Factorisation and Discrete-Logarithm Algorithms

Federico Pintore !

"Mathematical Institute,
University of Oxford

UNIVERSITY OF

0),430)328D,

10f38

Outline

o Factorization algorithms

9 Generic discrete logarithm algorithms

© Discrete logarithms over finite fields

Outline

o Factorization algorithms

Integer factorization

Problem: Given a composite number N, which is the product of
two n-bit primes, compute one of its factors.

Trial Divison: try every prime number up to v/N. Running time is,
at worst, O(v/N - polylog(N)).

Can we do better?

4 0f 38

Pollard’s rho

e |t can be used to factor any arbitrary integer N = pq.

e |dea: find a good pair (x,y) s.t. x =y (mod p) but x # y
(mod N).

e This implies that gcd(x — y, N) = p, and therefore a non-trivial
factor of N is obtained.

* Define some “pseudorandom” iteration function f (a standard
choice would be f(x) = x> + 1 mod N. It has the property that, if

x =x" (mod p), then f(x) = f(x') (mod p).)

* At step i-th, compute x;, xo; and ged(x; — x2;, N).

» By birthday’s bound, a pair (x;, x2;) S.t. x; = xp; (mod p) is
expected to be found after O(p'/?) trials on average.

5 of 38
I

Pollard’s Rho

1: Input: integer N (a product of two n-bit primes)
2 a:=b<« 7y

3 forie{2,...,2"/*} do

4: a:=f(a)

5 b:=f(f(b))

6: p:=gcd(a—b,N)
7. ifp & {1,N} then
8: return p.

9: endif

10: end for

6 of 38

Pollard’s p — 1 and Elliptic curve factorization
methods

Pollard’s p — 1 is an effective method if p — 1 has only “small”
prime factors.

Elliptic-curve factorisation method generalises it when neither
p — 1 nor g — 1 are smooth.

The group order #E(F,) of an elliptic curve E can be smooth
even when p — 1 is not!

Choosing strong primes for RSA, i.e. p — 1 and ¢ — 1 both have
large prime factors, can help against Pollard’s p — 1, but not
against Elliptic-curve factorisation method or Number Field
Sieve.

7 of 38

Quadratic Sieve Algorithm

e It runs in sub-exponential time in the length of N. Good choice
for numbers up to about 300 bits long.

« Try to factor 8051. 8051 = 90> — 7% = (90 — 7)(90 +7) = 83 x 97.

e Idea: find a, b s.t. a*> = b* (mod N) but a # +b (mod N). Hence
gcd(a — b, N) gives one non trivial factor of N.

80f38

Quadratic Sieve Algorithm

Fix some bound B € N, and let ¥ = {py, ..., p«} the set of
primes less than or equal to B.

Search for integers x;, where x; = [\/Jﬂ Xy = [\/Jﬂ +1,...,
s.t. ¢i := x? (mod N) is B-smooth, and factor them.

Find a subset S of {¢;}; such that the product of its elements is
a square, i.e.

k
qu:Hpngese“ st. Y ep=0 (mod2) Vee{l,... k}
/=1

JES JES

S can be found using linear algebra.

90f 38

Quadratic Sieve Algorithm

» Define the matrix of exponents (modulo 2) as follows:

€11 (mod 2) €1,2 (mod 2) cee €1k (mod 2)

em1 (mod2) e,> (mod2) ... e,i (mod?2)

e If m = k + 1, then there exists a nonempty subset S of rows that
sum to the zero vector modulo 2.

10 of 38
I

Quadratic Sieve Algorithm

» Take N = 377753. We can compute the following:

620> mod N = 17 -23

621> mod N = 2*-17-29
645> mod N =27 - 13- 23
655> mod N = 2% -13-17-29

(620 - 621 - 645 - 655 (mod N))*> = (27-13-177-23-29)> (mod N)
= 127194> = 45335 (mod N)

Since 127194 # +45335 (mod N),
ged(127194 — 45335,377753) = 751 gives a non trivial factor of N.

110f 38
I

Outline

@ Generic discrete logarithm algorithms

120f 38

Why Discrete Logarithm?

A graph of f(x) = 627" (mod 941) forx =1,2,3,...

7004
Gof v -
soof
4001 |

aoot
2001, . *

1007

13 of 38
I

Discrete logarithms

14 of 38

Discrete logarithms

e Trivial if (G, o) = (F,,+). Why?
* Recently broken if (G, o) = (F3,, %)
(more generally if characteristic is small)

14 of 38

Discrete logarithms

e Trivial if (G, o) = (F,,+). Why?
* Recently broken if (G, o) = (F3,, %)
(more generally if characteristic is small)
* Believed to be hard for G = F,,
and harder for (well-chosen) elliptic curve groups

14 of 38

Generic group model

» Algorithms do not exploit any special properties of the
encodings of the group elements, other than the fact that each
group element is encoded as a unique binary string.

» For instance, the attacker just receives bitstrings instead of Z,
elements (n itself is often hidden but the size of n cannot be
hidden).

e QOperations on group elements are performed using an oracle
that provides access to the group operations.

* Some attacks are generic: they work for any group.

e This includes exhaustive search, BSGS, Pollard’s rho
» There exist much better attacks for finite fields.

 Still no better attack for (well-chosen) elliptic curves.

15 of 38
I

Exhaustive search

Given g, h € G do the following:

ke 1H g

if ¥’ = hthen
return &

. else

k< k+1;0 < Hg

Goto Step 2

: end if

N aRhob=

* Generic algorithm
» Time complexity |G| in the worst case
e Can we do better?

16 of 38

Pohlig-Hellman

* They observed that Dlog in a group G is as hard as the Dlog in
the largest subgroup of prime order in G.

e This applies in any arbitrary finite abelian group.
e Assume |G| = N = nin; and let g a generator of G.
o h=gkimplies B = (g")

where g"' generates a subgroup of order n,.

e Assuming that we can solve DLP in that subgroup, this would
give us k mod n;.

* Repeating the same thing for each factor of N and using CRT
would give us k.

17 of 38
I

Pohlig-Hellman

¢
o LetG = (g) of order N = #G = [[pf'
i=1
e Given i = g*, we want to first find x mod p{" and then use CRT

to recover it mod N.
e There is a group isomorphism ¢ : G — C o1 X e X Cc it

¢ Define the projection map ¢, : G — C, ‘i where ¢, (g gN/P' .
¢p, is a group homomorphism, i.e., if h g'inG, then
Opi(h) = dpi(g)" in Cpei

e Solving the discrete logarithm in Cpf,- reduces to solving e;
discrete logarithm in the group C,, following an inductive

procedure.
e Given ' = g eC i we write X' = xo + x1p; + - - - —i—xe,_lpf‘ !
and then find xo, x1, ..., x,—1 in turn.

18 of 38
I

Baby step, giant step (BSGS)

» Given a public cyclic group G = (g), now we can assume that G
has a prime order p.

e Given & € G, find the value of k s.t. h = g~.

19 of 38

Baby step, giant step (BSGS)

» Given a public cyclic group G = (g), now we can assume that G
has a prime order p.

e Given & € G, find the value of k s.t. h = g~.
o LetN' = [\/|G]]

e There exist 0 < i,j < N such that k = jN’' +i

19 of 38

Baby step, giant step (BSGS)

» Given a public cyclic group G = (g), now we can assume that G
has a prime order p.

Given h € G, find the value of k s.t. h = g*.

Let N = [/|G]]

There exist 0 < i,j < N’ such that k = jN’' +i

h= g+ o pg IV = 4f

19 of 38

Baby step, giant step (BSGS)

» Given a public cyclic group G = (g), now we can assume that G
has a prime order p.

Given h € G, find the value of k s.t. h = g*.

Let N = [/|G]]

There exist 0 < i,j < N’ such that k = jN’' +i

h= g+ o pg IV = 4f

Compute Lg := {g'li=0,...,N' — 1}
Compute L := {hg/'|j=0,...,N — 1}

19 of 38

Baby step, giant step (BSGS)

» Given a public cyclic group G = (g), now we can assume that G
has a prime order p.

e Given & € G, find the value of k s.t. h = g~.

Let N = [/[G]]

There exist 0 < i,j < N’ such that k = jN’ + i

h= g+ o pg IV = 4f

Compute Lg := {g'li=0,...,N' — 1}
Compute Lg := {hg7V'|j=0,...,N' — 1}
Attack requires time and memory each O (|G|‘/2)

19 of 38
I

Baby step, giant step (BSGS)

Given a public cyclic group G = (g), now we can assume that G
has a prime order p.

Given h € G, find the value of k s.t. h = g~.

Let N' = [/|G]]
There exist 0 < i,j < N’ such that k = jN’ + i
h— ng’+:‘ PN hg—jN’ _ 4
Compute Lg := {g'li=0,...,N' — 1}
Compute Lg := {hg7V'|j=0,...,N' — 1}
Attack requires time and memory each O (|G|‘/2)

Can we do better in terms of space requirement and still obtain
a time complexity of O (\/ \G\)

19 of 38

Pollard’s Algorithms

e John Pollard, a famous name in factoring/Dlog algorithms in the
20th century.

e Known for (P — 1) method, Rho-method, Number Field Sieve.

e The idea in the Rho method is to find a collision in a random
mapping.

e Using the birthday paradox naively is no better than
Baby-Step/Giant-Step method in terms of space/time
requirements.

e Similar to the improved birthday paradox attack on hash

functions, we can use Floyd’s cycle finding algorithm, i.e. given
(xi, x2i), we compute

(Xit1, %2i+2) = (F(x:),f(f(x2:)))

e We stop when x;, = xyy
20 of 38

Pollard’s rho

e Define the sets Gy, G, G3 of about the same size such that
G =G1UG,UG;s and G; N Gj = {}, assuming that 1 ¢ Go.

e Qver Z;, one can choose

Gl = {077[p/3j}’
Gy =A{lp/3]+1,....[2p/3]}, Gs={[2p/3] + 1,....p — 2}
e Define a random walk f : G — G such that

hx; x; € Gy
Xip1 =f(6) = x5 x€G
gxi X €G3

21 of 38

Pollard’s rho

e Given g,h = g*, we start from xy := 1 and apply f recursively to
get {xi,xz,-},-.

* By the way f is defined, we can keep track of (x;, a;, b,) such
that x, = g“h”, where

a; bi+1 modp x; € G
diy1 = § 2a; mod p ,biz1 =4 2b; modp xi € Gy
ai+1 modp b; Xx;i € Gy
* We stop when a collision is found, i.e. x; = x,, therefore
e mod p.
by — byy

e If fis “random enough”, then we should find the Dlog in

expected time O <m>

22 of 38

Pollard’s rho

N« [V]G]]

a; =001 =0;x; =1

(x27 ay, b2) :f(-x17 ai, bl)

forke {2,...,N} do
(x1,a1,b1) = f(x1,a1,b1)
(x2,a2,b2) = f(f(x2,a2,b2))
if x; = x, break;

end for

if b, = b, mod p then

10: return L

11: else

12: return(az — (Z])/(bl — bz) mod p

13: end if

N O A2

©

23 0f 38
I

Pollard’s Rho: example

Example (Smart’s book)

Consider G = (g), a subgroup of F¢,; of order p = 101, with
g = 64. Given h = 122 = 64*. Solve for x.
We split G into three sets S, S,, 3 as follows:

S] = {XE]FZO7 XSZOI}

Sy = {x € Fly; : 202 < x < 403}

24 of 38

Pollard’s Rho: example

A collision is found when i = 14, this implies that g°#'? = g%hr®, so
[12x = 64 + 6x mod 101] and therefore x = 78.

25 0f 38
I

More from Pollard

e Pollard’s Lambda Method: similar to the Rho method in that it
uses deterministic random walk, but it is particularly designed
to the cases where we know that the Dlog lies in a particular
interval.

e Parallel Pollard’s Rho: designed to be able to use computing
resources of different sites across the internet.

26 of 38

Outline

o Discrete logarithms over finite fields

27 of 38

L notation

Lo(a; c) = exp(c(log Q)*(loglog 0)')

e (is the size of the field
* a=0= Lo(e;c) = (log Q) polynomial
° a=1= Lo(e;c) = Q° exponential

28 of 38

(simplified) Index Calculus for [F)

DLP: given g, € I, find x such that 2 = g*
Factor basis made of small primes

Fp :={primes p; < B} ={p1,...,px}
Relation search
o Compute g; := g“ forrandoma; € {1,...,p — 1}
o If all factors of g; are < B, we have a relation

= 117" (1)

PEF

Linear algebra Once we have ¢ > k linearly independent
equations similar to equations (1), we solve mod (p — 1) for
IOggpi, i= 1, NN ,k.

Search for ¢ such that [g' - h mod p] is B-smooth. Once found,
solve for log, i1 mod (p — 1).

29 of 38

Size of the factor basis

e By the prime number theorem,

|{primes p; < B}| =~

log B

e Fact: 30% of all numbers have no prime factors above their
square root. Surprisingly, a large proportion of numbers can be
built out of so few primes!

30 of 38

Complexity Analysis

e How to choose an optimal B: If B is large, then it is more likely
that the generated elements are B-smooth, but then testing that
they are B-smooth is more difficult now. Therefore, we need to
balance the cost!

* In order to choose an optimal B, we also need to know the
probability that a random integer that is smaller than N is
B-smooth.

e We will assume that the cost of generating relations dominates
the overall complexity of Algorithm, i.e. assume that the linear
algebra is negligible in terms of time complexity.

e We will simply use the trial-division to factor over F.

310f 38

Complexity Analysis

A number is B-smooth if all its prime factors are smaller than B.
Define W(N, B) = #{B-smooth numbers < N}.
The probability that a positive integer m < N is B-smooth is

1
approximately equal to N U (N, B).

1
The Canfield-Erdos-Pomerance Theorem: Let u = 12?;, we
have % - W(N,B) = u~"t°®)_ This is the Dickman-de Bruijn

function p, i.e. p(u) =~ u™".
e The expected number of random trials of choosing numbers in
[1; N] to find one that is B-smooth is ~ u"

320f 38
I

Complexity Analysis

e Let |Fp| = k, the expected running time of the algorithm is

~ (k+1) - u' . k - M(logN)
nb of relations €xPected nb of trials nb of trial divisions time for a trial division
(2)
~ B>-u" drop the logarithmic factors, where k ~ (3)
logB
= N/ (4)

« We want to minimize f(u) = N*/* - u". If we set f'(u) = 0, we
need a u s.t. u”logu ~ 2logN.

logN

o letu=2y/————
. loglog N

, we then get u?logu = 2log N + o(log N
g

33 0f 38

Complexity Analysis

e Back to our bound B:
B=N'"

1

= exp(—logN)
u
1

= exp(ix/logNloglogN)

— Ln(1/2,1/2)

o Note that u" = Ly(1/2, 1), therefore B>u" = Ly(1/2,2).

« The cost of the linear algebra step is bounded by O(B?), i.e.
Ln(1/2,3/2).

34 of 38

Further Reading (1)

[Andrew Granville.
Smooth numbers: computational number theory and beyond.
Algorithmic number theory: lattices, number fields, curves and
cryptography, 44:267-323, 2008.

[Antoine Joux, Andrew Odlyzko, and Cécile Pierrot.
The past, evolving present, and future of the discrete
logarithm.

In Open Problems in Mathematics and Computational
Science, pages 5-36. Springer, 2014.

[Hendrik W Lenstra Jr.
Factoring integers with elliptic curves.
Annals of mathematics, pages 649—-673, 1987.

35 of 38
I

Further Reading (2)

Carl Pomerance.
Smooth numbers and the quadratic sieve.
Algorithmic Number Theory, Cambridge, MSRI publication,
44:69-82, 2008.

Carl Pomerance.
A tale of two sieves.
Biscuits of Number Theory, 85, 2008.

Victor Shoup.
Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology—EUROCRYPT 97, pages
256-266. Springer, 1997.

36 of 38

Further Reading (3)

@ Andrew Granville.
Smooth numbers: computational number theory and beyond.
Algorithmic number theory: lattices, number fields, curves and
cryptography, 44:267-323, 2008.

@ Antoine Joux, Andrew Odlyzko, and Cécile Pierrot.
The past, evolving present, and future of the discrete
logarithm.

In Open Problems in Mathematics and Computational
Science, pages 5-36. Springer, 2014.

@ Hendrik W Lenstra Jr.
Factoring integers with elliptic curves.
Annals of mathematics, pages 649-673, 1987.

37 of 38
I

Further Reading (4)

Carl Pomerance.
Smooth numbers and the quadratic sieve.
Algorithmic Number Theory, Cambridge, MSRI publication,
44:69-82, 2008.

Carl Pomerance.
A tale of two sieves.
Biscuits of Number Theory, 85, 2008.

Victor Shoup.
Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology—EUROCRYPT 97, pages
256-266. Springer, 1997.

38 of 38

	Factorization algorithms
	Generic discrete logarithm algorithms
	Discrete logarithms over finite fields

