TOPOLOGICAL GROUPS, 2019-2020

TOM SANDERS

We begin with the course overview as described on https://courses.maths.ox.ac.
uk/node/46583.

Course Overview: Groups like the integers, the torus, and GL,, share a number of proper-
ties naturally captured by the notion of a topological group. Providing a unified framework
for these groups and properties was an important achievement of 20th century mathemat-
ics, and in this course we shall develop this framework.

Highlights will include the existence of Haar measure for (not necessarily Abelian) locally
compact Hausdorff topological groups, Pontryagin duality, and the structure theorem for
locally compact Hausdorff Abelian topological groups. Throughout, the course will use
the tools of analysis to tie together the topology and algebra, getting at superficially more
algebraic facts such as the structure theorem through analytic means.

References. There are some references in particular which may be of use: [Rud90], [Fol95],
and [Kor08].

Teaching. The lectures and these notes will appear online as they are produced during
the term. They will be supplemented by some tutorial-style teaching where we can discuss
the course and also exercises scattered through the notes. Once I have a list of the MFoCS
students attending I shall be in touch to arrange these.

Contact details and feedback. The current circumstances mean this course is appearing
in a different way to normal. In particular, there will inevitably be less audience response
so I encourage you to get in touch at tom.sanders@maths.ox.ac.uk if you have any questions

or feedback.

Last updated: 16" June, 2020.
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1. INTRODUCTION AND RECAP

In this course we are interested in the interaction between group structure and a com-
patible topological structure. The results we use on groups are fairly basic and are covered
in Prelims (see, for example, the notes [Earl4]). The topology we use is largely covered in
the Part A: Topology course (notes are available at [DLI8]).

We shall often describe topologies through a base. Given a set X, a base B is a collection
of subsets of X such that B is a cover of X; and if U,V € B and z € U n V then there is
some W e B with ze W < U n' V. Given a base B we writd]]

7(B) := {US :Sc B}
Exercise 1.1. Show that 7(B) is a topology on X.

In view of this exercise we call 7(B) the topology generated by B. Note that any
topology is a base and it generates itself, but in general there may be multiple bases
generating a given topology.

The discrete topology on a set X is P(X) — the topology in which every set is open —
and has the singletons are an example of a base for this topology. If X has more than one
element then the base of singletons is different to the base of all subsets of X.

Given two topological spaces (X, 7) and (X', 7’) the product topology is the topology
on X x X' generated by the basd] {U x V:Uer,Ver}on X x X'.

With these basic topological definitions recalled we turn to the object of the course:
suppose that G is both a group and a topological space. If the group multiplication map
G? — G;(x,y) — wzy (from G* with the product topology to G) and the group inversion
map G — G;z — x~! are both continuous then we say that G is a topological group.

Example 1.2 (Discrete groups). Suppose that G is a group and also a discrete topological
space. Then G is a topological group.

Proof. Since G is discrete so is G2, and then since any map with a discrete domain is
continuous we see that both multiplication and inversion are continuous as required. [

The reals under addition may be endowed with the discrete topology to make them
into a topological group as in the above example. However, there are a number of other
topologies on R.

Example 1.3 (The real line). The group R endowed with its usual topology is a topological
group.

Proof. This example is quite instructive. The result is essentially just the algebra of limits
(see, e.g. [Pril6l Theorem 8.3]): in particular if z, — xo then —(z,) = (—=1)x, — (—=1)zo =
—xp; and if additionally vy, — vo, then x,, + vy, — o + yo.

To connect this with the topological language we are using recall that the usual topology
on R is generated by the base {(a,b) : a,b € R} (where (a,b) = {r e R:a <z < b}) -

'Recall that | S is defined by z € | JS if 35 € S such that = € S. In particular | J & = .
2We should check that this really is a base, but that is an easy exercise.
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we could take this as our definition — and with this definition topological convergence and
e-IN convergence coincide (almost tautologically).

From the definition of the product topology we also have that the (ordered pairs)
(Tn, Yn) — (z0,y0) if and only if z,, — z¢ and y, — yo. Thus the results in the first
paragraph exactly tell us that inversion and multiplication are sequentially continuous — a
function f is sequentially continuous if f(x,) — f(x¢) whenever (z,),ey is a sequence
with z,, — z9.

In general topologies continuity is stronger than sequential continuity (see e.g. [DLIS|
Proposition 1.24]) however in the reals, and more generally in any first countable topological
space, they are equivalent. A topological space X is said to be first countable if every x €
X has a countable local base, meaning a countable sequence (U,,)nen of neighbourhoods
of  such that for any neighbourhood U of z there is some n = n(U) such that U, < U. In
particular, € R has {(z—1/n,2+41/n) : n € N} as a countable base for the neighbourhood
(x — 1,z + 1) of x so the usual topology is first countable. O

Exercise 1.4. Suppose that X is a first countable topological space. Show that f is a
continuous function on X if (and only if) it is sequentially continuous. (Assuming the
Axiom of Countable Choice, meaning that given a sequence Si, S5, ... of sets then there
is another sequence w1, xs,... with x,, € S,, for all n € N.)

We cannot relax the requirement that group inversion or multiplication are continuous.
In the case of the group R group ‘inversion’ is negation 7.e. the map R — R;x — —x, and
group ‘multiplication’ is addition i.e. the map R? — R; (z,y) — x + ¥.

Example 1.5. Write 7 for the usual topology on R, and let 7; be the topology on R equal
to the set of U € 7 such that there is some a € R such that U > (a, ). Then

(1) inversion is not continuous;

(i) addition is continuous.

In particular R with the topology 71 is not a topological group.

Proof. For the first part (0, 0) is open but —(0,00) = (—0,0) is not open and so inversion
1s not continuous.

For continuity of addition first note that if U € 7; then there is some a € R such that
(a,0) < U. Since R is a topological group in 7 and open intervals form a base for 7 we
see that there are sets Z and J of open intervals such that

{(z,y):x +yeU} =U{I>< J:1eZ JeJ}
= |J (Tu(a—minJu{a/2},0)) x (J U (a—minT U {a/2},0)),
IeZ, JeTJ

which is a union of products of sets in 77 as required. To see the equality it is enough
to check that if x € I U (e — minJ U {a/2},0) and y € J U (@ — min [ U {a/2},00) then
x4+yeli+j:iel,je J}u(a,00). This in turn follows by considering the cases:
(i)rxel,yeJthenz+ye{i+j:icl,je J};
(ii) z €I,y € (a—min I u{a/2},00) then z+y > a—min I +x > a and so z+y € (a, 0);
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(iii) z € (a—min Ju{a/2},0), y € J then z+y > x+a—min J = a and so z+y € (a, 0);
(iv) z € (a —min J U {a/2},0), y € (a —min [ U {a/2},0) then x +y > (a — a/2) +

(a —a/2) =aand so z +y € (a,0).
The result is proved. U

Example 1.6. Write 7 for the usual topology on R, and let 75 be the topology on R equal
to the set of U € 7 such that there is some a € R such that U o (-0, —a) u (a,0). Then

(1) inversion is continuous;
(ii) addition is not continuous.

In particular R with the topology 7 is not a topological group.

Proof. The first part is immediate since U € 7, if and only if —U € 7.

If V is open (and non-empty) in the product then there is some a > 0 such that V' >
((—o0, —a)u(a,®)) x ((—w, —a)u(a,0)) and hence V' contains the ordered pair (2a, —2a).
However 2a + (—2a) = 0 and so the preimage of (—o0, —1) U (1, 0) is not open. O

Example 1.7 (Normed spaces). Suppose that X is a normed space. Then the additive
group of X with the topology induced by the norm is a topological group.

Proof. The topology induced by the norm is the Weakestﬂ topology such that x — |z is
continuous. For each z € X, ({y € X : |z —y| < 1/n})nen is a countable local base so X is
first countable, and the product of two first countable spaces is first countable. Hence by
Exercise [1.4] it is enough to note from homogeneity that if z, — = then —z,, — —x¢; and
from the triangle inequality that if x,, — ¢ and ¥y, — yo then x,, + v, — o + yo. O

In particular R™ and C™ are topological groups under addition.

Given a normed space X we write GL(X) for the set of linear homeomorphisms X — X.
Then GL(X) is a group under composition and it supports a number of natural topologies
which it inherits from the larger set B(X), of continuous linear maps X — X; we shall
mention two:

Example 1.8 (GL(X) with the operator norm topology). GL(X) may be endowed with
the subspace topology inherited from B(X) with the operator norm topology. With this
topology GL(X) is a topological group.

Proof. 1f S,, — Sy and T,, — Tj then |T,| < 2|Tol| for all sufficiently large n and hence
[Sn T = SoTol| < [[Sn = Soll[ 7]l + [:Sol |75 = Tol| — 0

since the operator norm is sub-multiplicative; hence S, T,, — SyTp. B(X) is a normed

space so as in Example the topology is first countable, whence so is the topology on

GL(X) and on GL(X) x GL(X). Hence by Exercise [1.4] multiplication is continuous.
Similarly, for inversion suppose that T;,, — Ty. Then

|7, = T3 = 1T, (Do = T)To | < [T = Tl T, M5

3Recall that weakest here means fewest open sets.
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There is N € N such that for n > N we have |T,, — Ty| < 1/2||T;!| which can be inserted
in the above and rearranged to give |T;!|| < 2|7y || Hence for n > N we have

|70 = Ty < 1T = Toll20 7577,
and T;' — T, *. Again inversion is continuous by Exercise (1.4l U

In particular C* (which we may identify with GL(C)) is a topological group under
multiplication.

The second topology we shall consider is the strong operator topology on B(X): this
is the weakest topology on B(X) such that the maps T — Tz are continuous for all x € X,
and is sometimes called the topology of point-wise convergence. The sets

U(S;To,€) :={T € B(X) : |[Tz — Toz| < €|z| for z € S}

for Ty € B(X), S ¢ X finite, and € > 0 are all open in the strong operator topology. They
also form a base and so the topology this base generates is contained in the strong operator
topology. However, it also includes the sets U({z};0,¢) (where 0 here is the 0 operator in
B(X)) and so all the maps T'+— Tz (for z € X) are continuous and hence it is exactly the
strong operator topology.

If dim X < oo then the strong operator topology is the same topology as the operator
norm topology, but if dim X = oo then it is not. We shall consider the example X = ¢
in what follows, the space of (complex) sequences indexed by the naturals with the norm

] = 2 |l

Example 1.9 (GL(¢;) with the strong operator topology). GL(¢;) may be endowed with
the strong operator topology inherited from B(¢;). Then GL(¢;) is not a topological group

Proof. For n > 0 and n € N define the linear map 7}, ,, on the standard basis (e;)ien of ¢4
by letting
Tn,nei =6 T Nenti and Tn,nenJri = _nilTn,neia

for 1 < ¢ <mn, and T, ,e; = 0 for all 7 > n. Then the image of T}, is finite dimensional
and so 1t is a bounded linear operator and an element of B(¢;), and by design T,?,n =0 so
(I +T,,)"' =1I-T,,. Note that the existence of these operators for arbitrarily large n
is where we use that ¢; is infinite dimensional.

Now, suppose x € {1 is non-zero, ¢ > 0, n € (0,¢/4] and § := min{n? n}. Then there is
some ny = ng(n, ) such that . |z;| < 0|z| where z = ), z,e;. Hence for n = ng we
have

1>ng

|z = Tynal =

0 n
Z €Ti€; — Z €Ti€; — Z 77$16n+z + Z 77 xn+z€z =+ Z Tn+i€n+i
=1 =1

Z N o] + Z 12204s =il + 3 |zl < el + 2+ n7)dle] < el].
= i=1

i>2n

Thus |1}, — z| < €|z| for all n = ng. But then if S < ¢; is a set of (non-zero elements)
it follows that for ny = max {n¢(n,z) : x € S} we have T, ,, € U(S;I,¢€) for all n = n.
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Now, let z be a non-zero element of ¢; and consider the open set U := U({z}; (1/2)1,1/4).
Then (1/2)I € U, and so 2] € U~! and if U™ is open then it contains a non-empty
set U(S;21,¢) for S < ¢, finite. Since U(S;2I,¢€) is non-empty, S contains only non-
zero elements, and so the preceding paragraph gives for all n € (0, min{e/4,1/4}] some
n1 = ny(n, S v {z}) such that I + T,,,, € U(S;2l,e) c Ut and T,,, € U({z}; I,1/4) for all
n =ny. Finally, (I +7T,,)" =1—1T,, € U by construction and so

(I = Tyn)w — x/2| < |zl /4 and | T, e — =] < =] /4
The triangle inequality gives a contradiction. U

It can be shown similarly that multiplication is not continuous.

/N\The same argument works to show that GL(¢;) with the strong operator topology is
not a topological group. However, here it is more natural to consider the subgroup U ({5) of
unitary maps ¢, — 5. This group is a topological group in the strong operator topology.

/ANIfGisa group endowed with a topology then we say that multiplication is separately
continuous if the maps x — zz and x — zz are continuous for all z € G. If more clarity is
needed when referring to the continuity of multiplication we shall say that multiplication
is jointly continuous to mean it is continuous as a map (x,y) — xy.

2. BASICS OF THE TOPOLOGY

Suppose that G is a group written multiplicatively. We shall write 1 or 14 for its identity.
For S,T < G and x € G we write

ST :={st:se S, teT},xS:={xs:se S} and Sz := {sx:se S}
We also write powers in a natural way: specifically for n e N
S%:={1g} and S"*! = S"8S.

/A\Note that SS~! # S° and S # {s*: s € S} (in general).

We call a set S with S = S~! symmetric.

When a group is written additively we write 0 or Og for the group identity. Additively
written groups will always be commutative, and we shall write S + T instead of ST etc.
above.

This notation interacts well with the topology of a topological group.

Lemma 2.1. Suppose that G is a topological group. Then U is open (resp. closed) if and
only if xU s open (resp. closed), and similarly for Uzx. In particular, if U is open and V
1s any set then UV is open.

Proof. This is just the separate continuity of multiplication, in particular that the maps
G — G;u— o7 'u and G — G;u — zu are continuous. O

The next lemma is more important making use of joint continuity of multiplication.

Lemma 2.2. Suppose that G is a topological group and U is a neighbourhood of 1. Then
there is an open symmetric neighbourhood V' of 1 such that V? < U.
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Proof. We may suppose that U is open by shrinking it if necessary. The map (z,y) — xy~*
is continuous and so {(z,y) : zy~' € U} is an open subset of G x G, and hence there are
sets S and T of open subsets of G such that

{(x,y):my‘leU}=U{SxT:SES,T€T}.

Since 1615" = 1¢ € U, there is some S € S and T € T such that (15,1¢) € S x T. Thus S
and T are open neighbourhoods of 1. It follows that S nT" is an open neighbourhood of
lg, and since 15" = 1 the set V := (S T) n (S nT)~! is an open neighbourhood of the
identity. Moreover, V™1 =V and V2 = VV ! < ST! < U as required. O

This lemma can be applied repeatedly as follows.

Corollary 2.3. Suppose that G is a topological group and U is a neighbourhood of 14.
Then there are open symmetric neighbourhoods (Vy,)nen, of 1g such that V2, <V, for all
n € Ny, and Vo < U.

Proof. Apply Lemma iteratively (using the Axiom of Dependent Choice), beginning
with the set U to get a set Uy, and then to the set Uy to get U; etc. U

/N\The neighbourhoods (V},),en are not necessarily a local base for the identity in the
topology. (Indeed, not all topological groups are first countable.)

3. SEPARATION AXIOMS

The taxonomy of separation in topological spaces has a somewhat involved history with
a range of different naming convention (see e.g. [nLa20]) so some caution is advised when
consulting references. In topological groups we shall see that much of the hierarchy col-
lapses because in some sense ‘every point looks the same’.

A topological space X is Kolmogorov if for any distinct x,y € X, either there is an
open set containing x and not y, or there is an open set containing y and not z. If we can
replace the ‘or’ by an ‘and’ then the space is said to be Fréchet. Equivalently a space is
Fréchet if every singleton in X is closed [DL18, Proposition 1.47].

Lemma 3.1. Suppose that G is a topological group. Then G is Kolmogorov if and only if
G s Fréchet.

Proof. Suppose z,y € G are distinct, and U is an open set containing x and not y. Since
inversion is continuous and multiplication is separately continuous, the set y(z 71U nU~'x)
is open and contains y but not x. U

We only used separate continuity of multiplication in the above, but joint continuity
through Lemma can be used to show more collapse in the separation hierarchy.

Similarly, a topological space X is said to be Hausdorff if for any x # y there are
disjoint open sets U and V such that x € U and y € V.

Proposition 3.2. Suppose that G is a topological group. Then G is Hausdorff if and only
if {1g} is closed (equivalently if and only if G is Fréchet).
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Proof. First, if G is Hausdorff then for each x # 14 there is an open set U, containing x
and not containing 1¢. Hence G\{1¢} = |, U is open as required.

Conversely, suppose that z,y € G are distinct. Then G\{z7ly} is open and so by
Lemmal[2.2] there is an open neighbourhood of the identity V such that VV~! < G\{z7y}.
It follows that 2V n yV = &, but of course these are both open sets and since 15 € V we
have x € 2V and y € yV'. The claim is proved. U

Note the topology 71 on R in Example is Fréchet since if z,y € R are distinct then
R\{z} is open in 71, contains y and does not contain x. On the other hand (R, 7y) is not
Hausdorff since any two non-empty open sets in 7; have a non-empty intersection. Since
{15} is closed in 71 the preceding lemma gives another proof that (R, 71) is not a topological
group.

A topological space X is said to be regular if for every closed set S < X and any
xo € X\S there are disjoint open sets U and V with S < U and z¢ € V. /N Note that we
do not require that X be Hausdorff.

Exercise 3.3. Suppose that GG is a topological group. Show that G is regular.

We say that a topological space X is completely regular if for every closed set S < X
and any xo € X\S there is a continuous function f: X — R with f(zy) =0 and f(z) =1
for all z € S.

The next result is important because it starts to give us a supply of non-constant contin-
uous functions on any topological group. This means that we can study the group through
a function space with all of the attendant tools.

Theorem 3.4. Suppose that G is a topological group. Then G is completely regqular.

Proof. Suppose that X is a closed set in G and xy € G\ X; without loss of generality we
may assume g = lg. Apply Corollary [2.3[to G\ X to get a sequence (U, )en, of symmetric
open neighbourhoods of the identity with U2, < U, and Uy < G\ X.

The idea is to use the sets U, to define a sort of metric between the set X and the
element xqg = 1g. We use the sets U, to do this, and think of them as playing the role
of an interval of length 27" in the reals, so that if we were proving this result in the case
G = R we could use those intervals to produce the usual notion of distance.

Since G need not be commutative we have to take a bit of care with the order in which
we multiply the sets U,,. By induction (note the first inequality is weak, and all the others
strict)

(3.1) Up, -+ Up, © Uy,,—1 whenever ny =ng > -+ > n; > 0.

Given n; > -+ > n; > 0 and € € (0, 1], there is some j and nj;1 < ng < |logy €™t such
that

(3.2) Uny Upy, @ UpgUpy g o - Upy and 2770 < 26 + 27" -0 4277,

Put ng := |log, ¢~'| and let i be maximal such that Uy, ---U,, € Uyx. Then by (3.1) we

have n; 11 < n§. If njy1 < no* then set ny := n§ and j := ¢ and we are done; if not let j be
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maximal such that n,;y1,...,n; are consecutive (counting down) and set ng := n; — 1 and
we are done since 270 = 27 4 ... 4 27 4 270
With these preliminaries we can define our function. Put

S(z) := {2_”1+~--+2_""‘:erm~~-Unk WherekeN,n1>-~~>nk>O}

and let f(x) := inf S(x) when S(z) # & and f(x) = 1 otherwise. f takes values in the
range [0,1] and f(1lg) = 0 since 1g € U, for all n € N. We have f(z) = 1 if and only if
S(z) = &, which in turn is true if and only if z ¢ | J, UyUy_1 - - - U;. Hence f~*(1) is closed
and it contains X since | J, UpUy—1--- Uy < Uy < G\X by .

We have to show that f is continuous, and to do this it will be enough to show that
for all x € G and € > 0 sufficiently small the preimage of (f(x) — €, f(z) + €) contains a
neighbourhood of .

Let ng be large enough that 27" < e. If f(z) < 1 then there is some z € U,, --- U,,
withny >+ >mnp>0and 27" + ...+ 27" < f(x) + ¢, and we may additionally assume
that ng > ny.

Suppose that y € Up,z. If f(z) < 1 we see that f(y) < f(z) + 2¢ by (3.1); the equality
holds trivially if f(z) = 1.

On the other hand if f(y) < f(z) — 3¢ then there are naturals nj > --- > nj, > 0
such that y € Uy - --Un;, and 27" 4 ...+ 27 < f(y) + e By there is some
n,, < nj < |log, €' such that

Un’l ce Unkl c UngUn;H ce Un;/ and 270 < 2e4+27™M 4+ 4277,
But ng > ng > n’ ., and since Uy, is symmetric we have
€ UngUnyUpr -+ Uy and 2770 4277 4 2701 4 42770 < f(y) + 3e.

We conclude that f(z) < f(y) + 3¢ < f(z), a contradiction. Hence f(y) > f(x) — 3¢, and
the result is proved. O

Note that if G is Kolmogorov then this result gives (a long proof) that G is Hausdorff.

There is a final separation axiom we mention: we say that a topological space X is
normal if for any two disjoint closed sets S,T < X there are disjoint open sets U and V'
containing S and T respectively. We shall see later (in Example that not all topological
groups are normal, but also that there is a natural condition which makes them normal.

4. SUBGROUPS, HOMOMORPHISMS, AND QUOTIENT GROUPS

When considering subgroups of a topological group we should like them to interact with
the topological structure. We begin with the following slightly surprising result.

Lemma 4.1. Suppose that G is a topological group and H < G. Then H is a topological
group when endowed with the subspace topology. Moreover, if H is a neighbourhood it is
open; if H is open then it is closed; and if H is closed and of finite index then it is open.
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Proof. Suppose U is an open set in H, and let W be an open subset of G such that
U=WnH. Then U™t = W' n H which is open since inversion is continuous. Then
the set V = {(z,y) : zy € W} is open and so a union of products of the form S x T
with S and T open in G. But then V. n (H x H) = {(z,y) € H x H : xy € U} and
(SxT)Yn(HxH)=(SnH)x (T n H) so that the preimage of U under multiplication
on H is open.

For the first part let U be a non-empty open set in H — this is exactly what it means to
say that H is a neighbourhood. Then H = HU = |J,.,; U is a union of open sets and so
open.

Since the left cosets of H partition G we have H = G\|J ((G/H)\{H}). If H is open
then any left coset of H is open and so | J ((G/H)\{H}) is a union of open sets and so open,
whence H is closed. If H is closed then any left coset of H is closed and | ((G/H)\{H})
is a finite union of closed sets, and so closed and hence H is open. Il

Lemma 4.2. Suppose that G is a topological group. Then the connected component of the
identity is a closecﬁ normal subgroup of G.

Proof. Let L be th connected component of the identity. Then if L = A 1 B with A
and B both closed in L. Then L = (L n A) u (L n B) and so without loss of generality
L =LnAandsoL c A, but then A is closed and contains L so A > L. We conclude
that L is connected and so by maximality of L we have L = L.

Since 1 = 151 we have that L n L™! is a closed set containing the identity and hence
L c LnL ‘'sothatifx e Lthen a=! e L. Thus for x € L the set Lz is closed and contains
the identity. Hence L < Lx, so Lz~' = L and L is a subgroup by the subgroup test (since
it contains 1g so is non-empty). Similarly, for z € G the set xLz ™! is closed and contains
the identity. Hence L < xLx~!, and so 27 'Lz = L as required for normality. The result is
proved. O

The closure operation also preserves some of the algebraic structure.

Lemma 4.3. Suppose that G is a topological group and H < G. Then H, the topological
closure of H, is a subgroup of G. If H is normal then so is H.

Proof. Suppose that (x,7) € G? is such that zy~' ¢ H. Then since (z,y) — zy~' is
continuous, there are open sets S,7 < G such that z € S, y e T and ST' n H = (.
Since H > H, and H is a subgroup, if S n H # & then T n H = (4, and hence H = G\T
so that T n H = ¢J. On the other hand, if S " H = & then S n H = . It follows that
x¢ Horyé¢ H and so H is a group.

Conjugation is continuous and hence a~'Ha is closed for all « € G, and also contains
H if H is normal. Hence (), a~'Ha is a closed normal subgroup of G containing H. It
follows that it contains H, but it is visibly also contained (take a = 1) and so the result
is proved. ]

4There was an error in the lecture here suggesting that this group was open. As we shall see later this
need not be the case.

5Tt may be worth recalling that we define the connected component of z to be the union of all connected
components containing z, and that this union is itself connected.
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In particular this lemma tells us that even if {15} is not closed, its closure is a closed
normal subgroup. With this in mind we are led naturally to want to be able to take
quotients.

For topological groups G and H amap 6 : G — H is a homomorphism of topological
groups if it is a continuous group homomorphism. Topological groups G and H are
isomorphic as topological groups if there are continuous homomorphisms 6 : G — H
and v : H — G such that oy = 1y and ¥ 0 0 = 1.

It is well known that a continuous bijection of topological spaces need not be a homeo-
morphism, while a homomorphism that is a bijection is necessarily an isomorphism. The
group structure of a topological group does not mitigate the topological problem as the
following easy example shows.

Example 4.4. Given a group G, the identity map G — G is a group homomorphism. If
the domain is endowed with the discrete topology then this is a continuous group homo-
morphism, but unless the codomain has the same topology (and it needn’t, for example if
G is not trivial and it is indiscrete) then this map is not a homeomorphism and so not an
isomorphism of topological groups.

Given a topological group G and a subgroup H the quotient map ¢ : G — G/H;x — xH
naturally induces a topology on the quotient space: U < G/H is open if and only if | JU
is open in G. If H is normal then G/H also has a group structure and it turns out that
this is compatible with the topology even without any topological restrictions on H.

Proposition 4.5. Suppose that G is a topological group and H is a normal subgroup of G.
Then G/H is a topological group when endowed with the quotient topology and the quotient
map q: G — G/H is open.

Proof. To show the quotient map is open it suffices to note that if U is open in G then
UH =|J{Uh: he H} is a union of open sets and ¢(U) = {uH : u e U} so that | Jq(U) =
UH. Thus | J¢(U) is open and hence ¢(U) is open by definition.

Suppose that U < G/H is open. Then

Jvt =Ulem e ev} = {o e Jul = (V)
and so U™! is open in G/H by definition since | U is open in G and inversion is continuous

on G.
Finally, define

W= {(zH,wH) € (G/H)*: (zH)(wH) € U} and V := {(z,w) eG?:2we UU}

-1

Suppose that (xH,yH) € W. Then since V is open and contains (x,y), there are open sets
S, T < Gsuchthat xe S, yeT,and S x T < V. If h,k € H then (zh)(yk) € zyH < | JU
and so SH xTH c V.

On the other hand SH and T'H are unions of open sets and so they are themselves open
in G, and so the sets 8" := {sH : s€ S} and 7" := {tH : t € T'} are open in G/H; xH € 5’
and yH € T'; and S" x T" < W. It follows that W is open as required. O
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/N The group structure here is important: in general for topological spaces the quotient
map need not be open.

Example 4.6. The topological group R has a normal subgroup Z and R/Z is a topological
group — it is the reals (mod 1).

Although this group is not, there are more pathological examples.

Exercise 4.7. Show that if R is endowed with its usual topology then Q is a normal
subgroup of R and R/Q is (uncountable and) indiscrete.

Example 4.8. The map R — S';z +— exp(2mix) is a continuous homomorphism.

Lemma 4.9. Suppose that G is a topological group and H is a normal subgroup of G.
Then G/H is Hausdorff if and only if H is closed.

Proof. By Proposition GG/H is a topological group and so by Proposition it suffices
to note that {1g/z} = {H} is closed in G/H if and only if H is closed in G by definition. [J

Corollary 4.10. Suppose that G is a topological group. Then G/{1¢} is a Hausdorff
topological group.

Proof. Since {15} is a normal subgroup of G we have that {15} is a closed normal subgroup
by Lemma The result follows by Lemma [£.9] O

If f:G — C is continuous then f is constant on cosets of {1} so if we are interested
in continuous complex-valued functions on a group we lose nothing by supposing that the
group is Hausdorff. This is a common convention.

5. DIRECT SUMS AND PRODUCTS

Given a family of sets (U;),e; we write | [,.; U; for the cartesian product of the U;s
which we think of as the set of choice functions f : I — |J,.;; with f(i) € U; for all
i € I; sometimes we write f; for f(i). If I = {iy,...,i,} then we will frequently write
Ui1 X o X Uzn

Given a family (G )er of groups indexed by a set I the direct product, denoted [ |
is the cartesian product of the GG;s endowed with point-wise operations so

iel Gi,
2y = (z3yi)ier and 271 1= (27 1) jer.

This product is itself a group with these operations, and we write p; : [ [,.; Gi — Gj;z — x;

for each j € I — these maps are called the projection maps — and p; is a surjective

homomorphism.

If the Gs are topological groups then [ [, ; G; is naturally endowed with the product
topology, and when so endowed we call it the topological direct product. We have
defined this for products of two topological spaces. More generally a base for the product
is given by the sets

Ui =G, forallie I\J
5.1 U; wh
(5.1) H wHere { U; is open in G; for all i € J

el
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where J ranges all finite subsets of I.

Proposition 5.1. Suppose that (G;)ir is a family of topological groups. Then the topo-
logical direct product [ [,.; G; is a topological group and the projection maps are continuous
open maps.

Proof. These are routine checks similar to previous arguments. U
If the G;s are all the same we write G for the product [ Lc; G-

Exercise 5.2. Suppose that o € R\Q and consider the map v : R — St x St —
(exp(2mit), exp(2miat)). Show that 1 is a continuous injective homomorphism but that
Im ¢ is not isomorphic (as a topological group) to R.

Example 5.3. The topological group Z® (where Z is seen as discrete) is not normal.

Proof. We shall view the elements of ZF as functions and begin by noting that the sets
Ulg) :={feZ®: f(s) = g(s) for all s € supp f} where S = R is finite and g : S — Z form
a base for the topology.

For z € Z let A, be the set of f € Z® such that f is injective on {x e R : f(z) # 2}. We
shall show that Ay and A; are disjoint closed sets but that they cannot be contained in
disjoint open sets.

First, Ay n A; = & since R is uncountable but Z is countable. Secondly, A, is closed
for z € Z: For all z,y € R and w € Z we write g, .., : {z,y} — Z taking the constant value
w. Then

A= ﬂ U(9a )
z,yeR;z#y;weZ\{z}
so that A, is closed.

Perhaps surprisingly Z® has a countable dense subset, meaning that there is a countable
set D such that every non-empty open set in Z® intersects D. To see this simply note that
the maps R — Z;x — |p(x)| where p is a polynomial with rational coefficients are dense
in ZR.

Now, suppose that Ay < U with U open. For each x € D n U let S(x) < R be finite and
gz : S(z) — Z be such that U(g,) < U. Write

V.= U U(g,) and S := U SUPP G-

zeDNU zeDNU

It may happen that V' # U, however we do have V < U and since D is dense that V = U.
S is countable since supp g, is finite for all x € D n U, and D is countable. Let g : S — 7Z
be an injection, and h an extension of g to R such that h € Ay. Finally let £ : R — Z be
the function that is 0 on S and 1 elsewhere.

With this, note that U(g,) + k < U(g,) for all z € D u U, and hence V + k < V and
since addition is separately continuous we have V +k < V. But h € A, = U and so
h+keU+kc U, while at the same time h + k € A;. Thus A; n U # . The result is
proved. [l
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Exercise 5.4. Show that Z® has a countable dense subset — a topology with a countable
dense subset is called separable.

Given a family (G;);es of groups indexed by a set I the direct sum, denoted @;c;G;, is
the set of z € [ [,.; G; such that z; is the identity of G; for all but finitely many i € I. The
direct sum is a subgroup of the direct product [ [, ; G; and so if the G;s are topological
groups we could give the direct sum the subspace topology. However, this turns out not
to be quite the right thing to do and to understand why it is instructive to return to the
direct product.

We can think of the direct product of the topological groups (G;)r as the product in
the category of groups — that is the usual direct product of groups — endowed with the
weakest topology so that all the projection maps p; are continuous. (This is sometimes
called the initial topology induced by the maps p;.) It is particularly easy to make sense
of ‘weakest’ here because the intersection of two topologies on the same base set is, itself,
a topology and if both contain all sets of the form p;*(S) for S open in G;, then so does
the intersection.

On the other hand, we think of the direct sum as a coproduct. In this case we need to
take some care with the ambient category: the coproduct in the category of groups is what
is usually called the free product, and that is not what we have here. We are interested in
the coproduct in the category of Abelian groups. Now instead of projection maps we have
embeddings ¢; : G; — @G, defined so that p;ou;(x) = x for all x € G; and p;oui(z) = 1,
for all z € G; and @ # j.

Now suppose that the groups G; are Abelian topological groups. The embeddings ¢;
map the groups G into the direct sum @;c;G;, and since any sufficiently weak topology
on the latter will make the embeddings continuous, we would like to endow @®;c;G; with
the strongest topology so that all the maps ¢; are continuous. This topology is sometimes
called the final topology induced by the maps ¢;, and the open sets are the sets

(5.2) U < @ier G such that ¢; 1(U) is open in G for all i e I.

Since preimages preserve unions and (finite) intersections it is easy to see that this is a
topology and any topology on @®;c;G; such that the maps ¢; are all continuous must be
contained in this topology. We call @®;.;G; endowed with this topology the topological
direct sum.

Proposition 5.5. Suppose that (G;)icr is a family of Abelian topological groups. Then the
topological direct sum @ie;G; is a topological group and the embeddings v; are continuous
forallie 1.

Proof. These are also routine checks similar to previous arguments. O

It was relatively easy for us to write down a base for the topology of the topological
direct product as we did in (5.1)), but for the direct sum ([5.2)) is much more indirect and
giving a direct characterisation is rather more complicated — see [Hig77] for more details.

Example 5.6. Suppose that (G;);c; are discrete Abelian topological groups. Then the
topological direct sum is also discrete.
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Proof. This is immediate since certainly the embeddings are continuous if the topology on
@,c; Gi is discrete, and there is no stronger topology than the discrete topology. O

Example 5.7. Suppose that G,, = Z/27 endowed with the discrete topology for all n € N.
Then the topology on the (algebraic) direct sum @, G, endowed with the subspace
topology, a, when it is considered as a subgroup of [ [ _ G, is strictly weaker than the
topology 7 on the topological direct sum @), G-

neN

Proof. From Example [5.6] we know that 7 is discrete. On the other hand write e; :=
(0,...,0,1,0,...), that is the element of @, 4G, with 1 in the i¢th coordinate and 0
(i.e. the identity of Z/27Z) elsewhere. We have e; — (0,...) in [] 4G, and since

0,...,),€e1,€2, -+ € @, yGn we also have e; — (0,...) in «, but the only sequences
in 7 that converge are eventually constant. Hence a # 7, and since a < 7 we have the
claim. [

6. COMPACTNESS

Compactness is a tremendously powerful tool worth sacrificing almost any other property
of a mathematical structure. We shall see in this section that a lot of the pathologies we
have encountered so far can be eliminated by a suitable use of compactness, particularly
when combined with enough separation to make the group Hausdorff.

We say that a topological space X is locally compact if every point has a compact
neighbourhood.

Exercise 6.1. Suppose that G is a locally compact topological group and H is a subgroup
of G. Show that if H is closed then H is a locally compact topological group with the
subspace topology, and that if H is normal (but not necessarily closed) that G/H is locally
compact.

While locally compact groups cannot be too large locally(!) they can still be very large
— for example any group with the discrete topology — and it is useful to be able to restrict
them.

Lemma 6.2. ElSuppose that G is a locally compact topological group. Then there is a
compact symmetric neighbourhood of the identity V' and an open symmetric neighbourhood
of the identity S < V such that |, S™ = U,.en V" is an open subgroup of G.

Proof. Let K be a compact neighbourhood of the identity in G, and let I be the interior
of K i.e. the union of the open subsets of K. Put S := I oI !'and V := S. Then S
is open since inversion is continuous and the union of two open sets is open. K U K~! is
compact since inversion is continuous and the union of two compact sets is compact. Hence
V' is compact as a closed subset of a compact set. Finally both S and V' are symmetric
neighbourhoods of the identity.

Put H := UZO:1 S™. Since 1 € S we have 15 € H. Moreover, if x,y € H then there are
n,m € N such that z € S" and S € V™ so that y~! € (S71)™ = S™ (since S is symmetric)

6This lemma has been slightly corrected to account for an error in an earlier version of Lemma
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and so xy~! € S, By the subgroup test H is a subgroup of G' — it is the subgroup
generated by S. S is a neighbourhood so H is open and closed by Lemma [£.1} Finally,
since H is closed and S © H we have V < H and hence H = | J, V" as claimed. O

neN

/Tt might be natural to say that a group generated by a compact set is ‘compactly
generated’. We shall not use this terminology, partly because it means something else in
topologies.

Local compactness ensures that the stronger separation axiom of normality holds c.f.
Example [5.3]

Theorem 6.3. Suppose that G is a locally compact topological group. Then G is normal
i.e. for any pair of disjoint closed sets A, B — G there disjoint open sets U,V < G with
AcUand Bc V.

Proof. We begin by establishing the result in the case where A is compact instead of closedﬂ

Claim. Suppose that A is compact and B is closed with A n B = . Then there is a
symmetric open neighbourhood of the identity U such that AU n BU = &

Proof. Since An B = (&, we have A < B°. The latter is open and so for every a € A there
is some open set U, < B¢ containing a. Thus by Lemma there is a symmetric open
neighbourhood of the identity V, such that aV> = U, = B¢. Since A is compact there is a
finite set ai,...,a, such that | J;_; a;V,, > A. The set ();_, V4, is a open neighbourhood
of the identity and so by Lemma again there is a symmetric open neighbourhood of
the identity U such that U? < ()_, Va,. Now, suppose that z€ AU N BU. Let 1 <i<n
such that z € a;V,,U, and since z € BU there is some b € B such that b1z € U so
bea;V,, UU™' c a;V < B®— a contradiction. O

If A is not compact then things are a little trickier: the example to have in mind is
G=Rand A= {n+1/n:ne N} and B = N\{2}. Here for any interval I we have
(B+1)n A # ¢ — so any open set containing B that is disjoint from A must contain
narrower intervals around n as n increases.

Byﬁ Lemma there is a compact symmetric neighbourhood of the identity K and an
open symmetric neighbourhood of the identity S ¢ K with H := [, 5" = U,y K" an
open subgroup. The partition G/H of G is into open and closed sets and left multiplication
is continuous so the result will follow if we can prove it for the group H; from now on we
assume that G = H.

By induction K" is compact since it is the continuous image of K x K™ ! under the
multiplication map, and the product K x K"! is compact being a topological product
of two compact sets. Since K is a compact symmetric neighbourhood of the identity
it contains a symmetric open neighbourhood of the identity S, and we have |, S" =

UnEN K" = G

7A\?Vhile compact sets in Hausdorff spaces are closed, in general topological spaces they need not be.
8This paragraph has been slightly corrected from lectures to account for an error in the original Lemma
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Let Ag := K n A and A, = K" n (A\S") for n > 0. Since S™ is open and A is
closed we have that A\S™ is closed. As noted above K" is compact for n € N and so A, is
compact for n € Ny. Since A, n B = ¢ and B is closed we may apply the claim to get an
open symmetric neighbourhood of the identity U, such that A,U, n BU,, = .

Let W, := U, and

m<n

U:=|J AU 0 S) and V := | ] B, n 5™

neNg neN

First we note that U and V' are open: The set U is open since it is a union of translates
of the open sets U, n S. Since the sets U,, are open neighbourhoods of the identity so are
the sets W,,, and hence the set V' is open.

Secondly, we check that A < U and B < V: If a € A then since |,y K" = G there
is some n € N such that @ € K™ and a ¢ K" '. Since S ¢ K we have a € A,_; and
since 1¢ € U,, n S we conclude that a € U i.e. A < U. Since | J, 5" = G we see that
B =,y BS™ c V since 1¢ € W,.

Finally we show that U n'V = ¢J. To see this we show that A, (U, nS)nV = & for
each n € N by showing in turn that A, (U, n S) n (BW,, n S™) = & for all m € N. We

have two cases:

(i) For m = n we have W, < U,, so A, (U, n S) n (BW,, nS™) < A, U, n BU,, = &.
(ii) For m < n we have A,(U,nS)n(BU,,nS™) = A,(U,nS)nS" 1 but A,nS™ = &,
hence A, (U, nS) n (BW,, nS™) = .

The result is proved. O

Exercise 6.4. Suppose that G is a topological group and H < G is compact. Show that
the quotient map ¢ : G — G/H is closed.

Local compactness can also be used to give a partial response to Example [4.4]

Proposition 6.5. Suppose that G = |, K" where K is a compact symmetric neigh-
bourhood of the identity, H is a locally compact Hausdorff group, and w : G — H is a
continuous bijective homomorphism. Then m is an isomorphism of topological groups.

Proof. We begin with a claim.
Claim. There is some n € N such that 7(K™) is a neighbourhood.

Proof. For those familiar with the Baire Category Theorem this is particularly straight-
forward. We shall proceed directly by what is essentially the proof of the BCT for locally
compact Hausdorff spaces.

As in Theorem the sets K™ are compact and so w(K") is compact. Since H is
Hausdorff the sets 7(K™) are therefore closed. We construct a nested sequence of closed
neighbourhoods inductively: Let Uy be a compact (and so closed since H is Hausdorff)
neighbourhood in H, and for n € N let U,, € n(K"™)¢ n U,_1 be a closed neighbourhood.

This is possible since (by the inductive hypothesis) U, _; is a neighbourhood and so
contains an open neighbourhood V,,_;. But then 7(K™)¢ n V,,_; is open and non-empty
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since otherwise 7(K™) contains a neighbourhood. It follows that m(K™)¢ n U,_; contains
an open neighbourhood and so it contains a closed neighbourhood byﬂ Lemma .

Now by the finite intersection property of the compact space Uy, the set (1), U, is non-
empty. This contradicts surjectivity of = since G = | J, .y K" and the claim is proved. O

neN

With this claim we show that if X < H is compact then 7~!(X) is compact. Since
X is compact and 7(K™) contains a neighbourhood and the set {xmw(K") : x € H} cov-
ers X, there are elements x1,. .., 2, such that X < (J;", ;m(K") and hence 77 1(X) <
U, 7! (x;) K. However for each 1 < ¢ < m there is some n; € N such that 7—!(z;) € K™,
whence 771(X) < Kntmax{ninn} - However since H is Hausdorff, X is closed and so
7 1(X) is closed and a subset of a compact set and so compact.

It remains to show that if C' = G is closed then 7(C') is closed (from which the result
follows). To see this suppose that y is a limit point of 7(C'). H is locally compact so y
has a compact neighbourhood X. Now 7~}(X) is compact and so 771 (X) n C is compact.
But then X n 7(C) is compact since 7 is continuous. However its closure contains y and
hence it contains y. O

Again, we need something like the given hypothesis on G since otherwise we can take
G = R (as in Example with the discrete topology on the domain and the usual
topology on the codomain. Both are locally compact Hausdorff groups, and the identity
map between them is a bijective topological homomorphism but this is not a topological
isomorphism

In Example We had a group endowed with a topology such that multiplication (called
addition there) was jointly continuous but inversion was not. By way of contrast we have
the following result.

Theorem 6.6 (Ellis, [EII57b, Theorem]). Suppose that G is a locally compact Hausdorff
topological space and a group such that multiplication is jointly continuous. Then G is a
topological group.

In Example we had a group endowed with a topology such that multiplication (called
addition there) was separately (although we did not show this) but not jointly continuous
and inversion was continuous. By way of contrast we have the following result.

Theorem 6.7 (Ellis, [Ell57al Theorem 2|). Suppose that G is a locally compact Haus-
dorff topological space and a group such that inversion is continuous and multiplication is
separately continuous. Then G is a topological group.

Finally we mention that the coproduct topology on countable direct sums has a nice
base when the groups are locally compact.

Theorem 6.8 ([BHMT75, Proposition 1]). Suppose that (G;)ien is a sequence of locally
compact Abelian topology groups. Then the sets | [/~ U; where U; is open in G; for each

9This may deserve a word or two more: for any open neighbourhood U there is an open neighbourhood
B of the identity and x € U such that tBB~! < U. Then 2B < (U°B)¢ < U but U°B is open and so
2B c (U°B)¢ < U.



TOPOLOGICAL GROUPS, 2019-2020 19

1 € N us a base for a topology called the box topology on the algebraic direct product
[1;2, Gi. The algebraic direct sum @,-, G; endowed with the subspace topology inherited
from the box topology is the topological direct sum .-, Gi.

7. TOTALLY DISCONNECTED GROUPS

A topological space is said to be totally disconnected if the only connected components
are singletons. AAlthough any discrete space is totally disconnected, the converse is not
true as we can see with a closer examination of Example [5.7]

Proposition 7.1. Suppose that G is a closed subgroup of a product of finite Hausdorff
topological groups. Then G is compact and totally disconnected.

Proof. A finite Hausdorff topological group is necessarily endowed with the discrete topol-
ogy and the properties of being compact and totally disconnected are preserved under
passing to closed subsets so it suffices for us to show that a product of finite groups en-
dowed with the discrete topology is totally disconnected. Let (G;);e; be a sequence of such
groups indexed by a set I.

Suppose that X < [[,.; G; is connected and z,y € X have x # y. Then there is some
J € I such that x; # y; and the set U := {z € [ [,.;Gi: z; = x;} is open and closed since
G is finite so X is a disjoint union of the the two open and closed sets X nU and X nU*®.
x is in the former of these and y is in the latter contradicting the connectivity of X. The
result is proved. Il

One of the results of this section is a converse to the above, but before going down this
path it is helpful to have a more concrete example.

The p-adic integers are an important object in number theory for a variety of reasons,
and they will provide us with an interesting class of examples of topological groups. For
p € N we define the p-adic integers to be the (closed) subgroup

Ly = {x € H Z)p" 7wy = x;  (mod p') for all i € N} ,

neNg

where the group operation is inherited from the product. This is a compact totally dis-
connected group by Proposition [7.1] It can be helpful to think of the p-adic numbers more
concretely as numbers written in base p extended infinitely to the left with addition defined
in the same way as for the integers, and negation defined so as to ensure that x + (—zx)
sum to the all-Os string e.g. for the sum and negation in Z; we have

... 1623
+...2434 -(...325) =...342
...4360

The integers embed into Z, by writing a number in base p and prefixing it with a countable
infinity of leading Os on the left, and in particular while the integers are countable the p-
adics are uncountable.
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The p-adic integers can be extended to the p-adic numbers, denoted Q,. This is a
locally compact and totally disconnected Hausdorff group in which the p-adic integers are
a compact open subgroup; we shall not concern ourselves with its particular nature now,
but the main result of this section is a characterisation of totally disconnected locally
compact Hausdorff groups.

Theorem 7.2 (Van Dantzig’s Theorem). Suppose that G is a Hausdorff topological group.
Then G s locally compact and totally disconnected if and only if every neighbourhood of
the identity contains a compact open subgroup.

Proof of <. If x and y are distinct points then since G is Hausdorff there is an open set
U containing = and not y; let H be a compact open subgroup (though set is enough here)
contained in z7'U. Since H is open it is closed and so if C' is a set containing x and
y then C nazH and C n (xH) is a partition of C into (relatively) open and (relatively)
closed sets containing x and y respectively. Thus C'is not connected and hence G is totally
disconnected. O

The proof in the other direction requires more work, with the next lemma being the key
driver.

Lemma 7.3. Suppose that G is a totally disconnected Hausdorff group, K is a compact
netghbourhood of the identity, and y # 1. Then there is a relatively open and closed subset
of K containing the identity and not containing y.

Proof. It is most convenient for our topological language to refer to K as a topological
space i.e. when we say open set we shall mean relatively open in K so a set of the form
K n U for U open in G. K is certainly totally disconnected in the relative topology.
Moreover K is normal: this follows from Theorem [6.3] since any relatively closed set in K
is also closed in G (since K is closed as a result of G being Hausdorff).

Let C be the intersection of all the closed and open subsets of K containing the identity,
and suppose that C' = A 1 B for closed sets A and B with 15 € B. By normality of K
there is an open set U containing A whose closure is disjoint from B. Thus oU := U\U
is closed and disjoint from C', and by the definition of C', for each x € dU there is closed
and open set U, containing the identity such that z ¢ U,. Thus {K\U, : z € U} is
an (open) cover of dU, but the latter is a closed subset of the compact set K. Thus
it is compact and there are elements xy, ..., z, such that oU < (J;", K\U,,, and hence

" Uy, < K\(OU\U) = U u (K\U). It follows that V := (-, U,,\U = (-, Us;,\U, and
hence V' is both open and closed. By design AnV = ¢ and also 15 € V. But then C' c V
and so A = . We have shown that C' is connected, but then since 15 € C and K is
totally disconnected we have C' = {15}. Since y # 1 there is some closed and open set U
in K such that 1 € U and y ¢ U as required. O

/ANTn a general topological space X the intersection of all closed and open sets containing
an element x is called a quasi-component and it is not necessarily a connected component.

Exercise 7.4. Suppose that X is a compact Hausdorff space. Show that X is normal.
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Theorem (Theorem =). Suppose that G is a totally disconnected locally compact
Hausdorff topological group. Then every neighbourhood of the identity contains a compact
open subgroup.

Proof. Suppose S is the given neighbourhood; let T" be an open neighbourhood of the
identity in S; let K be a compact neighbourhood of the identity (which exists by local
compactness); and finally let N be an open neighbourhood of the identity in K. Then
V := N n T is an open neighbourhood of the identity contained in S, and V < K, so V.
has compact closure.

By Lemma applied to V, for each z € 0V := V\V there is a relatively open and
closed set V,, such that x ¢ V, and 15 € V,,. As before, by compactness there are elements
T1,..., %, such that {V, ..., V¢ }isafinite open cover of dV and then U := V,, n---nV,
contains 1, is relatively open and closed in V' and is contained in V. The set U so defined
is relatively open in V and so U = V n L for some open set L, hence U = U nV =
VALNV =LnNVisopenin G. Similarly, U so defined is relatively closed so that
V\U =V n L for some (other) open L and hence V\U = (V\U) nV =V n L is open
and hence U is closed (seeing as U < V). We conclude that U is an open and closed (so
compact) neighbourhood of the identity contained in S.

For each x € U there is an open neighbourhood of the identity V, such that 2V, < U, and
by Lemmaa further open neighbourhood W, such that W2 < V. The set {zW, : z € U}
is then an open cover of U and so there is a finite sub-cover such that U < Ule W,
put W .= ﬂf;l W,, so that UW < U. Now let H be the open subgroup generated by W
so that H ¢ UH < U which is an open, and so closed, subgroup of V' which itself has a
compact closure. It follows that H is a compact open subgroup as required. U

Exercise 7.5. Suppose that G is a totally disconnected locally compact Hausdorff group.
Show that every compact subgroup of GG is contained in an open compact subgroup.

When we have compactness not just local compactness the examples given in Proposition
turn out to be the only ones — these are called the profinite groups. To show this we
need an additional lemma.

Lemma 7.6. Suppose that G is a compact Hausdorff topological group and H is an open
subgroup of G. Then there is an open normal subgroup of G of finite index contained in

H.

Proof. Since G/H is an open over of GG, and G is compact, it contains a finite subcover and
so G/H is finite — write G/H = {x1H,...,z,,H}. Let N := (-, z;Hz; ' which is a finite
intersection of open subgroups and so an open subgroup. On the other hand, if x € G
then for each j there is some ¢ (depending on j and z) such that zz;H = z;H. But then
(Hz;')a™' = Ha;' and so x(x;He; ' )a™' © x;Ha; ', whence tNa~! < x;Ha; ' However,
j was arbitrary and so #Nz~! < N. But this is true for all z € G and hence N is normal
as required. Finally, N is an open subgroup of G so G/N is an open cover of the compact
group G. Since G/N is a partition the only subcover is the whole set and so we conclude
that the index of N in G is finite. The lemma is proved. O
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Exercise 7.7. Suppose that H < G are groups and |G/H| = d. Show that there is a
subgroup N < H which is normal in G such that |G : N| < dl.

Theorem 7.8. Suppose that G is a topological group. Then G is a compact Hausdorff
totally disconnected group if and only if it is (topologically isomorphic to) a closed subgroup
of a product of finite groups.

Proof. The if direction is Proposition[7.1] In the other direction write C for the set of open
subgroups of G, and for each H € C let N(H) be a finite index (open) normal subgroup
guaranteed by Lemma [7.6| Then consider the continuous homomorphism

¢:G— || G/N(H);z— («N(H))nec.

HeC

The product on the right is a product of finite groups. Moreover, the map is an injection:
if z # 1¢ then since G is Hausdorff there is an open neighbourhood U of 14 with x ¢ U.
By Theorem there is a compact open subgroup H contained in U so x ¢ H. Then
xN(H) # N(H) and so ¢(x) # 1.

Since GG is compact and the map continuous, the image is compact and the product is
Hausdorff so the image is closed. The result is proved. U

We saw in Lemma that if G is a topological group then the connected component of
the identity L is a closed normal subgroup. This gives rise to a short exact sequence

0—>L—>G—G/L—0,

and if G is locally compact and Hausdorff then by Exercise L and G/L are also locally
compact (and Hausdorff). The group L is a connected locally compact Hausdorff group
and the group G/L is a totally disconnected locally compact Hausdorff group. Although
this seems very promising the groups L and G/L can still fit together in many varied ways.

8. THE HAAR INTEGRAL

We now turn to one of the most beautiful aspects of the theory of topological groups.
This describes the way the topology and the algebra naturally give rise to a measure. First,
given a group G and a function f: G — C we write

M(H)y) == flz™y) and po(f)(y) == f(y) for all 2,y € G.

These are left actions in the sense that A, (f) = A\a(Ay(f)) and p.,(f) = pa(py(f)) for all
x,y€G.
Given a topological space X we write Ceper(X) for the set of continuous compactly
supported functions on X, and CZ,..(X) for the set of non-negative elements of Ceper(X).
If G is a topological group then A and p both restrict to action on the set Ceper(G), and
we say that a non-zero linear map [ : Ceper(G) — C with I(f) = 0 whenever f € C..(G)
and I(\.(f)) = I(f) for all z € G and f € Ceper(G) is a left invariant Haar integral,

and similarly on the right.
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To provide a sufficient supply of continuous compactly supported functions we shall need
a result called Urysohn’s Lemma. The proof is sufficiently similar to the proof of Theorem
that we shall not give it.

Theorem 8.1 (Urysohn’s Lemma). Suppose that X is a normal topological space. Then
for every pair of disjoint closed sets A and B there is a continuous function f : X — [0, 1]
with f(a) =1 for allae A and f(b) =0 for all b e B.

A key tool for us will be approximating continuous functions in two variables by sums
of products of continuous functions in one variable.

Lemma 8.2. Suppose that G is a locally compact Hausdorff topological group and K ¢ G
1s compact and F' : G x G — C is continuous with support in K x K. Then for all e > 0
there are elements uy, ..., ug, vy, ..., v € C(G) with support in K such that

k
F— Z ujvjl| <e
j:l 0

Proof. We define some auxiliary sets: for ¢ € {1,2} put
A; = {x; : |F(x1,29)| = 2€}, By := {x; : |F(x1,22)| > €},

and
Ci = {x; : |F(x1,29)| = €}, Dy := {a; : |F(x1,22)| > €/2}.
Then the sets Aq, Ay, C1, Cy are closed while By, By, Dy, Dy are open. Urysohn’s Lemma
gives continuous functions Hy, Hy : G — [0, 1] with H;(x) = 1 for all z € A; and H;(z) =0
for all z € G\B;, where ¢ € {1,2}. And similarly, continuous functions Hj, H) : G — [0, 1]
with H](z) = 1 for all z € C; and H](x) = 0 for all x € G\D;, where i € {1,2}.
Let

Vo= {Z a;fi :neN, o, 8; € C(G),supp o, supp f3; < K} :
i=1

and V' := {fle,xc, : f € V}. Then V' is a conjugation-closed subalgebra of C(C} x Cs).
It contains the constant functions since AH{H) € V for all A € C, and it separates points
by Urysohn’s Lemma (or even just Theorem since given (z1,xs), (2], 25) € C1 x Cy
distinct then either z; # 2/ and so there is a continuous function u such that u(z;) # u(z})
whence uH{H} € V'; or 25 # zf, and we argue similarly. Given this we may apply the Stone-
Weierstrass Theorem (see e.g. [Pril7, Theorem 5.10] for the real case) to see that V' is
dense in C(C x Cy) — let uq, ..., ug,vy,...,vx € C(G) with supp u;, suppv; < K be such
that

(8.1) F (x4, x9) i(x1)vi(x2)| < € for all 2y € Ch, x5 € Cs.

I\M?v

Put i
F'(w1,29) := ) Hi(x1)ui(a1) Ha(2)vi(2),

=1
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and note that

Z?=1 ui(z1)vi(z2) if xe Ay x Ay
F'(x1,3) = { Hy(x1)Hy(1) Zleui(xl)vi(arg) if 2 € (By x By)\(A; x Ay) .
0 if v ¢ By x By

First, since A; x Ay < Cy x Cy we have |F(z) — F'(x)| < e for all z € A} x Ay. Secondly,
by definition of By and By we have |F(x)| < e if # ¢ By x By and hence |F(z) — F'(z)| <€
there. Finally, if x € (B; x Bs)\(A; x As) then x € C; x Cy and so (by (8.1)))

< |F(I1,l’2>‘ + €,

Z UZ'(LL’l)Ui(IQ)

whence |F'(x)] < |F(x)| +e. However z ¢ A; x Ay and so |F(x)| < 2¢, whereupon
|F'(x) — F(x)| < be. It follows that F” is a suitable approximation (at least after rescaling
¢) and the result is proved. O

The first result we are leading up to is the uniqueness of Haar integrals. To establish
this we shall need to understand how two Haar integrals interact, and to do this we need
some notation: given a linear functional I : Ceper(G) — C and a function F(z,y) with
y — F(z,y) in Coper(G) then we write I, F'(x, y) for the functional I applied to the function
y — F(x,y), and similarly if z — F(x,y) is in Ceper(G) then we write I, F(z,y) for the
functional I applied to the function z — F(z,y).

Lemma 8.3. Suppose that G is a locally compact Hausdorff group, I and J are left Haar
integrals on G, and F € Coper(G?). Then the map x — J,F(x,y) is continuous and
compactly supported, so that I, J,F(x,y) exists. Similarly y — I, F(z,y) is continuous and
compactly supported, so that J,I,F(x,y) exists and moreover

LJ,F(x,y) = J,L,F(z,y).

Proof. Since F € Ceper(G?) has compact support, and the projection functions are contin-
uous, there is a compact set K such that F has support in K x K. By Lemma for all
€ > 0 there are continuous functions uy, ..., ug, v, ..., v, supported in K such that

J J
—€+ Z uj(z)vi(y) < F(z,y) <e+ Z u;(z)vj(y) for all z,y € G.
j=1 j=1

Let U be an open neighbourhood of the identity with compact closure. Apply Urysohn’s
Lemma to the disjoint closed sets K and (KU)® to get a continuous function g : G — [0, 1]
supported on KU and with g(z) = 1 for all € K. Then

J J

—eg(@)g(y) + > ui(@)v;(y) < Flz,y) < eg(x)g(y) + Y u(z)v;(y) for all ,y € G.

j=1 J=1
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Thus
(8.2) —eg(z Jg+2u] x)Jv; < JyF(z,y) < Jg+Zu] z)Jv;.

Now 0 < g(x) < 1 and so  — J,F(z,y) is a uniform limit of continuous functions and
so continuous. Moreover, it is supported on KU which is compact and so x — J,F(z,y)
has compact support. Similarly y — [, F(x,y) is continuous and has compact support.

Finally, from (8.2)) we have

k k
—elgJg + Z TujJv; < I J,F(z,y) < elgJg+ Z TujJv;
j=1 j=1
and similarly for J,[,F(z,y) and so the last equality of the lemma holds since e was
arbitrary. O

The integral of a non-negative continuous function that is not identically 0 is positive,
and this already follows from the axioms of a Haar integral:

Lemma 8.4. Suppose that G is a locally compact Hausdorff group, I is a left Haar integral
on G, and f e CL..(G) has If =0. Then f =0.

Proof. Suppose that f = 0 so that there is some zg € G such that f(xy) > ¢ > 0 and hence
an open neighbourhood of the identity U such that f(zoy) > ¢/2 for all y € U. Now for
any g € Ct..(G) there is a compact set K containing the support of g and {zU : z € K}
is an open cover of K. It follows that it has a finite subcover z1U, ..., z,,U. But then

0 < g(x) < 27 Yglo ), flzow; '),
i=1
and hence
2¢7glloo Y TApact () = 2¢7 gloomI f = 0.
i—1

Finally, any h € Ceper(G) can be written in the form h = hy — hy + ihy — ihy where
hi, ha, hs, hy € C},..(G), and hence we have that [h = 0 i.e. [ is identically 0 contradicting
the fact that it is a left Haar integral. The lemma follows. O

Compactly supported continuous functions on topological groups have a notion of uni-
form continuity captured in the next lemma.

Lemma 8.5. Suppose that G is a locally compact Hausdorff group and f € Ceper(G). Then
for all e > 0 there is a symmetric open neighbourhood of the identity V' such that

|f(zy) — f(y)| <€ and |[f(yx) — f(y)| <€ forallzeV,ye G

Proof. Let H be an open symmetric neighbourhood of the identity with compact closure,

and K a compact set supporting f. Since f is continuous for all y € G there is an open
neighbourhood U, of y such that |f(z) — f(y)| < €/2 for all x € U,. For each y € G let V,
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be a symmetric neighbourhood of the identity such that yVy2 c U, and VyQy c U, —such a
set exists by Lemma [2.2 since (y~'U,) n (Uyy~') is a neighbourhood of the identity.
Since HK H is compact, the open cover {yV, n V,y : y € HKH} has a finite subcover
{1V o Viur, o YV, 0 Vi Y} We let Vbe a symmetric open neighbourhood of the
identity such that V < H n (-, V,,. Now, suppose that z € V and y € G. If any of zy,
yx or y are in the support of f then y e HK U KH U K ¢ HKH and so there is some v;
such that y € y;V,, 0V, y;. Then xy € V2y; < Uy, yx € V) < Uy, and y € y;V,} < U,,.
The result follows by the triangle inequality. U

With these preparatory tools in hand we are ready to prove the important result that,
if it exists, the Haar integral is unique up to dilation by a positive scalar.

Theorem 8.6 (Uniqueness of the Haar Integral). Suppose that G is a locally compact
Hausdorff group and I and J are left Haar integrals on G. Then there is some A > 0 such
that I = \J.

Proof. Suppose that fi, fo € C#,..(G) are not identically 0 and write K for a compact set
containing the support of f; and fy (which exists since finite unions of compact sets are
compact). Let H be a compact symmetric neighbourhood of the identity in GG, and let F
be a continuous function with compact support such that F|ggpy is identically 1. Such
a function exists since the product of compact sets is compact so HK H is compact and
hence closed (since G is Hausdorff), and if U is a neighbourhood of the identity in H then
HKHU is open and so its complement is closed and disjoint from H K H so we can apply
Urysohn’s Lemma to get a continuous function that is 1 on HK H and 0 on KHKU®, and
so supported on HKHU < HK H?; the latter set is compact.

Since the support of f; is compact and f; is continuous we may apply Lemma to
get a symmetric neighbourhood of the identity V; such that |f;(zy) — fi(y)| < € and
| filyz)— fi(y)] < eforally € G, z € V;. By Lemma[2.2|let V be a symmetric neighbourhood
of the identity with V2 < H nV; n Vs,

By Urysohn’s Lemma (and in fact our proof of complete regularity is enough) there is
a continuous function k : G — [0, 1] with k(z) = 0 for all x € V¢ and k(1lg) = 1. Put
h(z) = k(z)k(z™") so that h(z) = h(z™'), h # 0 is non-negative and h(z) = 0 for all
x ¢ Ve

Now, by translation invariance of J we have J,h(y 'z) = J,h(z) and since (z,y) —
fi(y)h(z) and (x,y) — fi(y)h(y 'z) are both continuous and compactly supported we
have

L fi(y) Jeh(x) = Lo fi(y)h(y~"x).
Since h(z) = h(z7!), Lemma[8.3| and the translation invariance of I then give
LJo fiyh(y™'2) = I, Jo fily)h(z™"y) = L1y fi(y)h(z™'y) = Jo1, f(zy)h(y).
Now,
filay) — £(@)|h(y) < eF(@)h(y) for all 2,y € G
and so

fi(x)I,h(y) — el F(2)h(y) < 1, fi(zy)h(y) < fi(x)L,h(y) + eI, F(x)h(y).
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We conclude that
|If;Jh — Jf;Ih| < eJFIh.

Since h and f; are not identically 0 we have Ih, I f; > 0 by Lemma(9.1]and so these combine
to give

Jfi _Jh|_ JF
If, Th| S Tf

and hence

1 1
E_I_ﬁ <2€JF<E+I—f2>

Since € is arbitrary and JF', I f; and [ f, are independent of € we conclude that there is
some A > 0 such that Jf = A f for all f e CZ,..(G). This extends to all f € Ceper(G) by
writing f as a linear combination of four elements of Cf,..(G). O

‘Jfl J f2

It is now useful to consider some examples.

G’:z{(g %):x>0,yeR}.

Show that G is a subgroup of GLy(R), and that
x oy \ 1
-], f (5 1) s

us a left Haar integral while
©¢] Q0 T 1
]f::J ff( y)—dxdy
—00 JO 0 1 T

Given a topological group G and f € Ceper(G) we write ]?(x) = f(z~!) so that Vis a
conjugate-linear involution on Ceper(G). The reason for making it conjugate-linear will
become clearer later.

Exercise 8.7. Let

is a right Haar integral.

Lemma 8.8. Suppose that G is a locally compact Hausdorff group and I is a left (resp.
right) Haar integral on G then f — I]? is a right (resp. left) Haar integral on G.

Proof. Note that

~ ~ ~

p=(f)W) = flyx) = fla7ty™') = A (f)(w™1) = (A(f)) ™ (9).

Hence

Ipo(f) = IX(f) = 1f
and so the given map is invariant under right translation. It is also linear, non-trivial, and
non-negative on non-negative functions and hence it is a right Haar integral as required.
A similar argument works if [ is a right Haar integral. O
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Proposition 8.9 (Modular function). Suppose that G is a locally compact Hausdorff group
supporting a left Haar integral I. Then there is a (unique) continuous homomorphism
A : G — Ry such that for any left Haar integral J on G we have

Jpi(f) = A(t)Jf forallt € G, and f € Ceper(G).

Proof. The maps ), and p; commutd| so that p;(A:(f)) = A\u(pe(f)) hence the map f —

Ip(f) is also a left Haar integral. It follows that there is some A(t) such that Ip,(f) =

A(t)If for all f € Ceper(G). Furthermore, if J is another left Haar integral then there

is some p > 0 such that Jf = plf for all f € Ceper(G), and hence Jpi(f) = plp(f) =
A(t)If = A(t)J f and so A does not depend on I.

A is a homomorphism since A(st) [ f = Ips(f) = Ips(p:(f)) = A(s)Ip:(f) = A(s)A(t) I f
for all s,t € GG, and I is not identically 0 so there is some f such that If # 0.

Finally, A is continuous: To establish this, first let U be an open symmetric neighbour-
hood of the identity with compact closure and suppose that f € Ceper(G) is supported on
the compact set K. Then KU so by Urysohn’s Lemma there is g € Coper(G) mapping into
[0,1] with g(x) = 1 for all z € KU. Now, let f be such that If > 0 (we know there is an
f such that If # 0, and if If < 0 then replace f by —f) and for y € G and 6 > 0 put

={reG:|A@) - AW <0} ={zeG: [Ip(f) = Ipy(f)] < OLf};

suppose that « € S. Let € > 0 be such that [Ip,(f) — Ip,(f)| < (6 —€)If. By Lemma .5
there is an open neighbourhood V' of the identity such that ||p..(f)—pz(f)|w < €If/Ip.(g)
for all ze V. But then if z € V n U we have

11 p2=(f) = Loy () < T pae(f) — Tpa ()] + [Lp2(f) — Lpy(f)]
< pe=(f) = puflloolpa(g) + [Lpe(f) = Lpy(f)] < d1f.

It follows that xz € S so that S contains an open neighbourhood of x as required. The
result is proved. O

We call the function A of this proposition the modular function and a group where
A is identically 1 is called unimodular. Once we have shown existence of Haar integrals
we shall be able to conclude that every locally compact Hausdorff group has a modular
function.

Note that if G is compact and supports a left Haar integral then A(G) is compact since
A is continuous, and hence G is unimodular since the only compact subgroup of R.q is
{1}. If G is discrete then it supports a left Haar integral:

1 Chen(G) > Ci f = > f(x)
zeG

which is also a right Haar integral so any discrete group is unimodular. Even more easily if
G is Abelian then G is unimodular since then p;(f) = A\-1(f) forallt € G and f € Ceper(G),
and hence Ipi(f) = IN-1(f) = If for all t € G and f € Ceper(G).

10/N\This is just associativity of the group operation since A, (p:(f))(y) = p:(f)(x71y) = f((xz71y)t) =
F@™ (W) = X(Ht) = p(Aa(f))(y) for all w,y,t e G.
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On the other hand, there are non-Abelian groups that are neither compact nor discrete
that are unimodular, for example GL,(R) where a left Haar integral is given by

ff:ff(A)\detAy—" [] 444
1<ij<n

and dA;; is Lebesgue measure on R.

9. EXISTENCE OF A HAAR INTEGRAL

In this section our aim is to show that locally compact Hausdorff groups all support a
Haar integral. We begin by defining a sort of approximation: for f,¢ € C#,..(G) with ¢
not identically 0 put

(9.1) (f;9) ::inf{ch neN;e,...,¢, =20;y1,...,y, € G; and ch)\yj_1(¢) >f}.

j=1 Jj=1

We think of this as a sort of covering number and have a lemma to record some of the
basic properties.

Lemma 9.1. Suppose that f, g, 0,1 € Ch..(G) with ¢ and b non-zero. Then
;@) is well-defined;

(f
(ii) (f;¢) < (g;¢) whenever f <
(iti) (f +9:0) < (f;0) + (9:0);
(v) (uf;¢) = p(f;¢) for p=0;
(v) (Na(f);0) = (f;¢) for allz € G;
(vi) (f;¢) < (f;0)(959);
(vit) (f;8) = || flloo/l9]o0-

Proof. To show that (f; ¢) is well-defined requires that ¢ is not identically 0 so that there is
some g € G, ¢ > 0 and some open neighbourhood U of the identity such that ¢(z) > ¢ for
all z € xoU. Then since the support of f is compact it is covered by a set {z,U, ..., z,U}
and so

) < 2 [flleoc™ d(o; 'a) = 2 [£looe™ Ay 052 (€) (),

whence the set on the right of (9.1 is non-empty and it is bounded below by 0 and so has
an infimum.

, , , and are all immediate. Finally, for ‘ and (i) Suppose Cly.ooyCp =0
are such that f < Z?zlcj)\y;l(qﬁ), so that by (i l and we have (f ) <
21 ¢i(#3¢); while by non-negativity of ¢;s and the fact that A\ ( Mo = [¢]le for all
z € G we have | f(z)| < 27, ¢ @], and follows by taking infima, while (vii) follows
by taking suprema and infima.
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To make use of (-;-) we need to fix a non-zero reference function fy € C..(G) and we

put
(f; )
I,(f) :=
= (o)
which is well-defined in view of Lemma .
Many of the properties of Lemma translate into properties of /4. In particular, we
have I4(f1 + f2) < I4(f1) + 14(f2); for suitable ¢ we also have the following converse.

Lemma 9.2. Suppose that f1, fo € Clo (G) and € > 0. Then there is a symmetric open
neighbourhood of the identity V' such that if ¢ € Ch..(G) is not identically 0 and has

support in 'V then 1s(f1) + Ls(f2) < Iy(f1 + f2) + €.

Proof. Let L be a compact symmetric neighbourhood of the identity; K be compact such
that Lsupp f; < K for j € {1,2}; and by Urysohn’s Lemma let F' : G — [0,1] be
continuous, compactly supported, and have F'(z) =1 for all z € K. For j € {1,2} put

fi(z) ) |
0:(z) = { PR @) if o € supp f;
J .
0 otherwise

The functions g; are continuous and so by Lemma (applied twice and taking the inter-
section of the open sets) for € > 0 there is a symmetric open neighbourhood of the identity
V' such that

(9.2) lgj(yx) — gj(x)| <eforallye V,x e G, je {1,2}.
Now suppose that ¢ € CH..(G) is not identically 0 and has support in V, and that
c1,...,¢, = 0and y,...,y, € G are such that

filz) + falz) + eF(x Z ) for all z € G.

Then by (9.2) we have

n n

fi(z) < Eclqﬁ (yix Z (gi(y; ") + €)d(ysz) for all z € G, j € {1,2}.

i=1 i=1

However, g1(y; ') + ¢g2(y; ') < 1 for all 1 < i < n, whereupon

(f1:0) + (f2:0) < D i1+ 2¢),

i=1
and so by Lemma and and then (which gives I4(h) < (h;fo) for all
h e Cher(G))
1o(f1) + 1s(f2) < (L +26)Ls(f1 + fa + €F)

< (L +26)(I(fr + fo) + ely(F))
< Ly(f1+ f2) + (20f1 + f25 fo) + (F fo) + 2(f1 + fas fo) (£ Fo) Je.

The result then follows since € > 0 was arbitrary. O
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With this we can establish the existence of a Haar integral.

Theorem 9.3. Suppose that G is a locally compact Hausdorff group. Then there is a left
Haar integral on Ceper(G).

Proof. By complete regularity and the fact G has a compact neighbourhood there is some
fo € CL . (G) with fo # 0. The set of maps I : CJ,..(G) — Rxq such that |I(f)| < (f; fo)
is compact by Tychonoff’s Theorem, and the set of such maps I with I(fy) = 1,

(9.3) I(f) < I(g) for all , f,g € C&,..(G) with f < g,
(9.4) I(uf) = pl(f) for all p >0, f € Cdher (G),
and

(9.5) IO(f) =1I(f) forall z € G, f € CL..(G),

is closed and so also compact — denote it X.
For e > 0 and f, f' € CZ,..(G) consider the sets

B(f, fr€) ={l e X [I(f+ f) = I(f) = I(f)| < ¢}

For any fi, f1, fo, for - fu, [l € Chor(G) and €y, ..., €,, by Lemma there are sym-
metric open neighbourhoods of the identity Vj,...,V, such that if ¢ € C#,..(G) is not
identically 0 and is supported in V; then

(9.6) [Lo(fi + [5) — 1(fi) — L(fi)] < €.

The set V := ()_, Vi is also a symmetric open neighbourhood of the identity and by
complete regularity there is ¢ € C,..(G) that is not identically 0. Then ¢ is supported in
V' and is not identically 0 and so I enjoys (9.6) for all 1 <4 < n. Moreover, I, then enjoys
by Lemma [9.1] (i); by Lemma (iv); by Lemma [9.1] (v]); I5(fo) = 1 by
design; and I(f) < (f; fo) by Lemma [9.1] (vi).

We conclude that (., B(fi, f/,€;) is non-empty which is to say the set {B(f, f’;€) :
[, [/ € C& o (G),e > 0} has the finite intersection property. The sets B(f, f';€) are closed
and so by compactness of X there is some I in the intersection of all the B(f, f’;€)s.
We extend this I to Ceper(G) by putting I(f) := I(f1) — I(f2) + il(f3) — il(fs) where
f=h—fatifs—ifiand fi, fo, f3, f1 € Cher(G). O

Given a left Haar integral we can go ahead and define a regular Borel measure on G by
setting

p(A) :=1nf{I(f): 14 < f where f € CL..(G)}

but we shall not discuss that at much length. This is what is called a left Haar measure.
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10. THE DUAL GROUP

Suppose that G is a topological group and recall that S* is the group of complex numbers
of modulus 1 under multiplication. We write G for the set of continuous homomorphisms
G — S, and call the elements of G characters. This is naturally endowed with the
structure of an Abelian group with multiplication and inversion defined by

(7:7) = (2= y(2)y'(2)) and ¥ = (2 y(z)).
We write 15 for the character taking the constant value 1 and call it the trivial character.

On the face of it it is not clear whether or not there are any non-trivial characters in @,
but it will turn out that (in general) there are. Indeed, it will turn out that much more
than this is true.

The set G — as a set of continuous, but not necessarily compactly supported functions —
is a subset of C'(G) and so can be endowed with the subspace topology, when that space is
considered as endowed with the compact-open topology, that is the topology generated
by translates of the sets

U(K,e):={yeG:|y(x)—1| <eforal z e K}
as K ranges compact subsets of G.

Proposition 10.1. Suppose that G is a topological group. Then G is an Abelian Hausdorff
topological group.

Proof. Since |y(x)—1| = |y(z) — 1] the inversion is certainly continuous. On the other hand
if [(vA)(z) — 1| < € for all x € K then since v\ is continuous and K is compact |[yA — 1
achieves its bounds on K and hence there is some 6 > 0 such that [(yA)(z) — 1| < e — 0 for
all z € K. But then if N € AU(K,9/2) and 7' € yU(K,6/2) we have
(VM) (@) =1 < [(YX) (@) = (W) (@) + [(A) (@) = (PN ()] + [(7A) () — 1
<d0/24+0/24+€e—0=¢e.

The joint continuity of multiplication follows. The group is clearly commutative, and it
is Hausdorff since if v # X then there is some x € G such that v(x) # A(z); put € :=

|v(xz) — A(x)|/2 and note that YU ({z},€) and AU({z},¢€) are disjoint open sets containing
~v and A respectively. U

We call G endowed with the above topology the dual group of G.
Proposition 10.2. Suppose that G is a compact topological group. Then G is discrete.

Proof. Suppose that v € G and suppose that there is z € G is such that v(z) # 1. Let y e G
be such that |y(y) — 1| is maximal (which exists since G is compact and x — |y(z) — 1| is
continuous) and note that by assumption this is positive. If |y(y) — 1| < 1 then we have

(W) =1 =) =1 =12+ (v(y) — )l (y) = 1]
> (2= |v(y) = WDv(y) =1 > | (y) = 1],
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since |y(y) — 1| > 0 by assumption. This is a contradiction. Hence v ¢ U(G,1) i.e.
U(G,1) = {14} where 15 denotes the trivial character. It follows that the group is discrete.
U

Proposition 10.3. Suppose that G is a discrete topological group. Then G is compact.

Proof. The set G is a subset of the set of functions G — S, and the latter space is
compact when endowed with the product topology by Tychonoff’s theorem. On the other
hand since G is discrete the only compact sets in GG are finite and hence the topology on
G is the topology induced by considering it as a subsp\ace of the set of functions G — S?!
with the product topology. It remains to check that G is closed at which point it follows
that it is compact. This last fact follows since the sets {f : G — S : f(zy) = f(2)f(y)}
are closed for each x,y € G, and hence

(V{{f:G— S flay) = f(2)f()} 2,y € G}

is closed. This is the set of all homomorphisms G — S!, but all homomorphisms are
continuous since G is discrete and hence this set equals G. U

Exercise 10.4. Show that Z =~ T, T=~7and R ~R.

A key application of our Haar integral is then the following result establishing the fact
that if G is locally compact and Hausdorff then so is G.

Theorem 10.5. Suppose that G is a locally compact Hausdorff group. Then G is locally
compact.

Proof. Let I be a left Haar integral on G and fy € CZ,..(G) have I(fy) = 1. Write K for
a compact set supporting fy and U for a compact neighbourhood of the identity (which
exists since G is locally compact). Apply Urysohn’s Lemma to get a continuous compactly
supported F': G — [0, 1] such that F(xz) = 1 for all x € UK. Consider
Vi={yeG:|y(x) = 1| <eforall z € K} where ¢ := 1/4IF| fo|

so that V' certainly contains an open neighbourhood of the identity: U(K,e¢).
Note that if v € V and A € 4V then by the triangle inequality we have

[1(foA) = 1] = [I(fo(A = 1)) < 2¢| fol o[ F < 1/2,
and hence |I(foA\)| = 1/2 by the triangle inequality again.

Claim. Suppose that k,6 > 0. Then there is a symmetric open neighbourhood of the
identity Ls,, such that if |I(foy)| = K then |1 —~(y)| < 0 for all y € Ls,.

Proof. By Lemma there is an open neighbourhood of the identity Ls, (which we may
assume is contained in U) such that |A,(fo) — fo|w < 0x/IF. Importantly L;, does not
depend on 7. But then if y € L;,, we have

11— y(W)lk < |(v(y) = DIfon)| = [L(fo(Ay-1 () = )]
= [I((Ay(fo) = o)V < I([Ay(fo) — fol) <,
since supp(Ay(fo) — fo) € UK. The claim is proved. O
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We write C for the set of functions G — S' endowed with the product topology so that
C' is compact. Now V is a subset of C' and is closed in C' since it is an intersection of closed
sets:

V= {{feC: flay) = f(2)f(W)} : 2.y € G}
NHFeC:|f(@) =1 <0} :0> 0,2 € Ly}

n){feC:|f(x)—1 <e :zeK}.

Certainly all the sets on the right are closed. To see the equality note that V is a set of
homomorphisms and so contained in the first big intersection; by the claim (and the fact
that the trivial character is in V) V is contained in the second big intersection; and by
definition of V' it is contained in the third big intersection. Moreover, if f € C' and f is
in the first big intersection then f is a homomorphism. If f is a homomorphism and in
the second big intersection then f is continuous, and hence in G. Finally, the last big
intersection then restricts to elements of V. R

Compactness of V' (in the compact-open topology on ) follows if every cover of the form
{YU(K,,0,) : v € V} (where K, is compact and d, > 0) has a finite subcover. Write L., for
Ls. j2,1/2 and note that by compactness of K, there is a finite set T, such that K, < T L,.

Suppose that A € yU(T5, 6,/2) "V then ¥\ € U(T5,6.,/2) n7V. Thus |I(foyA)| = 1/2 and
so the claim gives |1 —y(y)A(y)| < 6,/2 for all y € L.,. But we also have |[1—~(y)A(y)| < 6,/2
for all y € T, and hence by the triangle inequality |1 — y(y)A(y)| < 8, for all y € K,. We
conclude that

vU(T,,0,/2) nV cyU(K,,6d,) n V.

But then {yU(T,d,/2) : v € V} is a cover of V by sets that are open in C, and hence it
has a finite subcover which leads to a finite subcover of our original cover. U

Exercise 10.6. Suppose that G is a topological group. Write H(G) for the set of contin-
uous homomorphisms G — C* and show that H(G) is a topological group in the compact-
open topology inherited from C(G). On the other hand show that we may have G locally
compact and Hausdorff while H(G) is not locally compact.

As a last result of this section we have the following.
Proposition 10.7. Suppose that G is a locally compact Hausdorff group. Then the map
G x G — 8% (x,7) — y(x)
18 continuous.

Proof. Suppose that z € G and v € G and let L {z/ € G : |y(2) — 1] < 0} be an
open set with compact closure — such exists since G is locally compact. Now suppose that
(',9") € xL x vU(xL,d) — an open neighbourhood of (x,v) — then

Y (2") = y(2)] < Y (@) = v(@)] + [7(2") — v (2)|
= [(Y7)(") = 1| + |[y(z™ ") = 1] < 26.

It follows that the map is continuous. [l
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/N Note that this map is not a homomorphism since ~v(x)A(y) is not in general equal to
(vA)(zy) — it is a bihomomorphism.

11. ANNIHILATORS, BOHR SETS, AND PONTRYAGIN’S MAP

Suppose that G is a topological group and S < . The annihilator of S is the set
Sti={yeG:vy(x)=1forall z e S}

which is visibly a closed (since (v,z) +— ~y(x) is continuous in - by Proposition [10.7)
subgroup of G.

Proposition 11.1. Suppose that G is a topological group and H is a closed normal subgroup

of G. Then there is a continuous algebraic isomorphism ¢ : CT/?[ — H*. If G is locally
compact and Hausdorff then ¢ is a topological isomorphism.

Proof. We write q : G — G/H for the usual quotient map and consider the map
¢:G/H — H* 7 —voq.

First, this map is well-defined: to see this simply note that for all z € H we have y(q(x)) =
Y(H) = v(1g/u) = 1. It is certainly a homomorphism and injective since ¢ is surjective.
On the other hand if v € H* then « is constant on cosets of H and the map 7 : G/H —
St xH — ~(z) is a well-defined continuous homomorphism and ¢(y) = v. We conclude
that ¢ is surjective.

The map ¢ : G — G/H is continuous and so ¢ is continuous since ¢(K) is compact
whenever K is compact. Finally, suppose that G is locally compact and Hausdorff. Then
there is an open neighbourhood U of the identity with compact closure. For a compact
K < G/H, the set {q(zU) : x € G} is an open cover of K (since ¢ is open) and so has
a finite subcover {q(z1U),...,q(x,U)}. Let K' := (11U U --- U 2,,U) n ¢~ }(K) which is
then the union of a finite number of compact sets intersected with a closed set, and hence
compact. Moreover, ¢(K') = K and the last part of the result is proved. ]

Given a set A © G the set AL is a subset of @, but there is also a set
A :={reG:v(x)=1for all ye A}.

It will turn out that A° and A+ are essentially the same, and to show this we shall need a
tighter handle on the topology on G. R

Suppose that G is a locally compact group, A is a compact subset of G, and 6 > 0. Then
we write

Bohr(A,0) :={zx e G: |y(z) — 1| < 0 for all v e A}

and call this set a Bohr set with frequency set A. A Bohr neighbourhood is a translate
of a Bohr set.

In the literature Bohr neighbourhood is sometimes used to mean what we are calling
a Bohr set, and sometimes Bohr sets are defined to be sets of the form

{xeG:|Argy(z)| < for all v e A}
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which leads to slight differences in some estimates.

Lemma 11.2. Suppose that G is a locally compact Hausdorff group, A is a compact subset
of G, and 6 > 0. Then Bohr(A,J) is open.

Proof. Fix x¢ € Bohr(A, §). For each A € A, Proposition gives us open neighbourhoods

of the respective identities Uy < G and I'y < G such that zoU, x AI') is a subset of
{(x,7) : |7(x) — 1] < 6}. The sets {A'y : A € A} form an open cover of A and so there is a
finite subcover A\;I'y,, ..., ALy, of Aslet U := Uy, n---nU,,, . Then x,U’" < Bohr(A,0),
and the set is open as required. Il

/NWhen G is Abelian it turns out that Bohr neighbourhoods form a base for the topol-
ogy on GG, however in the present level of generality they do not:

Example 11.3. Suppose that G is a non-Abelian finite simple group with the Hausdorff
topology. Then G is trivial and the Bohr neighbourhoods form a base for the indiscrete
topology on GG and in particular not for the Hausdorff topology.

Proof. Any character is a homomorphism into S* so its kernel is either trivial or the whole
of G. Since G is non-Abelian while S* is Abelian we conclude that the kernel is the whole
of G. Since G is trivial the Bohr neighbourhoods are all just the whole of G and so they
generate the indiscrete topology which is not the Hausdorff topology on G since G has
more than one element (the one-element group is Abelian). U

Given a topological group G we write
a:G—Ga-(y—(2),
which we shall call this the Pontryagin duality map. /N\This is not standard.

Theorem 11.4. Suppose that G is a locally compact Hausdorff group. Then « is a con-
tinuous homomorphism.

Proof. The map is visibly a homomorphism and it is continuous by Lemma given the
definition of the topology on G. U

It turns out that if G is Abelian then « is a topological isomorphism, but to prove this
we shall need a better idea of the structure of locally compact Abelian Hausdorff groups.

12. THE STRUCTURE OF LOCALLY COMPACT ABELIAN GROUPS

In this section we shall look to develop a more detailed picture of the structure of locally
compact Abelian groups.

A topological group G is said to be monothetic if there is a (continuous) homomorphism
7Z — G whose image is dense in G. (We regard Z as discrete here.)

Proposition 12.1. Suppose that G is a locally compact Hausdorff monothetic group. Then
G 1s compact or else G s topologically isomorphic to 7.
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Proof. Write Z for the image of Z in G and let U be a symmetric open neighbourhood of
the identity such that U? has compact closure. Suppose U N Z is finite and x € U\Z. Then
for all z € U n Z there is an open set W, containing x and not z and so x € Un () ., We
is an open set containing x and not containing any of Z. This contradicts the density of
Z.

We have two possibilities: if U n Z is finite and equal to U then, again since G is
Hausdorff, we have that G is discrete and so G is a quotient of Z and these are either finite
(and so compact) or the whole of Z.

Alternatively, U n Z is infinite. In this case let € G be such that Z = {z" : n € Z} and
N :={z" : n e N}. Since U n Z is infinite and U is symmetric we see that U contains x"
for some arbitrarily large values of n, and hence Z ¢ NU™! = NU and Z < N~'U. Since
ZU = G we then have that G < NU? and G < N~1U?, and so for each z € G we may let
n(z) € N be minimal such that z € z"*)U2.

Since U? is compact and G © N~'U? there is some ng such that

U2c{z 272 .. o }U

In view of the above there is some 1 < i < ng such that 27*)z € 27°U?, whence z €
") -U? < ") =J2, By minimality of n(z) it follows that n(z) —i < 0 and so n(z) < ny.
We conclude that

G c{x,2? ... 2"} U2

and as a finite union of compact spaces is compact. The result is proved. O

In the next lemma we make essential use of the fact that G is Abelian, and recall that
we shall write Og for the identity of an Abelian group G, and nK for the n-fold sum of K
with itself.

Lemma 12.2. Suppose that G is an Abelian Haudorff topological group and K is a compact
symmetric neighbourhood of the identity with G = |, ynI. Then there is some m € N
such that G contains a discrete subgroup L isomorphic to Z™, and G/L is compact with
KnlL= {Og}

Proof. Since K is compact so is K + K, and since K is a neighbourhood it follows that
there is a finite set X < K such that K + K < X + K. Let H be the group generated
by X and note by induction that G = K + H. Since H is finitely generated there is a
maximal n € Ny such that Z" is a subgroup of H; let L < H be free Abelian and discrete
in G, and have maximal — say m € Ny — generators of any subgroup with these properties.
Such exists since any free Abelian subgroup of H has at most |X| generators. Since L is
discrete and K is compact K n L is finite and so by passing to a finite index subgroup of
L we may assume K n L = {0¢}.

Write ¢ : G — G/L for the quotient map. Since H is finitely generated, so is q(H)
and we can write ¢(L) = T + F where T is a finite torsion group and F is a free Abelian
group generated by, say, y; + L,...,y; + L. (This is the structure theorem for finitely
generated Abelian groups.) Let H; be the group generated by y; + L and suppose that
there is some 1 < i < [ such that H; (the closure of H; in G/L) is not compact. Then
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by Proposition m H; is topologically isomorphic to Z i.e. discrete in G/L. Consider L/,
the group generated by y; and the elements of L. Since F' is free, L’ is free and has m + 1
generators. Since H; is discrete, {L} is open in H; and there is an open set U < G/L such
that U n H; = {L}. But then ¢ '(U) n L' = L — > follows since L = L' and L € U so
L c ¢ Y(L); < follows since if u € L' then u = zy; + [ for some z € Z and [ € L, and if
q(u) € U the zy; + L = q(zy; +1) € U, but also qy; + L€ L'/L = H;, so zy; + L = L and
hence z = 0 and u € L as required. Since L is discrete there is an open set V' < G such
that V n L = {0g}, and hence ¢ 7' (U) n V n L' = {0¢} and so L' is discrete contradicting
maximality of m.

Thus H; is compact for every 1 < i < . We saw above that G = K + H and so
G/L=qK+H)=q(K)+T+H,+--+H,. Theset q(K) is compact since K is compact
and ¢ is continuous; 7" is compact since it is finite; and the H;s were shown to be compact
above. It follows that G/L is a sum of compact sets and so compact as required. O

Note that since K n L = {0} we must have that L is closed in G: otherwise there would
be some x € G such that every neighbourhood of = containing infinitely many elements of
L. Let U be a symmetric neighbourhood of the identity with U + U < K. Suppose that
zzwe(x+U)n L. Then z—w=U—-U=U+ U c K, but also L is a subgroup and so
z—w € L and hence z —w € K n L and we have z = w. Thus x + U is a neighbourhood
of x intersecting L in at most 1 point.

We can also identity copies of the reals in certain groups.

Lemma 12.3. Suppose that G is connected with no infinite compact subgroup and it is
locally isomorphic to R*, meaning that there is some neighbourhood U of Og, an open ball B
around the origin in R*, and a homeomorphism ¢ : B — U such that ¢(x+y) = ¢(x)+d(y)
whenever x,y,x +vy € B. Then G is topologically isomorphic to RF.

Proof. For each z € R* there is some n(z) € N such that for all n > n(x) we have
x/n(x) € B. Suppose that n,m > n(z). Then

n(z/n) = ng({/mm) + -+ (z/nm))

= n(gb(x/nm) + -+ gb(m/nmj) = nmao(x/nm)
and similarly we have m¢(x/m) = nmeo(xz/nm) and so {n¢(x/n) : n = n(x)} has one
element — call this element (z). Thus v is a map R¥ — G and our aim is to show it

is a topological isomorphism. First, it is a homomorphism: if x,y € R* then for n >
max{n(z),n(y), n(x + y)} we have

Y(x) +¥(y) = no(z/n) + né(y/n) = nd((x + y)/n) = (x +y).

1 is also continuous: by translation invariance it suffices to check that for sufficiently small
open neighbourhoods V' of 0 in G we have ¢~*(V) open. This follows since for V < U
we have ¢~ 1(V) = ¢~1(V) which is open since ¢ is continuous. Similarly 1) is open. But
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then ¢ (R¥) is an open subgroup of G' which is assumed connected and so ¥ is surjective.
Finally, it remains to check that ) is injective.

If ¢(z) = 0 then ng(z/n) = 0 for all n = n(x). If z # 0 then for m € Ny write D,, for
the group generated by ¢(z/n(x)2™). We have some important properties of the D,,s:

(i) For 0 < a < 2™ the elements a¢p(x/n(x)2™) are all distinct so D,, has size at
least 2™ + 1. To see this suppose that 0 < a,a’ < 2™ and a¢(z/n(x)2™) =
a'¢(x/n(x)2™), so that ¢((a — a')x/n(x)2™) = 0 (since |a — a’| < 2™) and so by
the homeomorphism property of ¢ we have a = a'.

(ii) Dy, < 2n(x)¢(B). To see this, it suffices to show that a¢(x/n(z)2™) € n(x)p(B )
whenever 0 < a < n(x)2™ since n(x)2"¢(x/n(x)2™) = 0. Write a = un(x) +
for 0 < v < n(z) and 0 < u < 2™. Then ap(z/n(x)2™) = n(x)p(uzr/n(x)2™) +
vo(x/n(x)2™) € 2n(z)P(B).

Now D,,, < D41 for allm and so D := |, D, is also a subgroup of G and D < 2n(z)¢(B).
Since B has compact closure, D has compact closure and it is of course infinite since the
groups D,, are of unbounded size. This contradicts the assumption that G' has no compact
infinite subgroup. O

We also need an analogue of Proposition [11.1

Proposition 12.4. Suppose that G is a locally compact Hausdorff Abelzan group and H <
G is a closed subgroup. Then G/Hl I8 topologzcally 1somorphic to H.

This would follow from Proposition if we had Pontryagin duality, but otherwise it
is hard to establish surjectivity of the natural map G — H;~v +— 7|g. We shall revisit this
after establishing our next key result.

Theorem 12.5 (The Principal Structure Theorem). Suppose that G is a locally compact
Hausdorff Abelian group. Then G has an open subgroup Gy which is (topologically isomor-
phic to) the direct sum of a compact group H and R™ for some n € Ny.

Proof. Let L be the connected component of Og in G. The quotient group G/L is a locally
compact Hausdorff totally disconnected group and so by van Dantzig’s Theorem there is
a compact open subgroup K in G/L. Write q : G — G/L for the usual quotient map and
let Gy := ¢~ '(K) which is an open subgroup of G. Since K is compact it contains no open
subgroup of infinite index (otherwise K would be a union of infinitely many disjoint open
sets — the cosets of this subgroup). Every open subgroup of G contains L since L is the
connected component of Og and so G; contains no open subgroup of infinite index (since
q is open).

As in the proof of Proposition there is a compact neighbourhood V' in G such that
q(V)) = K. The group (algebraically) generated by V meets every coset of L in G and is
open and so is the whole of GGy since L is connected. It follows that we may apply Lemma
to get a discrete subgroup H < G with H free Abelian on n generators such that
G1/H is compact.

By Proposition we have that C/J\l /H* is topologically isomorphic to H , which itself
is topologically isomorphic to T¢. By Proposition we have that H' is topologically
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isomorphic to G1/H and is hence discrete. Hence C/J\l is locally isomorphic to R? and L,
the component of the identity in C/l\l is open in C/r’\l On the other hand if I were a compact
subgroup of C/?\l then I'° would b an open subgroup of GG, and by Proposition We
see that G| /' is infinite if and only if (I'°)* is infinite, but I' = (I'°)* and so if T is infinite
then I'° has infinite index in GG; which we know not to be true. It follows by Lemma [12.3
that L' is topologically isomorphic to R,

Let A < Gy be maximal subject to the condition L' n A = {0 }. Since A has at most
one element in each coset /o\f L' we see that A is discrete, and of course/l\ + L is a direct
sum. Moreover, A + L' = G;. To see this, suppose there were some v € G1\(A + L'). Then
by maximality there would be 79 € A and k € Z* such that vy + kv = z € L’ where z # 0.
Then k(z/k —~) € A and v, := x/k —~v ¢ L' + A, and so again there is 7 € A and m € Z*
such that v, + mvy; = z € L’ and z # 0. But then

kvyo + kmy, = kz # 0

and since k71,72 € A we see that the left is in A but the right in L’ contradicting the fact
that A + L is a direct sum. We shall be done once we have completed the proof of the
duality theorem. O

13. COMPLETING THE DUALITY THEOREM
We now turn to the last parts we need for the proof of the duality theorem.

Lemma 13.1. Suppose that G is an Abelian topological group and H is an open subgroup
of G. Then for every v € H there is A € G such that M| g = 7.

Proof. The argument here is a typical Zorn’s Lemma argument. We begin with the engine:

Claim. Suppose that v € }A[, x € G\H, and K is the group generated by x and H. Then
there is some A € K such that Ny = 7.

Proof. Let k € Ny be minimal (when Ny is partially ordered by divisibility) such that
kx € H (i.e. kis the order of x + H as an element of G/H with the convention that infinite
order is denoted 0), and let w be a kth root of «(kz) (with the convention that it is 1 if
k =0); define A(zx + h) := w*y(h) for all z€ Z and h € H. We need to check this is well-
defined so that if zz + h = 2’z + b’ then (z — ")z =W —he H and so k | z — 2’ (meaning
z = 2 if k = 0, and hence h = h') whence w*y(h) = w”y((z — 2)x)y(h) = w”~y(}) as
required. A is also visibly a homomorphism and the claim is proved since H is open in K,
and so A is continuous since + is continuous and K /H is discrete. U

Let £ be the set of pairs (K, \) such that H < K < G and A € K has Alg = . This set
is partially ordered by (K, \) < (K’,\) if K < K’ and A = X|g. If C is a chain in £ then
K* :=J{K : (K,)\) € C} is a group containing H and all K with (K, \) € C, and we can
define A*(z) for all z € K* by setting A\*(z) = A(z) whenever (K,\) € C and x € K.

HThis requires duality as well: in particular that (I°)+ = T when T is a closed subgroup. We shall
revisit this when we discuss separation of characters.
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Thus by Zorn’s Lemma £ has a maximal element (K, \) and by the claim if z € G\K
then £ would contain a larger element. This contradiction proves the result. U

The challenge with the above result is extending to the case where H is a closed subgroup
of G, in which case we need to find a way to preserve continuity on the extension which is
not a problem when H is open since then G/H is discrete.

Corollary 13.2. Suppose that G is a discrete Abelian group. Then G separates the points
of G, and hence the Pontryagin duality map is an injection.

Proof. Suppose that x # 0g. Then the group generated by x, call it H, is cyclic and so
there is v € H such that y(z) # 1. It follows by Lemma that this character can be
extended to G and we have the result. U

We can also use Lemma [13.1] to extend some of our other results.

Proposition 13.3. Suppose that G and H are locally compact HauAsdorﬁiAbelian groups
and ¢ : G — H s a continuous homomorphism. Then the map ¢* : H — G;v+— vyo¢ is a
well-defined continuous homomorphism. If ¢ is surjective then ¢* is injective; if ¢ is open
and injective then ¢* is surjective.

Proof. Certainly ¢* is well-defined. To see that it is continuous note (¢*) ' (U(K,d)) =
U(p(K),0), and if K < G is compact then ¢(K) is compact since ¢ is continuous. If ¢ is
surjective and ¢*(7y) = 14 then y(¢(x)) = 1 for all x € G and hence (z) = 1 for all z € H
e, y=1g.

Now if ¢ is injective and open and v € CAT‘, then ¢(G) is open in H and so by Lemmam
there is a continuous homomorphism A : H — S! such that v = ¢*(\) as required. O

Exercise 13.4. Suppose that G a finitely generated Abelian Hausdorff topological group.
Use the structure theorem for finitely generated Abelian groups to show that the Pontryagin
duality map is a topological isomorphism.

Proposition 13.5. Suppose that G is a compact Abelian Hausdorff group. Then the Pon-
tryagin duality map is a surjection.

Proof. The map is a continuous homomorphism, and «a(G) separates the points of G. It
is also compact since G is compact and so to see it is onto we shall show that the image

is dense. Since G is discrete, the compact sets in G are all finite so the open sets in G are
generated by the sets U(K,§) where K < G is finite.

Write L for the group generated by K and note that the embedding L — G is an
open injective homorriorphism and so by Proposition there is a continuous surjective
homomorphism ¢* : G — L. Now a(G) separates the points of G and so a(G) separates
the points of L. Since L is finitely generated the Pontryagin duality map is an isomorphism

and so ¢*(«(G)) is dense in L which tells us that a(@G) is dense in G

Of course the continuous image of a compact set is closed and so a(G) = G as required.
O
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It will be convenient to formalise what we have been doing and say that Pontryagin
duality holds for a group G if Pontryagin’s duality map is a topological isomorphism. At
this point we have shown in various exercises that Pontryagin duality holds for finitely
generated discrete Abelian groups; for T; for Z; and for R.

Exercise 13.6. Show that if duality holds for G, ..., G, then it holds for G;®---® G,,.

Rather harder that Corollary we have the following which is usually established for
compact groups as a consequence of the Peter-Weyl Theorem.

Theorem 13.7. Suppose that G is a locally compact Hausdorff Abelian group. Then the
characters on G separate points.

Sketch proof: Suppose that xy # Og. Our aim is to construct a character vy € G such that
vo(xo) # 1. We begin by choosing a continuous function with this property.

By Urysohn’s Lemma and Lemma there is a continuous function f taking values in
[0,1] with fo(0g) = 1 and support in a symmetric compact neighbourhood of the identity
K such that o ¢ K + K.

Let I be a Haar integral for G and define an inner product on Ceper(G):

{fr9) = 1(fg) for all f, g€ Cerex(G),

writing || - | for the induced norm; and a map

M : CCPCT(G> — Ccch(G);g — (y — Iw(fo(x)g(_x + y)))v

which is a well-defined linear map with |Mg|| < I|fy||g]. In particular, if L contains the
support of g then the support of Mg is contained in K + L.

This sort of operator is sometimes called a convolution operator and M g is sometimes
written f = g in the literature. By design M = 0 since e.g. M f # 0 for any f € Ct..(G)
that is not identically 0.

The space Ceper(G) endowed with the inner product (-, -) has a completion which we
denote H, and the operator M extends to a map H — H (which we also denote M) with
the same norm so, in particular |Mh| < I|f||h| for all h € H. We shall regard Cepor(G)
as a dense subset of H in the obvious way. We write T}, : Ceper(G) = Coper(G); f — Aa(f)
which has [T, f| = || f| for all f € Ceper(G) by translation-invariance of the Haar integral.
These maps too extend to maps H — H and also denoted T, with ||T,h| = |A| for all
h € H. Moreover, since GG is commutative T,M = MT, for all z € G.

Since M # 0 the operator norm M is not 0. Let € > 0 be optimised shortly and let
h € H have unit norm and be such that ||Mh|? —||M|?| < e which is possible by definition.
Then |[(h, M*Mh) — | M|?| < ¢, and so

| M Mh — [M[*R|* < 2[M[* = 2| M[*(|M|* - €) = 2¢| M|*.
If G is compact then the operator M is compact and we can go further than this and
identify a non-trivial eigenspace of M*M. The dimension of this space is finite and is

closed under the action of the operators T,,. This gives a continuous homomorphism from
G to U,(C), the n x n unitary matrices (where n is finite). Since G is Abelian these maps
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commute and can be simultaneously diagonalised which leads to the homomorphism we
want. U

As a final element we have the next lemma which provides a way of bootstrapping almost
homomorphism to give actual homomorphisms.

Lemma 13.8. Suppose that G is a Hausdorff Abelian topological group containing a sym-
metric compact neighbourhood of the identity K with G = .y, and v : G — C* (not
necessarily a homomorphism) is continuous and has

-1

1
‘M <€<§forallx,y€G.

v(z)y(y)

Then there is A € G such that |\(z) — y(z)| = O(e) for all z € G.

Sketch proof: The idea here is that we can take a map which is ‘almost’ a homomorphism
and find a nearby map which is actually is a homomorphism.

By Urysohn’s Lemma there is F,, : G — [0,1] be continuous with F,(z) = 1 for all
x € nK and supp F,, € (n+ 1)K. In particular for all x € G and € > 0 there is n such that
I(|M(Fy) — Fy|) < e

Since G is a locally compact Hausdorff group it supports a Haar integral I. Put

I,F,(w)log <%

> for all z € G.

AMz) = li
() :=~(x) lim exp 7

This makes sense provided € < 1 since log z is well-defined and continuous on {z € Z :
|z — 1| < 1}, and it is a locally uniform limit of continuous functions and so continuous.
Note that

IA(x) —v(z)| = O(e) for all z e G

by monotonicity of the Haar integral.
For course, for all x,y, 2z € G we have

((z +y) +w) y(@)y(w) v(y)y(w)
Y@ +y)y(w) v(E+w) v(y+w)
et y+w) yEw) v(@)y)
Y@y +w) (@ +w) y(z+y)
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and hence for € < 1/3 (which is used to ensure that log abc = loga + log b + log ¢ whenever
la—1|,|b—1],|c — 1] < 1/3) we have

]'}7(u010g<7“x+9+w).V@Wﬂw)_%yhuw)
wEn ~

Aety) 7@ty e (@ryr ) AGrw)  rw)
AMx)My)  y(x)y(y) n—oo IF,
yEty+w) @) | y(@)v(Y)
_ v(z + y) - Jim exp Ly (w) log (w(z)v(erw) Y@+w)  y(zty) >
Y(@)y(y) n—w IF,
y(z+(y+w)) v(z+w)
i ex L Fr(w) <v(w)v(y+w)) - fwFn(w)log <v(w)v(w)> .
R IF, IF, -
The result is proved. U

Corollary 13.9 (Pontryagin Duality). Suppose that G is a locally compact Abelian Haus-
dorff group. Then « is a topological isomorphism.

Sketch proof: Theorem [13.7] gives that « is injective and then an application of Stone-
Weierstrass will give that a(G) is dense from which one can establish the result. H
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