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Encryption schemes

Classical Cryptography mainly dealt with the problem of enabling
two parties to communicate secretly in the presence of an
eavesdropper.

Currently, we call encryption schemes the schemes designed for
solving this problem.

Security of classical encryption schemes rely on a secret key
shared in advance by the communicating parties.

The sender encrypts a message, i.e. hides it, using the secret key,
obtaining the ciphertext.

The receiver decrypts the ciphertext, i.e. unhides it, using the
same secret key. They recover the original message.
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Syntax of Private-Key Encryption Schemes

A private-key encryption scheme consists of three algorithms
(KeyGen,Enc,Dec):

• k← KeyGen(n): a randomised algorithm that takes the security
parameter n and outputs the key k, chosen from the key space
K.

• c← Enc(k,m): an algorithm (often randomised) that takes the
secret key k and the message m ∈M, and outputs the
ciphertext c.

• m← Dec(k, c): a deterministic algorithm that takes the secret
key k and the ciphertext c, and gives back the message m.
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Caesar Cipher (100-44BC)

Example
• Plaintext: ABCD · · · WXYZ.
• Shift:+3 (mod 26) or +k (mod 26) (k ∈ {0, . . . , 25})
• Ciphertext: DEFG · · · ZABC.

Cryptanalysis:

• Brute Force (trying every possible key): key space size is
|K| = 26.

• Sufficient key-space principle: Any secure symmetric key
encryption scheme must have a key space that is sufficiently
large to make an exhaustive-search attack infeasible (e.g.
|K| ≥ 270).

• Is it a sufficient condition?
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Substitution Cipher (mono-alphabetic)

Example
• Plaintext: ABCZ
• Substitution: (A→ T, B→ N, C→ L, . . . , Z→ O ) or any

one-to-one map of the alphabet
• Ciphertext:TNLO

Cryptanalysis:

• Brute Force: Key space size is |K| = 26! ≈ 288.

• Frequency analysis:
◦ Frequency of English letters
◦ Frequency of pairs (or more) of letters, e.g. digrams, trigrams, etc.
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Substitution Cipher (mono-alphabetic)
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Vigenere Cipher (1553)

Example
• Poly-alphabetic shift:

Plaintext m: TOBEORNOTTOBE
key k:(+ mod 26) CRYPTOCRYPTOC

Ciphertext c: VFZTHFPFRIHPG

• Cryptanalysis:

◦ If the length of the key, say n, is known, then break ciphertext into
subsets and solve each block as it was encrypted by Caesar
cipher and using letter-frequency analysis.

◦ If n is not known, use Kasiski method (Kasiski 1863) or index of
coincidence method to find n, and do the rest as in the first case.
(What if n = |c| = |k|?)
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Kerckhoff’s Principle (1883):

Definition
The cipher must NOT be required to be secret and it must be able
to fall into the hands of the enemy without inconvenience.

Modern Cryptography:

• The encryption scheme’s algorithms should be public.
(Standardized, etc.)
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Unofficial principle

The desired security for a cryptographic scheme should be
formally defined.

It is composed by:
• a security guarantee
• a threat model
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Security Definitions
What is a secure encryption scheme (security guarantee)?

• Adversaries cannot compute the secret key.
• Adversaries cannot compute the plaintext.
• Adversaries cannot compute information about the plaintext.

What are the adversaries’ abilities (threat model)?
• Ciphertext-only attack: knows one single ciphertext c (or more).
• Known Plaintext attack: the adversary learns a number of pairs

of (ci,mi) generated using some key.
• Chosen-plaintext attack (CPA): same as above, but the

adversary gets to choose the plaintexts this time.
• Chosen-ciphertext attack (CCA): now, they additionally get the

decryption of ciphertexts of its choice.
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Discrete Probability

Let Ω be a (finite) set of outcomes, known as sample space.

The event space A is a subset of P(Ω) s.t.
• Ω ∈ A
• if A ∈ A, then Ā ∈ A (Ā denotes the complementary in Ω)
• if A1,A2 ∈ A, then A1 ∪ A2 ∈ A

Usually, A = P(Ω) when Ω is finite.
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Discrete Probability

A probability distribution Pr is a map from A to [0, 1] s.t.
• Pr[Ω] = 1
• if A1, . . . ,At are pairwise disjoint events, then

Pr[∪t
i=1Ai] =

t∑
i=1

Pr[Ai]

Assuming Ω finite we have:
• Let A ⊆ Ω, Pr[A] =

∑
ω∈A

Pr[w].

• Union Formula: Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B].
• Union Bound: Pr[A ∪ B] ≤ Pr[A] + Pr[B].
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Discrete Probability

• Conditional Probability: Pr[A|B] = Pr[A ∩ B]/Pr[B] (if Pr[B] > 0).

• Bayes’ Theorem: Pr[A|B] =
Pr[A] · Pr[B|A]

Pr[B]
(if Pr[A],Pr[B] > 0)

• A and B are independent⇔ Pr[A ∩ B] = Pr[A] · Pr[B].
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Syntax of Private-Key Encryption Schemes

A private-key encryption scheme consists of three algorithms
(KeyGen,Enc,Dec):

• k← KeyGen(n): a randomised algorithm that takes the security
parameters n and outputs the key k, chosen from the key space
K.

• c← Enc(k,m): an algorithm (often randomised) that takes the
secret key k and the message m ∈M, and outputs the
ciphertext c.

• m← Dec(k, c): a deterministic algorithm that takes the secret
key k and the ciphertext c, and gives back the message m.
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Notation

From
• (K, P(K), PrK)
• (M, P(M), PrM)
a probability distribution PrK×M over the sample space K ×M is
deduced. It is defined as:

PrK×M(A) =
∑

(k,m)∈A

PrK[k] PrM[m]

• Pr[K = k] = PrK×M[{k} ×M] = PrK[k]

• Pr[M = m] = PrK×M[K × {m}] = PrM[m]

• Pr[C = c] = PrK×M[A] with A = {(k,m) | Enc(k,m) = c}
20 of 32



Perfect Secrecy (Shannon 1949)

• “The ciphertext should reveal no information about the plaintext”
• Also called information theoretic security.

Definition (Perfect Secrecy)
For every probability distribution PrM over the message spaceM,
we have

Pr[M = m|C = c] = Pr[M = m]

∀m ∈M,∀c ∈ C s.t. Pr[C = c] > 0.
Equivalently,

Pr[C = c|M = m] = Pr[C = c]
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Perfect Indistinguishability

Perfect Indistinguishability Experiment PrivKperfect−ind
A,E

Challenger Ch Adversary A
m0,m1,|m0|=|m1|←−−−−−−−−−

b←$ {0, 1}
c=Enc(k,mb)−−−−−−−→ Outputs his guess b′

Definition
An encryption scheme is perfectly indistinguishable if for every
adversary A the following holds:

Pr[PrivKperfect−IND
A,E = 1] = 1/2

Where PrivKperfect−IND
A,E = 1 if b′ = b, and 0 otherwise.
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Perfect Indistinguishability

Theorem (Perfect indistinguishability)
An encryption scheme (KeyGen,Enc,Dec) has perfect secrecy iff
for every probability distribution PrM overM we have

Pr[C = c|M = m0] = Pr[C = c|M = m1]

∀m0,m1 ∈M s.t. |m0| = |m1|, ∀c ∈ C.

23 of 32



Proof.
(⇒) : Pr[C = c|M = m0] = Pr[C = c] = Pr[C = c|M = m1]
(⇐) :

Pr[C = c] =
∑

m

Pr[C = c|M = m] · Pr[M = m]

=
∑

m

Pr[C = c|M = m0] · Pr[M = m]

= Pr[C = c|M = m0] ·
∑

m

Pr[M = m]

= Pr[C = c|M = m0]

which is correct for any m0
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One Time Pad (Vernam 1917 or some 35 years
earlier!)

Fix an integer n > 0. LetM = C = K = {0, 1}n.

• KeyGen(n) : it returns a random bit string (uniform distribution)
of length n, i.e. k ∈ K.

• Enc(k,m): it outputs the ciphertext c = k ⊕ m.
• Dec(k, c)): recover the message computing m = k ⊕ c.

It was used between the White House and the Kremlin during the
Cold War!
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Security of OTP

Theorem
The one time pad (OTP) encryption scheme is perfectly secret.

Proof.

Pr[C = c|M = m] = Pr[M ⊕ K = c|M = m]

= Pr[m⊕ K = c]

= Pr[K = m⊕ c]

=
1
2n

because the key k is a uniform n-bit string. Therefore, for any

m0,m1, we have Pr[C = c|M = m0] =
1
2n = Pr[C = c|M = m1]
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OTP has perfect secrecy, but is it practical?

Theorem
If an encryption scheme E is perfectly secret, then |K| ≥ |M|.

Proof.
Assume that |K| < |M|, we will show that E is not perfectly
secure. We first fix a uniform distribution PrM overM, and let

M(c) = {m | m = Dec(k, c) for some k ∈ K}

but |M(c)| ≤ |K|, then there exists m′ ∈M s.t. m′ 6∈ M(c).
Therefore, Pr[M = m′|C = c] = 0 6= Pr[M = m′]

Is there a way to make OTP practical?
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From Perfect to Computational Secrecy

• Perfect secrecy: No leakage of information about an encrypted
message even to an eavesdropper with unlimited computational
power.

• Computational secrecy: an encryption scheme is still
considered to be secure even if it leaks some information with a
very small probability to eavesdroppers with limited power.

• Real-world application: happy with a scheme that leaks
information with probability at most 2−60 over 200 years using
fastest supercomputers!
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