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About the Course

• Regular classes with worksheets, to work with some concrete
examples (every Friday from second week. Second, fourth and
sixth week at 11 am in Room C2. Third, fifth and seventh week
at 12:30 in Room C2. Eighth week at 11 am in Room C4).

• Every other week, write a short summary (≈ 500 words) about
one research paper (suggested in the further reading sections
in the slides).

• You hand in your worksheets/summaries every Tuesday. You
hand in/solve sheet-0 in week-2, and so on.

• One class (Friday, 29 Nov) to give presentations (in groups)
about a chosen research paper (not graded).
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About the Course

• Mini project

• Reading research papers!
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Course Main Reference
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Course Material

• slides for each lecture

• slides courtesy of

Dr. Ali El Kaafarani

Mathematical Instute, PQShield Ltd
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Outline

1 Cryptography Usage in the Real World: Do we use it?
Where?

2 Modern Cryptography
Provable Security
Symmetric Key Cryptosystems
Hash Functions
Public Key Cryptosystems
Digital Signatures

3 Advanced Cryptographic Tools/Schemes
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Web Browsers
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Messaging Systems
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Mobile Applications
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Crypto Makes the Headlines
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Bitcoin

https://bitcoin.org/en/
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Altcoins
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E-voting
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Cryptography Usage in the Real World: a
Summary

• On-line banking, e-commerce
• SSH: to remotely login and to transfer files.
• Emails, cloud computing, etc.
• Streaming media providers
• ATM machines, etc.
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What Cryptography Was

• largely an art

• historically exploited to enable secret communications

• until the 1970s, mainly used for military purposes
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What Cryptography Is

Definition (From Katz, Lindell’s book)
Cryptography is the study of mathematical techniques for securing
digital information, systems, and distributed computations against
adversarial attacks.

• a science

• exploited for countless real world applications

• ubiquitous in our everyday life
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Provable Security

• Proofs of security of cryptographic schemes are among the
features distinguishing Modern Cryptography from Classical
Cryptography.

• How can we prove the security of our cryptosystems?

• Proofs by reduction: an efficient attacker on the cryptographic
scheme is turned (by a reduction) into an efficient algorithm
solving an assumed-to-be hard mathematical problem. It is a
proof by contradiction.
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Security Games: Proofs by Reduction

Challenger Adversary 
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Challenger Adversary 

Public parameters 
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Hard Mathematical Problems

Some mathematical problems are believed to be computationally
hard (to different extents):
• Integer Factorization: given a composite number n, compute its

(unique) factorization n =
∏

pei
i , where pi are prime numbers.

• It is believed to be hard if n = pq for well-chosen p 6= q.

• Discrete Logarithm: given a cyclic group (G = 〈g〉, ◦), h ∈ G,
compute k ∈ Z|G| such that gk = h

• Dlog is believed to be hard in G = F∗p and even harder in groups
of points on (well-chosen) elliptic/hyperelliptic curves.
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Hard Mathematical Problems

Short Vector Problem (SVP) in Lattices:

• Given n linearly independent vectors ~b1, . . . ,~bn ∈ Rm, the lattice
generated by them is defined as

L(~b1, . . . ,~bn)
def
=

{ n∑
i=1

xi~bi | xi ∈ Z
}

• SVP: it is hard to determine the smallest non-zero vector in an
arbitrary lattice (easy in low dimensions).
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Hardness Assumptions: Average vs. Worst
Cases

Do we have the same confidence in different cryptosystems that
are based on different hardness assumptions?

• average-case assumption: hardness of solving a random
instance (drawn from a given probability distribution) of a
problem;

• worst-case assumption: hardness of solving an arbitrary
instance of a problem (even the worst instances)

Breaking a lattice-based cryptographic scheme is at least as hard
as solving several hard lattice problems in the worst case.
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Symmetric Key Cryptosystems

A symmetric encryption scheme consists of three algorithms that
are (KeyGen, Enc, Dec). LetM be the message space, whereas
the key space is K.

• KeyGen(n): is a randomized algorithm that, given the security
parameter n, returns a key SK ∈ K.

• Enc(SK,m): is a randomized algorithm that, on input a key
SK ∈ K and a plaintext m ∈M, outputs a ciphertext c.

• Dec(SK, c): is a deterministic algorithm that, on input a key SK
and a ciphertext c, outputs a message m ∈M∪⊥.

Correctness:

∀m ∈M,Pr[SK← KeyGen(n) : Dec(SK,Enc(SK,m)) = m] = 1
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Hash Functions

• Informally speaking, hash functions take a long input string and
output a shorter string of a fixed length called a digest.

• They are used to achieve integrity (or authenticity) in the
private-key setting.

• They are used almost everywhere in Cryptography, e.g. HMAC,
commitment schemes, saved passwords, etc.

• If you imagine that hash functions are truly random (modelled
as random oracle model), then proving the security of some
cryptographic schemes becomes achievable (e.g. RSA-OAEP).

• A debate/controversy over the soundness of the random oracle
model.
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Public Key Cryptosystems

An asymmetric encryption scheme consists of the following
algorithms:

• KeyGen(n): is a randomized algorithm that takes the security
parameters as input and returns a pair of keys (PK,SK), the
public key PK and its matching secret key SK, respectively.

• Enc(PK,m): A randomized algorithm that takes a public key PK,
a plaintext m and returns a ciphertext c.

• Dec(SK, c): A deterministic algorithm that takes the secret key
SK and a ciphertext c, and returns a message m ∈M∪⊥.

Correctness:

∀m ∈M,Pr[(SK,PK)← KeyGen(n) : Dec(Enc(PK,m),SK) = m] = 1
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Digital Signatures

• Are used to achieve integrity (or authenticity) in the public key
setting.

• If a signature σ on a message m is verified correctly against a
given public key PK, it ensures that the message was indeed
sent by the owner of this public key (already known to potential
verifiers) and the message was NOT modified in transit.

• More importantly, signers cannot deny having signed a
message, also known as non-repudiation.
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Secret Sharing
• schemes for distributing a secret amongst a group of

participants
• each participant receives a share of the secret
• the secret can be reconstructed only when a sufficient number

of shares are combined together
Lagrange Interpolating Polynomial: given n points
(x1, y1), · · · , (xn, yn), one can construct the polynomial

P(x) =
n∑

j=1

yjPj(x)

of degree ≤ (n− 1) that passes through them, setting:

Pj(x) = yj

n∏
k=1
k 6=j

(x− xk)

(xj − xk)
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Shamir Secret Sharing (1979)

It works in two phases as follows:
• Distribute the shares: pick a random polynomial Q(x) ∈ Fp[x] of

degree ` < n (where n is the number of participants) s.t.
Q(0) = s. Compute the shares

Si = Q(i) (mod p) i = 1, · · · , n

and send them over to the participants A1, · · · ,An.
• Reconstruct the secret: using Lagrange interpolation, any `+ 1

participants can together compute Q(0) mod p which is the
secret s.
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Multi-Party Computation

• Suppose that each of the n parties P1, . . . ,Pn has a secret
input si. They all want to evaluate a public function f on input
(s1, · · · , sn) to learn the output and yet keep their secret inputs
hidden from each other.

• Secure Multi-Party Computation is the solution!
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Multi-Party Computation: an Application
https://www.youtube.com/watch?v=bAp_aZgX3B0
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Zero-Knowledge Proofs

To convince a Verifier that some mathematical statement is true,
without revealing anything else.

Statements can be about facts (e.g. the number N is squarefree)
or about knowledge (e.g. I know the factorisation of N).
• Completeness: If a given statement is true, the Prover can

always convince a verifier
• Soundness: Prover cannot convince the verifier if the statement

is false
• Zero-Knowledge: The proof doesn’t reveal any extra

information beyond the validity of the statement
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Zero-Knowledge Proofs

• Blog: http:
//blog.cryptographyengineering.com/2014/11/
zero-knowledge-proofs-illustrated-primer.html

• Online demo: http:
//web.mit.edu/~ezyang/Public/graph/svg.html
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Fully Homomorphic Encryption

• Cloud computing is a hot topic nowadays!
• Companies want to store their huge data on the clouds and let

the cloud companies do the computation on their data.

• But they want to preserve data confidentiality, so they decide to
encrypt their data (and not give away the encryption keys!)

• How can the cloud companies do computation on encrypted
data and give back the result in an encrypted format!
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Fully Homomorphic Encryption

• Some encryption schemes are naturally partially homomorphic,
i.e., Enc(A)× Enc(B) = Enc(A× B).

• Fully homomorphic encryption allows for arbitrary computation
on ciphertexts. You can write a program of any functionality and
run it on a given ciphertext to get the desirable result in an
encrypted format!

• In theory, this was proven possible in 2009. In practice, it is still
far away from being practical!
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Classical Vs Post-Quantum Cryptography

• What would happen to Dlog and Factorisation based
Cryptosystems if quantum computers existed?

◦ Shor’s algorithm solves both problems efficiently

• Any alternatives?
• New hard problems for new cryptographic branches:
◦ Lattice-Based Cryptography (e.g. fully homomorphic encryption)
◦ Code-Based Cryptography (e.g. McEliece cryptosystem)
◦ Hash-Based Cryptography (e.g. Merkle signature)
◦ Multivariate Cryptography (e.g. Rainbow signature)
◦ Isogeny-based Cryptography (e.g. SIDH)
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Further Reading (1)

I Jean-Jacques Quisquater, Myriam Quisquater, Muriel
Quisquater, Michaël Quisquater, Louis Guillou, Marie Guillou,
Gaïd Guillou, Anna Guillou, Gwenolé Guillou, and Soazig
Guillou.
How to explain zero-knowledge protocols to your children.
In Advances in Cryptology—CRYPTO’89 Proceedings, pages
628–631. Springer, 1990.

I Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini,
and Yarik Markov.
The first collision for full sha-1.
IACR Cryptology ePrint Archive, 2017:190, 2017.
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