if

H(x1,0)
?
= y1,0 H(x2,1)

?
= y2,1 H(x3,1)

?
= y3,0

39 of 58

Lamport’s Signature Scheme
Given a function H : {0, 1}∗ → {0, 1}∗, the Lamport’s signature
scheme for messages of length `(n) is defined as follows:
• KeyGen(1n): it generates the following private and public keys

PK =

(
y1,0 y2,0 . . . y`,0
y1,1 y2,1 . . . y`,1

)
SK =

(
x1,0 x2,0 . . . x`,0
x1,1 x2,1 . . . x`,1

)
where {xi,j} are chosen uniformly at random from {0, 1}n and
yi,j = H(xi,j), for i = 1, . . . , `; j = 0, 1.

• Sign(SK,m ∈ {0, 1}`): the signature will be
σ = (x1,m1 , . . . , x`,m`

), where m = m1 . . .m`.
• Verify(PK,m, σ): on input m = m1 . . .m` and σ = (σ1, . . . , σ`),

output 1 iff
H(σi)

?
= yi,mi ∀i ∈ {1, . . . , `}

40 of 58

Lamport’s Signature Scheme

How can an attacker break the one-time security of the
previous scheme?

• A can learn ONLY one signature on one message m of its
choice.

• A has to output a signature on a new message m′.

• The new signature will then involve some new xi,j, say x1,1.

• If the forged signature is valid, A managed to compute the
preimage of y1,1, that is part of the public key.

• This cannot happen if H is a one-way function, i.e. finding the
preimage is computationally difficult.

41 of 58

Lamport’s Signature Scheme

How can an attacker break the one-time security of the
previous scheme?

• A can learn ONLY one signature on one message m of its
choice.

• A has to output a signature on a new message m′.

• The new signature will then involve some new xi,j, say x1,1.

• If the forged signature is valid, A managed to compute the
preimage of y1,1, that is part of the public key.

• This cannot happen if H is a one-way function, i.e. finding the
preimage is computationally difficult.

41 of 58

Security of Lamport’s Signature Scheme

Theorem
If H is a one-way function, then the Lamport’s signature scheme is
a one-time secure signature scheme.

42 of 58

Outline

1 Definitions

2 Factoring-based Signatures

3 Dlog-based Signatures

4 Hash-based Signatures

5 Certificates

6 SSL/TLS

43 of 58

Certificates

• Used for the distribution of public keys.
• A trusted party is needed to start the process.
• A digital certificate is a digital signature that binds an entity to

a certain public key.
• Assume that we have two parties, Alice with the pair of

public/secret keys (PKA,SKA), and Bob with (PKB,SKB). We
also assume that Alice knows PKB.

• Alice can issue a certificate for Bob’s key as follows:

certA→B := Sign(SKA, “Bob’s key is PKB”)

• More identifying information about Bob are usually included in
the certificate!

44 of 58

Certificates and Public Key Infrastructure (PKI)

• How do users learn PKA? How can Alice be sure that Bob is
the legitimate owner of PKB? How do users decide whether to
trust Alice? Such details determine a PKI.

• In the simplest form of PKI, we have a single Certificate
Authority (CA).

• A CA is a company (or a government agency) that certifies
public keys.

• The mechanism by which a CA issues a certificate may vary
from CA to CA.

• Everybody has to get a legitimate copy of PKCA.
• The easiest way to distribute PKCA is by physical means.
• Other ways include embedding CA’s public key in the browser.
• Now if Charlie receives certCA→B, he will be sure that the signed

public key, i.e. PKB, does indeed belong to Bob.
45 of 58

Certificates and Public Key Infrastructure (PKI)

• Delegations and certificate chains: a root CA can issue
certificates to other CAs, say CA1, CA2, etc., that says: “CA1’s
public key is PKCA1 and it is trusted to issue other certificates”

• The “web of trust” model: a decentralised model - no reliance
on a root CA. Pretty Good Privacy (PGP) is an example of this
model. It is an email-encryption software for distribution of
public keys.

• Invalidating Certificates:
◦ Expiration: you can include an expiry date in the certificate.
◦ Revocation: you can include a serial number in the certificate,

while managing a certificate revocation list (CRL) that will be
updated regularly.

46 of 58

Outline

1 Definitions

2 Factoring-based Signatures

3 Dlog-based Signatures

4 Hash-based Signatures

5 Certificates

6 SSL/TLS

47 of 58

SSL/TLS

• The TLS protocol is used to secure communication over the
web.

• Secure Socket Layer (SSL) is the old version, that was
developed by Netscape around mid-1990s.

• Transport Layer Security (TLS) is the new version. Major
websites now support the (TLS 1.2), although 50% of the
websites still use TLS1.0!

• A given client (web browser) and a given server (website) can
use TLS to agree on some shared keys which they will use to
encrypt and authenticate their communication.

48 of 58

SSL/TLS

TLS consists of two phases:

• The handshake protocol: it performs an authenticated key
exchange mechanism to establish the shared keys.

• The record layer protocol: it usually uses the shared keys to
encrypt/authenticate the communication between parties. It first
authenticates servers (that have certificates) to clients, and
then clients can authenticate themselves to servers at the
application level by using passwords.

(Next slide’s diagrams from http://archive.apachecon.com
and https://www.identrustssl.com/learn.html)

49 of 58

http://archive.apachecon.com
https://www.identrustssl.com/learn.html

50 of 58

51 of 58

The Handshake Protocol - 1

• Step 1:C→ S: (ciphersuites,nonce NC). % A nonce is a
uniform value.

• Step 2: S→ C: (Latest version of TLS it supports, ciphersuites,
PKS, certi→S,nonce NS).

• Step 3:
◦ C verifies the certificate against the PK of CAi, it makes sure it is

not revoked or expired. If it is valid, it will use PKS as the server’s
public key.

◦ (c,pmk)← EncapsPKS
(1n)

◦ mk← key-derivation function(pmk,NC,NS)
◦ (kC, k′C, kS, k′S)← PRG(mk)
◦ τC ← MACmk(transcript : all exchanged messages)
◦ C→ S: (c, τC)

52 of 58

The Handshake Protocol - 2

• Step 4:
◦ S computes pmk← DecapsSKS

(c).
◦ mk← key-derivation function(pmk,NC,NS).
◦ (kC, k′C, kS, k′S)← PRG(mk).
◦ If Verifymk(transcript, τC) 6= 1, then S aborts.
◦ Else τS ← MACmk(transcript′: transcript ∪ last message from C).
◦ S→ C: τS

• Step 5: If Verifymk(transcript′, τS) 6= 1, C aborts.

At the end of the handshake protocol, the client C and the
server S share the following symmetric keys: kC, k′C, kS, k′S.

53 of 58

The Record-Layer Protocol

• C will use kC to encrypt and k′C to authenticate all messages
that it will send to S.

• S will do the same with kS and k′S.

• They will use sequence numbers to prevent replay attacks.

• Note that even TLS 1.2 uses MAC-then-Encrypt approach,
which is problematic. So no wonder why we have lots of attacks
on TLS!

54 of 58

Further Reading (1)

I Carlisle Adams and Steve Lloyd.
Understanding PKI: concepts, standards, and deployment
considerations.
Addison-Wesley Professional, 2003.

I Mihir Bellare and Phillip Rogaway.
Random oracles are practical: A paradigm for designing
efficient protocols.
In Proceedings of the 1st ACM conference on Computer and
communications security, pages 62–73. ACM, 1993.

I Dan Boneh, Ben Lynn, and Hovav Shacham.
Short signatures from the weil pairing.
Journal of cryptology, 17(4):297–319, 2004.

55 of 58

Further Reading (2)

I Tim Dierks.
The transport layer security (TLS) protocol version 1.2.
2008.

I Carl Ellison and Bruce Schneier.
Ten risks of PKI: What you’re not being told about public key
infrastructure.
Comput Secur J, 16(1):1–7, 2000.

I Amos Fiat and Adi Shamir.
How to prove yourself: Practical solutions to identification and
signature problems.
In Advances in Cryptology—CRYPTO’86, pages 186–194.
Springer, 1987.

56 of 58

Further Reading (3)

I Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita
Anubhai, Dan Boneh, and Vitaly Shmatikov.
The most dangerous code in the world: validating SSL
certificates in non-browser software.
In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 38–49. ACM, 2012.

I Hugo Krawczyk.
Cryptographic extraction and key derivation: The hkdf scheme.
In Annual Cryptology Conference, pages 631–648. Springer,
2010.

57 of 58

Further Reading (4)

I Hugo Krawczyk, Kenneth G Paterson, and Hoeteck Wee.
On the security of the TLS protocol: A systematic analysis.
In Advances in Cryptology–CRYPTO 2013, pages 429–448.
Springer, 2013.

I Leslie Lamport.
Constructing digital signatures from a one-way function.
Technical report, Technical Report CSL-98, SRI International
Palo Alto, 1979.

I William Stallings.
Network security essentials: applications and standards.
Pearson Education India, 2007.

58 of 58

	Definitions
	Factoring-based Signatures
	Dlog-based Signatures
	Hash-based Signatures
	Certificates
	SSL/TLS

