
Introduction to Cryptography 2019 Sheet 0 Due: Tuesday 22/10/2019

Preamble
Welcome to the course! This worksheet is intended to act as a refresher for some of the basic
computer science you will require for this course and is NOT representative of either the course or
the real worksheets. You may find this new or trivial — please ensure that you are able to answer
questions 1 to 3. Questions will be reviewed in class. You can hand in the answers to any or all
that you wish at the hand-in area by the maths reception by Thursday.

Questions

1. Recall that digital computers store data in binary format, ie. that information is encoded as
bit-strings, a collection of ordered Bits, each of which may take the value of either 0 or 1.
A Nibble is 4 consecutive bits and a Byte is 8 consecutive bits. With bit-strings, bytes and
nibbles, we index from the right-most, or least-significant bit, starting from 0.
We will sometimes use the notation Nb to denote the number N is to be interpreted in base-b
notation, ie. 112 is 3 in base-10 and 1116 is 17 in base-10.

(a) How many bits does it take to represent the number N ∈ N ∪ {0}?

Hexidecimal notation is often used for compact human readability of bytes. Each byte is
represented by consecutive nibbles in hexadecimal format. In hexidecimal (base-16) format,
the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 are represented correspondingly with
the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C,D,E,F. As each nibble consists of 4 bits, each nibble
is represented by a single hexidecimal character and each byte by two consecutive nibbles.
We will leave a space between bytes for readability and pad with zeros to represent full bytes.

(b) Convert the number 1459836610 to hexadecimal format.

(c) What is the base-10 representation of CA FE?

Recall the XOR (exclusive-or) operation. If a and b are bits then a ⊕ b = 1 if a 6= b and
0 otherwise. The XOR operation may be extended to two bit-strings of arbitrary but equal
length by applying it separately to bits of the same index, ie. 101⊕ 111 = 010.

(a) What is the effect of XORing 0 with any bit? What is the effect of XORing 1 with any
bit?

(b) What is 0D AD ⊕ A1 10 in hexadecimal?

2. We say that a function f : N→ R is a negigible function if for every positive polynomial1 p(n)
we have that there exists N ∈ N such that for all integers n > N it holds that f(n) < 1

p(n) .

(a) Prove that the function f : N→ R given by f(n) = 2−n is a negligible function.

(b) Prove that if negl1 and negl2 are negligible functions then the function
negl3(n) = negl1(n) + negl2(n) is also a negligible function.

(c) Prove that for any positive polynomial p and any negligible function negl1 we have that
the function negl4(n) := p(n) · negl1(n) is also negligible.

1A function p is positive on a set S if has the property that ∀s ∈ S we have that p(x) > 0.

1

Introduction to Cryptography 2019 Sheet 0 Due: Tuesday 22/10/2019

3. Recall the Big-Oh notation. Let S ⊆ R and f, g be two positive functions defined on S with
images in R.
We say that f(n) = O(g(n)) (or f(n) ∈ O(g(n))) if there exists C ∈ R>0, N ∈ N such that
for all n > N we have that |f(n)| ≤ C|g(n)|.
We say that f(n) = o(g(n)) (or f(n) ∈ o(g(n))) if for all C ∈ R>0 there exists N ∈ N such
that for all n > N we have that |f(n)| ≤ C|g(n)|.
We say that f(n) = Θ(g(n)) (or f(n) ∈ Θ(g(n))) if there exists C1, C2 ∈ R>0, N ∈ N such
that for all n > N we have that C1|g(n)| ≤ |f(n)| ≤ C2|g(n)|.

(a) Consider the following functions and re-order them in increasing order of their asymptotic
growth rates. Proofs are not required. Assume that 0 < a < 1 < b.

lnn, bn, exp(
√

lnn ln lnn), n!, bb
n
, 1, nn, ln lnn, na, nb, nlnn

(b) L-notation is commonly used in characterising the behaviour of algorithms for the dis-
crete logarithm and factoring problems. Consider where

Ln(α, c) = exp
(

(c+ o(1))(log n)α(log log n)1−α)
)

where c > 0 and 0 ≤ α ≤ 1 fits into the ordering in part (a) when c and α are varied.

4. Modern software is both useful in learning and researching cryptography. Briefly investigate

(a) Cryptotool 2 — an open-source electronic learning toolkit for cryptography. Available
either soon on the Oxford computer systems or from
https://www.cryptool.org/en/cryptool2.

(b) SageMath — an open-source computer-algebra system based upon the python program-
ming language. SageMath will be used later in the course to implement several algo-
rithms for cryptanalysis. Available either for download at https://www.sagemath.org
or in the cloud at https://sagemathcloud.com which requires free registration. For
now it is recommended that you simply explore the system using the cloud.

2

