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We begin with the course overview as described on https://courses.maths.ox.ac.

uk/node/46583.

Course Overview: Groups like the integers, the torus, and GLn share a number of proper-
ties naturally captured by the notion of a topological group. Providing a unified framework
for these groups and properties was an important achievement of 20th century mathemat-
ics, and in this course we shall develop this framework.

Highlights will include the existence of Haar measure for (not necessarily Abelian) locally
compact Hausdorff topological groups, Pontryagin duality, and the structure theorem for
locally compact Hausdorff Abelian topological groups. Throughout, the course will use
the tools of analysis to tie together the topology and algebra, getting at superficially more
algebraic facts such as the structure theorem through analytic means.

References. There are some references in particular which may be of use: [Rud90], [Fol95],
and [Kör08].

Teaching. The lectures and these notes will appear online as they are produced during
the term. They will be supplemented by some tutorial-style teaching where we can discuss
the course and also exercises scattered through the notes. Once I have a list of the MFoCS
students attending I shall be in touch to arrange these.

Contact details and feedback. The current circumstances mean this course is appearing
in a different way to normal. In particular, there will inevitably be less audience response
so I encourage you to get in touch at tom.sanders@maths.ox.ac.uk if you have any questions
or feedback.

Last updated : 16th June, 2020.
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2 TOM SANDERS

1. Introduction and recap

In this course we are interested in the interaction between group structure and a com-
patible topological structure. The results we use on groups are fairly basic and are covered
in Prelims (see, for example, the notes [Ear14]). The topology we use is largely covered in
the Part A: Topology course (notes are available at [DL18]).

We shall often describe topologies through a base. Given a set X, a base B is a collection
of subsets of X such that B is a cover of X; and if U, V P B and x P U X V then there is
some W P B with x P W Ă U X V . Given a base B we write1

τpBq :“
!

ď

S : S Ă B
)

Exercise 1.1. Show that τpBq is a topology on X.

In view of this exercise we call τpBq the topology generated by B. Note that any
topology is a base and it generates itself, but in general there may be multiple bases
generating a given topology.

The discrete topology on a set X is PpXq – the topology in which every set is open –
and has the singletons are an example of a base for this topology. If X has more than one
element then the base of singletons is different to the base of all subsets of X.

Given two topological spaces pX, τq and pX 1, τ 1q the product topology is the topology
on X ˆX 1 generated by the base2 tU ˆ V : U P τ, V P τ 1u on X ˆX 1.

With these basic topological definitions recalled we turn to the object of the course:
suppose that G is both a group and a topological space. If the group multiplication map
G2 Ñ G; px, yq ÞÑ xy (from G2 with the product topology to G) and the group inversion
map GÑ G;x ÞÑ x´1 are both continuous then we say that G is a topological group.

Example 1.2 (Discrete groups). Suppose that G is a group and also a discrete topological
space. Then G is a topological group.

Proof. Since G is discrete so is G2, and then since any map with a discrete domain is
continuous we see that both multiplication and inversion are continuous as required. �

The reals under addition may be endowed with the discrete topology to make them
into a topological group as in the above example. However, there are a number of other
topologies on R.

Example 1.3 (The real line). The group R endowed with its usual topology is a topological
group.

Proof. This example is quite instructive. The result is essentially just the algebra of limits
(see, e.g. [Pri16, Theorem 8.3]): in particular if xn Ñ x0 then ´pxnq “ p´1qxn Ñ p´1qx0 “
´x0; and if additionally yn Ñ y0, then xn ` yn Ñ x0 ` y0.

To connect this with the topological language we are using recall that the usual topology
on R is generated by the base tpa, bq : a, b P Ru (where pa, bq “ tx P R : a ă x ă bu) –

1Recall that
Ť

S is defined by x P
Ť

S if DS P S such that x P S. In particular
Ť

H “ H.
2We should check that this really is a base, but that is an easy exercise.
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we could take this as our definition – and with this definition topological convergence and
ε-N convergence coincide (almost tautologically).

From the definition of the product topology we also have that the (ordered pairs)
pxn, ynq Ñ px0, y0q if and only if xn Ñ x0 and yn Ñ y0. Thus the results in the first
paragraph exactly tell us that inversion and multiplication are sequentially continuous – a
function f is sequentially continuous if fpxnq Ñ fpx0q whenever pxnqnPN is a sequence
with xn Ñ x0.

In general topologies continuity is stronger than sequential continuity (see e.g. [DL18,
Proposition 1.24]) however in the reals, and more generally in any first countable topological
space, they are equivalent. A topological space X is said to be first countable if every x P
X has a countable local base, meaning a countable sequence pUnqnPN of neighbourhoods
of x such that for any neighbourhood U of x there is some n “ npUq such that Un Ă U . In
particular, x P R has tpx´1{n, x`1{nq : n P Nu as a countable base for the neighbourhood
px´ 1, x` 1q of x so the usual topology is first countable. �

Exercise 1.4. Suppose that X is a first countable topological space. Show that f is a
continuous function on X if (and only if) it is sequentially continuous. (Assuming the
Axiom of Countable Choice, meaning that given a sequence S1, S2, . . . of sets then there
is another sequence x1, x2, . . . with xn P Sn for all n P N.)

We cannot relax the requirement that group inversion or multiplication are continuous.
In the case of the group R group ‘inversion’ is negation i.e. the map RÑ R;x ÞÑ ´x, and
group ‘multiplication’ is addition i.e. the map R2 Ñ R; px, yq ÞÑ x` y.

Example 1.5. Write τ for the usual topology on R, and let τ1 be the topology on R equal
to the set of U P τ such that there is some a P R such that U Ą pa,8q. Then

(i) inversion is not continuous;
(ii) addition is continuous.

In particular R with the topology τ1 is not a topological group.

Proof. For the first part p0,8q is open but ´p0,8q “ p´8, 0q is not open and so inversion
is not continuous.

For continuity of addition first note that if U P τ1 then there is some a P R such that
pa,8q Ă U . Since R is a topological group in τ and open intervals form a base for τ we
see that there are sets I and J of open intervals such that

tpx, yq : x` y P Uu “
ď

tI ˆ J : I P I, J P J u

“
ď

IPI,JPJ
pI Y pa´min J Y ta{2u,8qq ˆ pJ Y pa´min I Y ta{2u,8qq,

which is a union of products of sets in τ1 as required. To see the equality it is enough
to check that if x P I Y pa ´ min J Y ta{2u,8q and y P J Y pa ´ min I Y ta{2u,8q then
x` y P ti` j : i P I, j P Ju Y pa,8q. This in turn follows by considering the cases:

(i) x P I, y P J then x` y P ti` j : i P I, j P Ju;
(ii) x P I, y P pa´min IYta{2u,8q then x`y ą a´min I`x ě a and so x`y P pa,8q;
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(iii) x P pa´min JYta{2u,8q, y P J then x`y ą x`a´min J ě a and so x`y P pa,8q;
(iv) x P pa ´min J Y ta{2u,8q, y P pa ´min I Y ta{2u,8q then x ` y ą pa ´ a{2q `

pa´ a{2q “ a and so x` y P pa,8q.

The result is proved. �

Example 1.6. Write τ for the usual topology on R, and let τ2 be the topology on R equal
to the set of U P τ such that there is some a P R such that U Ą p´8,´aq Y pa,8q. Then

(i) inversion is continuous;
(ii) addition is not continuous.

In particular R with the topology τ2 is not a topological group.

Proof. The first part is immediate since U P τ2 if and only if ´U P τ2.
If V is open (and non-empty) in the product then there is some a ą 0 such that V Ą

pp´8,´aqYpa,8qqˆpp´8,´aqYpa,8qq and hence V contains the ordered pair p2a,´2aq.
However 2a` p´2aq “ 0 and so the preimage of p´8,´1q Y p1,8q is not open. �

Example 1.7 (Normed spaces). Suppose that X is a normed space. Then the additive
group of X with the topology induced by the norm is a topological group.

Proof. The topology induced by the norm is the weakest3 topology such that x ÞÑ }x} is
continuous. For each x P X, pty P X : }x´ y} ă 1{nuqnPN is a countable local base so X is
first countable, and the product of two first countable spaces is first countable. Hence by
Exercise 1.4 it is enough to note from homogeneity that if xn Ñ x then ´xn Ñ ´x0; and
from the triangle inequality that if xn Ñ x0 and yn Ñ y0 then xn ` yn Ñ x0 ` y0. �

In particular Rn and Cn are topological groups under addition.
Given a normed space X we write GLpXq for the set of linear homeomorphisms X Ñ X.

Then GLpXq is a group under composition and it supports a number of natural topologies
which it inherits from the larger set BpXq, of continuous linear maps X Ñ X; we shall
mention two:

Example 1.8 (GLpXq with the operator norm topology). GLpXq may be endowed with
the subspace topology inherited from BpXq with the operator norm topology. With this
topology GLpXq is a topological group.

Proof. If Sn Ñ S0 and Tn Ñ T0 then }Tn} ď 2}T0} for all sufficiently large n and hence

}SnTn ´ S0T0} ď }Sn ´ S0}}Tn} ` }S0}}Tn ´ T0} Ñ 0

since the operator norm is sub-multiplicative; hence SnTn Ñ S0T0. BpXq is a normed
space so as in Example 1.7 the topology is first countable, whence so is the topology on
GLpXq and on GLpXq ˆGLpXq. Hence by Exercise 1.4 multiplication is continuous.

Similarly, for inversion suppose that Tn Ñ T0. Then

}T´1n ´ T´10 } “ }T´1n pT0 ´ TnqT
´1
0 } ď }Tn ´ T0}}T

´1
n }}T´10 }.

3Recall that weakest here means fewest open sets.
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There is N P N such that for n ě N we have }Tn ´ T0} ď 1{2}T´10 } which can be inserted
in the above and rearranged to give }T´1n } ď 2}T´10 }. Hence for n ě N we have

}T´1n ´ T´10 } ď }Tn ´ T0}2}T
´1
0 }

2,

and T´1n Ñ T´10 . Again inversion is continuous by Exercise 1.4. �

In particular C˚ (which we may identify with GLpCq) is a topological group under
multiplication.

The second topology we shall consider is the strong operator topology on BpXq: this
is the weakest topology on BpXq such that the maps T ÞÑ Tx are continuous for all x P X,
and is sometimes called the topology of point-wise convergence. The sets

UpS;T0, εq :“ tT P BpXq : }Tx´ T0x} ă ε}x} for x P Su

for T0 P BpXq, S Ă X finite, and ε ą 0 are all open in the strong operator topology. They
also form a base and so the topology this base generates is contained in the strong operator
topology. However, it also includes the sets Uptxu; 0, εq (where 0 here is the 0 operator in
BpXq) and so all the maps T ÞÑ Tx (for x P X) are continuous and hence it is exactly the
strong operator topology.

If dimX ă 8 then the strong operator topology is the same topology as the operator
norm topology, but if dimX “ 8 then it is not. We shall consider the example X “ `1
in what follows, the space of (complex) sequences indexed by the naturals with the norm
}x} “

ř

i |xi|.

Example 1.9 (GLp`1q with the strong operator topology). GLp`1q may be endowed with
the strong operator topology inherited from Bp`1q. Then GLp`1q is not a topological group

Proof. For η ą 0 and n P N define the linear map Tη,n on the standard basis peiqiPN of `1
by letting

Tη,nei :“ ei ` ηen`i and Tη,nen`i :“ ´η´1Tη,nei,

for 1 ď i ď n, and Tη,nei “ 0 for all i ą n. Then the image of Tη,n is finite dimensional
and so it is a bounded linear operator and an element of Bp`1q, and by design T 2

η,n “ 0 so

pI ` Tη,nq
´1 “ I ´ Tη,n. Note that the existence of these operators for arbitrarily large n

is where we use that `1 is infinite dimensional.
Now, suppose x P `1 is non-zero, ε ą 0, η P p0, ε{4s and δ :“ mintη2, ηu. Then there is

some n0 “ n0pη, xq such that
ř

iąn0
|xi| ă δ}x} where x “

ř

i xiei. Hence for n ě n0 we
have

}x´ Tη,nx} “

›

›

›

›

›

8
ÿ

i“1

xiei ´
n
ÿ

i“1

xiei ´
n
ÿ

i“1

ηxien`i `
n
ÿ

i“1

η´1xn`iei `
n
ÿ

i“1

xn`ien`i

›

›

›

›

›

“

n
ÿ

i“1

|η´1xn`i| `
n
ÿ

i“1

|2xn`i ´ ηxi| `
ÿ

ią2n

|xi| ď η}x} ` p2` η´1qδ}x} ă ε}x}.

Thus }Tη,nx ´ x} ă ε}x} for all n ě n0. But then if S Ă `1 is a set of (non-zero elements)
it follows that for n1 “ max tn0pη, xq : x P Su we have Tη,n P UpS; I, εq for all n ě n1.
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Now, let x be a non-zero element of `1 and consider the open set U :“ Uptxu; p1{2qI, 1{4q.
Then p1{2qI P U , and so 2I P U´1 and if U´1 is open then it contains a non-empty
set UpS; 2I, εq for S Ă `1 finite. Since UpS; 2I, εq is non-empty, S contains only non-
zero elements, and so the preceding paragraph gives for all η P p0,mintε{4, 1{4us some
n1 “ n1pη, S Y txuq such that I ` Tη,n P UpS; 2I, εq Ă U´1 and Tη,n P Uptxu; I, 1{4q for all
n ě n1. Finally, pI ` Tη,nq

´1 “ I ´ Tη,n P U by construction and so

}pI ´ Tη,nqx´ x{2} ă }x}{4 and }Tη,nx´ x} ă }x}{4

The triangle inequality gives a contradiction. �

It can be shown similarly that multiplication is not continuous.
!4The same argument works to show that GLp`2q with the strong operator topology is

not a topological group. However, here it is more natural to consider the subgroup Up`2q of
unitary maps `2 Ñ `2. This group is a topological group in the strong operator topology.

!4If G is a group endowed with a topology then we say that multiplication is separately
continuous if the maps x ÞÑ xz and x ÞÑ zx are continuous for all z P G. If more clarity is
needed when referring to the continuity of multiplication we shall say that multiplication
is jointly continuous to mean it is continuous as a map px, yq ÞÑ xy.

2. Basics of the topology

Suppose that G is a group written multiplicatively. We shall write 1 or 1G for its identity.
For S, T Ă G and x P G we write

ST :“ tst : s P S, t P T u, xS :“ txs : s P Su and Sx :“ tsx : s P Su.

We also write powers in a natural way: specifically for n P N
S0 :“ t1Gu and Sn`1 :“ SnS.

!4Note that SS´1 ‰ S0 and S2 ‰ ts2 : s P Su (in general).
We call a set S with S “ S´1 symmetric.
When a group is written additively we write 0 or 0G for the group identity. Additively

written groups will always be commutative, and we shall write S ` T instead of ST etc.
above.

This notation interacts well with the topology of a topological group.

Lemma 2.1. Suppose that G is a topological group. Then U is open (resp. closed) if and
only if xU is open (resp. closed), and similarly for Ux. In particular, if U is open and V
is any set then UV is open.

Proof. This is just the separate continuity of multiplication, in particular that the maps
GÑ G;u ÞÑ x´1u and GÑ G;u ÞÑ xu are continuous. �

The next lemma is more important making use of joint continuity of multiplication.

Lemma 2.2. Suppose that G is a topological group and U is a neighbourhood of 1G. Then
there is an open symmetric neighbourhood V of 1G such that V 2 Ă U .
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Proof. We may suppose that U is open by shrinking it if necessary. The map px, yq ÞÑ xy´1

is continuous and so tpx, yq : xy´1 P Uu is an open subset of G ˆ G, and hence there are
sets S and T of open subsets of G such that

tpx, yq : xy´1 P Uu “
ď

tS ˆ T : S P S, T P T u.

Since 1G1´1G “ 1G P U , there is some S P S and T P T such that p1G, 1Gq P S ˆ T . Thus S
and T are open neighbourhoods of 1G. It follows that S X T is an open neighbourhood of
1G, and since 1´1G “ 1G the set V :“ pS X T q X pS X T q´1 is an open neighbourhood of the
identity. Moreover, V ´1 “ V and V 2 “ V V ´1 Ă ST´1 Ă U as required. �

This lemma can be applied repeatedly as follows.

Corollary 2.3. Suppose that G is a topological group and U is a neighbourhood of 1G.
Then there are open symmetric neighbourhoods pVnqnPN0 of 1G such that V 2

n`1 Ă Vn for all
n P N0, and V0 Ă U .

Proof. Apply Lemma 2.2 iteratively (using the Axiom of Dependent Choice), beginning
with the set U to get a set U0, and then to the set U0 to get U1 etc. �

!4The neighbourhoods pVnqnPN are not necessarily a local base for the identity in the
topology. (Indeed, not all topological groups are first countable.)

3. Separation axioms

The taxonomy of separation in topological spaces has a somewhat involved history with
a range of different naming convention (see e.g. [nLa20]) so some caution is advised when
consulting references. In topological groups we shall see that much of the hierarchy col-
lapses because in some sense ‘every point looks the same’.

A topological space X is Kolmogorov if for any distinct x, y P X, either there is an
open set containing x and not y, or there is an open set containing y and not x. If we can
replace the ‘or’ by an ‘and’ then the space is said to be Fréchet. Equivalently a space is
Fréchet if every singleton in X is closed [DL18, Proposition 1.47].

Lemma 3.1. Suppose that G is a topological group. Then G is Kolmogorov if and only if
G is Fréchet.

Proof. Suppose x, y P G are distinct, and U is an open set containing x and not y. Since
inversion is continuous and multiplication is separately continuous, the set ypx´1UXU´1xq
is open and contains y but not x. �

We only used separate continuity of multiplication in the above, but joint continuity
through Lemma 2.2 can be used to show more collapse in the separation hierarchy.

Similarly, a topological space X is said to be Hausdorff if for any x ‰ y there are
disjoint open sets U and V such that x P U and y P V .

Proposition 3.2. Suppose that G is a topological group. Then G is Hausdorff if and only
if t1Gu is closed (equivalently if and only if G is Fréchet).
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Proof. First, if G is Hausdorff then for each x ‰ 1G there is an open set Ux containing x
and not containing 1G. Hence Gzt1Gu “

Ť

xPG Ux is open as required.
Conversely, suppose that x, y P G are distinct. Then Gztx´1yu is open and so by

Lemma 2.2 there is an open neighbourhood of the identity V such that V V ´1 Ă Gztx´1yu.
It follows that xV X yV “ H, but of course these are both open sets and since 1G P V we
have x P xV and y P yV . The claim is proved. �

Note the topology τ1 on R in Example 1.5 is Fréchet since if x, y P R are distinct then
Rztxu is open in τ1, contains y and does not contain x. On the other hand pR, τ1q is not
Hausdorff since any two non-empty open sets in τ1 have a non-empty intersection. Since
t1Gu is closed in τ1 the preceding lemma gives another proof that pR, τ1q is not a topological
group.

A topological space X is said to be regular if for every closed set S Ă X and any

x0 P XzS there are disjoint open sets U and V with S Ă U and x0 P V . !4Note that we
do not require that X be Hausdorff.

Exercise 3.3. Suppose that G is a topological group. Show that G is regular.

We say that a topological space X is completely regular if for every closed set S Ă X
and any x0 P XzS there is a continuous function f : X Ñ R with fpx0q “ 0 and fpxq “ 1
for all x P S.

The next result is important because it starts to give us a supply of non-constant contin-
uous functions on any topological group. This means that we can study the group through
a function space with all of the attendant tools.

Theorem 3.4. Suppose that G is a topological group. Then G is completely regular.

Proof. Suppose that X is a closed set in G and x0 P GzX; without loss of generality we
may assume x0 “ 1G. Apply Corollary 2.3 to GzX to get a sequence pUnqnPN0 of symmetric
open neighbourhoods of the identity with U2

n`1 Ă Un and U0 Ă GzX.
The idea is to use the sets Un to define a sort of metric between the set X and the

element x0 “ 1G. We use the sets Un to do this, and think of them as playing the role
of an interval of length 2´n in the reals, so that if we were proving this result in the case
G “ R we could use those intervals to produce the usual notion of distance.

Since G need not be commutative we have to take a bit of care with the order in which
we multiply the sets Un. By induction (note the first inequality is weak, and all the others
strict)

(3.1) Un1 ¨ ¨ ¨Unk Ă Unk´1 whenever n1 ě n2 ą ¨ ¨ ¨ ą nk ą 0.

Given n1 ą ¨ ¨ ¨ ą nk ą 0 and ε P p0, 1s, there is some j and nj`1 ă n0 ď tlog2 ε
´1u such

that

(3.2) Un1 ¨ ¨ ¨Unk Ă Un0Unj`1
¨ ¨ ¨Unk and 2´n0 ď 2ε` 2´n1 ` ¨ ¨ ¨ ` 2´nj .

Put n˚0 :“ tlog2 ε
´1u and let i be maximal such that Un1 ¨ ¨ ¨Uni Ă Un˚0 . Then by (3.1) we

have ni`1 ď n˚0 . If ni`1 ă n0˚ then set n0 :“ n˚0 and j :“ i and we are done; if not let j be
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maximal such that ni`1, . . . , nj are consecutive (counting down) and set n0 :“ nj ´ 1 and

we are done since 2´n0 “ 2´nj ` ¨ ¨ ¨ ` 2´ni`1 ` 2´n
˚
0 .

With these preliminaries we can define our function. Put

Spxq :“
 

2´n1 ` ¨ ¨ ¨ ` 2´nk : x P Un1 ¨ ¨ ¨Unk where k P N, n1 ą ¨ ¨ ¨ ą nk ą 0
(

and let fpxq :“ inf Spxq when Spxq ‰ H and fpxq “ 1 otherwise. f takes values in the
range r0, 1s and fp1Gq “ 0 since 1G P Un for all n P N. We have fpxq “ 1 if and only if
Spxq “ H, which in turn is true if and only if x R

Ť

k UkUk´1 ¨ ¨ ¨U1. Hence f´1p1q is closed
and it contains X since

Ť

k UkUk´1 ¨ ¨ ¨U1 Ă U0 Ă GzX by (3.1).
We have to show that f is continuous, and to do this it will be enough to show that

for all x P G and ε ą 0 sufficiently small the preimage of pfpxq ´ ε, fpxq ` εq contains a
neighbourhood of x.

Let n0 be large enough that 2´n0 ă ε. If fpxq ă 1 then there is some x P Un1 ¨ ¨ ¨Unk
with n1 ą ¨ ¨ ¨ ą nk ą 0 and 2´n1 ` ¨ ¨ ¨ ` 2´nk ă fpxq ` ε, and we may additionally assume
that n0 ą n1.

Suppose that y P Un0x. If fpxq ă 1 we see that fpyq ă fpxq ` 2ε by (3.1); the equality
holds trivially if fpxq “ 1.

On the other hand if fpyq ď fpxq ´ 3ε then there are naturals n11 ą ¨ ¨ ¨ ą n1k1 ą 0

such that y P Un11 ¨ ¨ ¨Un1k1 and 2´n
1
1 ` ¨ ¨ ¨ ` 2´n

1
k1 ă fpyq ` ε. By (3.2) there is some

n1j`1 ă n10 ď tlog2 ε
´1u such that

Un11 ¨ ¨ ¨Un1k1 Ă Un10Un1j`1
¨ ¨ ¨Un1

k1
and 2´n

1
0 ď 2ε` 2´n

1
1 ` ¨ ¨ ¨ ` 2´n

1
j .

But n0 ą n10 ą n1j`1 and since Un0 is symmetric we have

x P Un0Un10Un1j`1
¨ ¨ ¨Un1

k1
and 2´n0 ` 2´n

1
0 ` 2´n

1
j`1 ` ¨ ¨ ¨ ` 2´n

1
k1 ď fpyq ` 3ε.

We conclude that fpxq ă fpyq ` 3ε ď fpxq, a contradiction. Hence fpyq ą fpxq ´ 3ε, and
the result is proved. �

Note that if G is Kolmogorov then this result gives (a long proof) that G is Hausdorff.
There is a final separation axiom we mention: we say that a topological space X is

normal if for any two disjoint closed sets S, T Ă X there are disjoint open sets U and V
containing S and T respectively. We shall see later (in Example 5.3) that not all topological
groups are normal, but also that there is a natural condition which makes them normal.

4. Subgroups, homomorphisms, and quotient groups

When considering subgroups of a topological group we should like them to interact with
the topological structure. We begin with the following slightly surprising result.

Lemma 4.1. Suppose that G is a topological group and H ď G. Then H is a topological
group when endowed with the subspace topology. Moreover, if H is a neighbourhood it is
open; if H is open then it is closed; and if H is closed and of finite index then it is open.
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Proof. Suppose U is an open set in H, and let W be an open subset of G such that
U “ W X H. Then U´1 “ W´1 X H which is open since inversion is continuous. Then
the set V “ tpx, yq : xy P W u is open and so a union of products of the form S ˆ T
with S and T open in G. But then V X pH ˆ Hq “ tpx, yq P H ˆ H : xy P Uu and
pS ˆ T q X pH ˆHq “ pS XHq ˆ pT XHq so that the preimage of U under multiplication
on H is open.

For the first part let U be a non-empty open set in H – this is exactly what it means to
say that H is a neighbourhood. Then H “ HU “

Ť

xPH xU is a union of open sets and so
open.

Since the left cosets of H partition G we have H “ Gz
Ť

ppG{HqztHuq. If H is open
then any left coset of H is open and so

Ť

ppG{HqztHuq is a union of open sets and so open,
whence H is closed. If H is closed then any left coset of H is closed and

Ť

ppG{HqztHuq
is a finite union of closed sets, and so closed and hence H is open. �

Lemma 4.2. Suppose that G is a topological group. Then the connected component of the
identity is a closed4 normal subgroup of G.

Proof. Let L be the5 connected component of the identity. Then if L “ A \ B with A
and B both closed in L. Then L “ pL X Aq \ pL X Bq and so without loss of generality
L “ L X A and so L Ă A, but then A is closed and contains L so A Ą L. We conclude
that L is connected and so by maximality of L we have L “ L.

Since 1G “ 1´1G we have that L X L´1 is a closed set containing the identity and hence
L Ă LXL´1 so that if x P L then x´1 P L. Thus for x P L the set Lx is closed and contains
the identity. Hence L Ă Lx, so Lx´1 Ă L and L is a subgroup by the subgroup test (since
it contains 1G so is non-empty). Similarly, for x P G the set xLx´1 is closed and contains
the identity. Hence L Ă xLx´1, and so x´1Lx Ă L as required for normality. The result is
proved. �

The closure operation also preserves some of the algebraic structure.

Lemma 4.3. Suppose that G is a topological group and H ď G. Then H, the topological
closure of H, is a subgroup of G. If H is normal then so is H.

Proof. Suppose that px, yq P G2 is such that xy´1 R H. Then since px, yq ÞÑ xy´1 is
continuous, there are open sets S, T Ă G such that x P S, y P T and ST´1 X H “ H.
Since H Ą H, and H is a subgroup, if S XH ‰ H then T XH “ H, and hence H Ă GzT
so that T XH “ H. On the other hand, if S XH “ H then S XH “ H. It follows that
x R H or y R H and so H is a group.

Conjugation is continuous and hence a´1Ha is closed for all a P G, and also contains
H if H is normal. Hence

Ş

aPG a
´1Ha is a closed normal subgroup of G containing H. It

follows that it contains H, but it is visibly also contained (take a “ 1G) and so the result
is proved. �

4There was an error in the lecture here suggesting that this group was open. As we shall see later this
need not be the case.

5It may be worth recalling that we define the connected component of x to be the union of all connected
components containing x, and that this union is itself connected.
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In particular this lemma tells us that even if t1Gu is not closed, its closure is a closed
normal subgroup. With this in mind we are led naturally to want to be able to take
quotients.

For topological groups G and H a map θ : GÑ H is a homomorphism of topological
groups if it is a continuous group homomorphism. Topological groups G and H are
isomorphic as topological groups if there are continuous homomorphisms θ : G Ñ H
and ψ : H Ñ G such that θ ˝ ψ “ ιH and ψ ˝ θ “ ιG.

It is well known that a continuous bijection of topological spaces need not be a homeo-
morphism, while a homomorphism that is a bijection is necessarily an isomorphism. The
group structure of a topological group does not mitigate the topological problem as the
following easy example shows.

Example 4.4. Given a group G, the identity map G Ñ G is a group homomorphism. If
the domain is endowed with the discrete topology then this is a continuous group homo-
morphism, but unless the codomain has the same topology (and it needn’t, for example if
G is not trivial and it is indiscrete) then this map is not a homeomorphism and so not an
isomorphism of topological groups.

Given a topological group G and a subgroup H the quotient map q : GÑ G{H;x ÞÑ xH
naturally induces a topology on the quotient space: U Ă G{H is open if and only if

Ť

U
is open in G. If H is normal then G{H also has a group structure and it turns out that
this is compatible with the topology even without any topological restrictions on H.

Proposition 4.5. Suppose that G is a topological group and H is a normal subgroup of G.
Then G{H is a topological group when endowed with the quotient topology and the quotient
map q : GÑ G{H is open.

Proof. To show the quotient map is open it suffices to note that if U is open in G then
UH “

Ť

tUh : h P Hu is a union of open sets and qpUq “ tuH : u P Uu so that
Ť

qpUq “
UH. Thus

Ť

qpUq is open and hence qpUq is open by definition.
Suppose that U Ă G{H is open. Then

ď

U´1 “
ď

 

pxHq´1 : xH P U
(

“

!

x´1 : x P
ď

U
)

“

´

ď

U
¯´1

and so U´1 is open in G{H by definition since
Ť

U is open in G and inversion is continuous
on G.

Finally, define

W :“
 

pzH,wHq P pG{Hq2 : pzHqpwHq P U
(

and V :“
!

pz, wq P G2 : zw P
ď

U
)

.

Suppose that pxH, yHq P W . Then since V is open and contains px, yq, there are open sets
S, T Ă G such that x P S, y P T , and S ˆ T Ă V . If h, k P H then pxhqpykq P xyH Ă

Ť

U
and so SH ˆ TH Ă V .

On the other hand SH and TH are unions of open sets and so they are themselves open
in G, and so the sets S 1 :“ tsH : s P Su and T 1 :“ ttH : t P T u are open in G{H; xH P S 1

and yH P T 1; and S 1 ˆ T 1 Ă W . It follows that W is open as required. �
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!4The group structure here is important: in general for topological spaces the quotient
map need not be open.

Example 4.6. The topological group R has a normal subgroup Z and R{Z is a topological
group – it is the reals pmod 1q.

Although this group is not, there are more pathological examples.

Exercise 4.7. Show that if R is endowed with its usual topology then Q is a normal
subgroup of R and R{Q is (uncountable and) indiscrete.

Example 4.8. The map RÑ S1;x ÞÑ expp2πixq is a continuous homomorphism.

Lemma 4.9. Suppose that G is a topological group and H is a normal subgroup of G.
Then G{H is Hausdorff if and only if H is closed.

Proof. By Proposition 4.5 G{H is a topological group and so by Proposition 3.2 it suffices
to note that t1G{Hu “ tHu is closed in G{H if and only if H is closed in G by definition. �

Corollary 4.10. Suppose that G is a topological group. Then G{t1Gu is a Hausdorff
topological group.

Proof. Since t1Gu is a normal subgroup of G we have that t1Gu is a closed normal subgroup
by Lemma 4.3. The result follows by Lemma 4.9. �

If f : G Ñ C is continuous then f is constant on cosets of t1Gu so if we are interested
in continuous complex-valued functions on a group we lose nothing by supposing that the
group is Hausdorff. This is a common convention.

5. Direct sums and products

Given a family of sets pUiqiPI we write
ś

iPI Ui for the cartesian product of the Uis
which we think of as the set of choice functions f : I Ñ

Ť

iPI Ii with fpiq P Ui for all
i P I; sometimes we write fi for fpiq. If I “ ti1, . . . , inu then we will frequently write
Ui1 ˆ ¨ ¨ ¨ ˆ Uin .

Given a family pGiqiPI of groups indexed by a set I the direct product, denoted
ś

iPI Gi,
is the cartesian product of the Gis endowed with point-wise operations so

xy “ pxiyiqiPI and x´1 :“ px´1i qiPI .

This product is itself a group with these operations, and we write pj :
ś

iPI Gi Ñ Gj;x ÞÑ xj
for each j P I – these maps are called the projection maps – and pj is a surjective
homomorphism.

If the Gis are topological groups then
ś

iPI Gi is naturally endowed with the product
topology, and when so endowed we call it the topological direct product. We have
defined this for products of two topological spaces. More generally a base for the product
is given by the sets

(5.1)
ź

iPI

Ui where

#

Ui “ Gi for all i P IzJ

Ui is open in Gi for all i P J
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where J ranges all finite subsets of I.

Proposition 5.1. Suppose that pGiqiPI is a family of topological groups. Then the topo-
logical direct product

ś

iPI Gi is a topological group and the projection maps are continuous
open maps.

Proof. These are routine checks similar to previous arguments. �

If the Gis are all the same we write GI for the product
ś

iPI Gi.

Exercise 5.2. Suppose that α P RzQ and consider the map ψ : R Ñ S1 ˆ S1; t ÞÑ
pexpp2πitq, expp2πiαtqq. Show that ψ is a continuous injective homomorphism but that
Imφ is not isomorphic (as a topological group) to R.

Example 5.3. The topological group ZR (where Z is seen as discrete) is not normal.

Proof. We shall view the elements of ZR as functions and begin by noting that the sets
Upgq :“ tf P ZR : fpsq “ gpsq for all s P supp fu where S Ă R is finite and g : S Ñ Z form
a base for the topology.

For z P Z let Az be the set of f P ZR such that f is injective on tx P R : fpxq ‰ zu. We
shall show that A0 and A1 are disjoint closed sets but that they cannot be contained in
disjoint open sets.

First, A0 X A1 “ H since R is uncountable but Z is countable. Secondly, Az is closed
for z P Z: For all x, y P R and w P Z we write gx,y;w : tx, yu Ñ Z taking the constant value
w. Then

Az “
č

x,yPR;x‰y;wPZztzu

Upgx,y;wq
c

so that Az is closed.
Perhaps surprisingly ZR has a countable dense subset, meaning that there is a countable

set D such that every non-empty open set in ZR intersects D. To see this simply note that
the maps R Ñ Z;x ÞÑ tppxqu where p is a polynomial with rational coefficients are dense
in ZR.

Now, suppose that A0 Ă U with U open. For each x P DXU let Spxq Ă R be finite and
gx : Spxq Ñ Z be such that Upgxq Ă U . Write

V :“
ď

xPDXU

Upgxq and S :“
ď

xPDXU

supp gx.

It may happen that V ‰ U , however we do have V Ă U and since D is dense that V “ U .
S is countable since supp gx is finite for all x P D X U , and D is countable. Let g : S Ñ Z
be an injection, and h an extension of g to R such that h P A0. Finally let k : R Ñ Z be
the function that is 0 on S and 1 elsewhere.

With this, note that Upgxq ` k Ă Upgxq for all x P D Y U , and hence V ` k Ă V and
since addition is separately continuous we have V ` k Ă V . But h P A0 Ă U and so
h ` k P U ` k Ă U , while at the same time h ` k P A1. Thus A1 X U ‰ H. The result is
proved. �
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Exercise 5.4. Show that ZR has a countable dense subset – a topology with a countable
dense subset is called separable.

Given a family pGiqiPI of groups indexed by a set I the direct sum, denoted ‘iPIGi, is
the set of x P

ś

iPI Gi such that xi is the identity of Gi for all but finitely many i P I. The
direct sum is a subgroup of the direct product

ś

iPI Gi and so if the Gis are topological
groups we could give the direct sum the subspace topology. However, this turns out not
to be quite the right thing to do and to understand why it is instructive to return to the
direct product.

We can think of the direct product of the topological groups pGiqiPI as the product in
the category of groups – that is the usual direct product of groups – endowed with the
weakest topology so that all the projection maps pi are continuous. (This is sometimes
called the initial topology induced by the maps pi.) It is particularly easy to make sense
of ‘weakest’ here because the intersection of two topologies on the same base set is, itself,
a topology and if both contain all sets of the form p´1i pSq for S open in Gi, then so does
the intersection.

On the other hand, we think of the direct sum as a coproduct. In this case we need to
take some care with the ambient category: the coproduct in the category of groups is what
is usually called the free product, and that is not what we have here. We are interested in
the coproduct in the category of Abelian groups. Now instead of projection maps we have
embeddings ιj : Gj Ñ ‘iPIGi defined so that pj ˝ιjpxq “ x for all x P Gj and pi˝ιjpxq “ 1Gi
for all x P Gj and i ‰ j.

Now suppose that the groups Gi are Abelian topological groups. The embeddings ιj
map the groups Gj into the direct sum ‘iPIGi, and since any sufficiently weak topology
on the latter will make the embeddings continuous, we would like to endow ‘iPIGi with
the strongest topology so that all the maps ιi are continuous. This topology is sometimes
called the final topology induced by the maps ιi, and the open sets are the sets

(5.2) U Ă ‘iPIGi such that ι´1i pUq is open in Gi for all i P I.

Since preimages preserve unions and (finite) intersections it is easy to see that this is a
topology and any topology on ‘iPIGi such that the maps ιi are all continuous must be
contained in this topology. We call ‘iPIGi endowed with this topology the topological
direct sum.

Proposition 5.5. Suppose that pGiqiPI is a family of Abelian topological groups. Then the
topological direct sum ‘iPIGi is a topological group and the embeddings ιi are continuous
for all i P I.

Proof. These are also routine checks similar to previous arguments. �

It was relatively easy for us to write down a base for the topology of the topological
direct product as we did in (5.1), but for the direct sum (5.2) is much more indirect and
giving a direct characterisation is rather more complicated – see [Hig77] for more details.

Example 5.6. Suppose that pGiqiPI are discrete Abelian topological groups. Then the
topological direct sum is also discrete.
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Proof. This is immediate since certainly the embeddings are continuous if the topology on
À

iPI Gi is discrete, and there is no stronger topology than the discrete topology. �

Example 5.7. Suppose that Gn “ Z{2Z endowed with the discrete topology for all n P N.
Then the topology on the (algebraic) direct sum

À

nPNGn endowed with the subspace
topology, α, when it is considered as a subgroup of

ś

nPNGn, is strictly weaker than the
topology τ on the topological direct sum

À

nPNGn.

Proof. From Example 5.6 we know that τ is discrete. On the other hand write ei :“
p0, . . . , 0, 1, 0, . . . q, that is the element of

À

nPNGn with 1 in the ith coordinate and 0
(i.e. the identity of Z{2Z) elsewhere. We have ei Ñ p0, . . . q in

ś

nPNGn and since
p0, . . . , q, e1, e2, ¨ ¨ ¨ P

À

nPNGn we also have ei Ñ p0, . . . q in α, but the only sequences
in τ that converge are eventually constant. Hence α ‰ τ , and since α Ă τ we have the
claim. �

6. Compactness

Compactness is a tremendously powerful tool worth sacrificing almost any other property
of a mathematical structure. We shall see in this section that a lot of the pathologies we
have encountered so far can be eliminated by a suitable use of compactness, particularly
when combined with enough separation to make the group Hausdorff.

We say that a topological space X is locally compact if every point has a compact
neighbourhood.

Exercise 6.1. Suppose that G is a locally compact topological group and H is a subgroup
of G. Show that if H is closed then H is a locally compact topological group with the
subspace topology, and that if H is normal (but not necessarily closed) that G{H is locally
compact.

While locally compact groups cannot be too large locally(!) they can still be very large
– for example any group with the discrete topology – and it is useful to be able to restrict
them.

Lemma 6.2. 6Suppose that G is a locally compact topological group. Then there is a
compact symmetric neighbourhood of the identity V and an open symmetric neighbourhood
of the identity S Ă V such that

Ť

nPN S
n “

Ť

nPN V
n is an open subgroup of G.

Proof. Let K be a compact neighbourhood of the identity in G, and let I be the interior
of K i.e. the union of the open subsets of K. Put S :“ I Y I´1 and V :“ S. Then S
is open since inversion is continuous and the union of two open sets is open. K YK´1 is
compact since inversion is continuous and the union of two compact sets is compact. Hence
V is compact as a closed subset of a compact set. Finally both S and V are symmetric
neighbourhoods of the identity.

Put H :“
Ť8

n“1 S
n. Since 1G P S we have 1G P H. Moreover, if x, y P H then there are

n,m P N such that x P Sn and S P V m so that y´1 P pS´1qm “ Sm (since S is symmetric)

6This lemma has been slightly corrected to account for an error in an earlier version of Lemma 4.2.
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and so xy´1 P Sn`m. By the subgroup test H is a subgroup of G – it is the subgroup
generated by S. S is a neighbourhood so H is open and closed by Lemma 4.1. Finally,
since H is closed and S Ă H we have V Ă H and hence H “

Ť

nPN V
n as claimed. �

!4It might be natural to say that a group generated by a compact set is ‘compactly
generated’. We shall not use this terminology, partly because it means something else in
topologies.

Local compactness ensures that the stronger separation axiom of normality holds c.f.
Example 5.3.

Theorem 6.3. Suppose that G is a locally compact topological group. Then G is normal
i.e. for any pair of disjoint closed sets A,B Ă G there disjoint open sets U, V Ă G with
A Ă U and B Ă V .

Proof. We begin by establishing the result in the case where A is compact instead of closed.7

Claim. Suppose that A is compact and B is closed with A X B “ H. Then there is a
symmetric open neighbourhood of the identity U such that AU XBU “ H

Proof. Since AXB “ H, we have A Ă Bc. The latter is open and so for every a P A there
is some open set Ua Ă Bc containing a. Thus by Lemma 2.2 there is a symmetric open
neighbourhood of the identity Va such that aV 2

a Ă Ua Ă Bc. Since A is compact there is a
finite set a1, . . . , an such that

Ťn
i“1 aiVai Ą A. The set

Şn
i“1 Vai is a open neighbourhood

of the identity and so by Lemma 2.2 again there is a symmetric open neighbourhood of
the identity U such that U2 Ă

Şn
i“1 Vai . Now, suppose that z P AU X BU . Let 1 ď i ď n

such that z P aiVaiU , and since z P BU there is some b P B such that b´1z P U so
b P aiVaiUU

´1 Ă aiV
2
ai
Ă Bc – a contradiction. �

If A is not compact then things are a little trickier: the example to have in mind is
G “ R and A “ tn ` 1{n : n P Nu and B “ Nzt2u. Here for any interval I we have
pB ` Iq X A ‰ H – so any open set containing B that is disjoint from A must contain
narrower intervals around n as n increases.

By8 Lemma 6.2 there is a compact symmetric neighbourhood of the identity K and an
open symmetric neighbourhood of the identity S Ă K with H :“

Ť

nPN S
n “

Ť

nPNK
n an

open subgroup. The partition G{H of G is into open and closed sets and left multiplication
is continuous so the result will follow if we can prove it for the group H; from now on we
assume that G “ H.

By induction Kn is compact since it is the continuous image of K ˆ Kn´1 under the
multiplication map, and the product K ˆ Kn´1 is compact being a topological product
of two compact sets. Since K is a compact symmetric neighbourhood of the identity
it contains a symmetric open neighbourhood of the identity S, and we have

Ť

nPN S
n “

Ť

nPNK
n “ G.

7 !4While compact sets in Hausdorff spaces are closed, in general topological spaces they need not be.
8This paragraph has been slightly corrected from lectures to account for an error in the original Lemma

6.2.
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Let A0 :“ K X A and An :“ Kn`1 X pAzSnq for n ą 0. Since Sn is open and A is
closed we have that AzSn is closed. As noted above Kn is compact for n P N and so An is
compact for n P N0. Since An XB “ H and B is closed we may apply the claim to get an
open symmetric neighbourhood of the identity Un such that AnUn XBUn “ H.

Let Wn :“
Ş

mďn Um and

U :“
ď

nPN0

AnpUn X Sq and V :“
ď

nPN

BWn X S
n.

First we note that U and V are open: The set U is open since it is a union of translates
of the open sets Un X S. Since the sets Um are open neighbourhoods of the identity so are
the sets Wn, and hence the set V is open.

Secondly, we check that A Ă U and B Ă V : If a P A then since
Ť

nPNK
n “ G there

is some n P N such that a P Kn and a R Kn´1. Since S Ă K we have a P An´1 and
since 1G P Un X S we conclude that a P U i.e. A Ă U . Since

Ť

nPN S
n “ G we see that

B “
Ť

nPNBS
n Ă V since 1G P Wn.

Finally we show that U X V “ H. To see this we show that AnpUn X Sq X V “ H for
each n P N by showing in turn that AnpUn X Sq X pBWm X Smq “ H for all m P N. We
have two cases:

(i) For m ě n we have Wm Ă Un so AnpUnX Sq X pBWmX S
mq Ă AnUnXBUn “ H.

(ii) Form ă n we haveAnpUnXSqXpBUmXS
mq Ă AnpUnXSqXS

n´1, butAnXS
n “ H,

hence AnpUn X Sq X pBWm X S
mq “ H.

The result is proved. �

Exercise 6.4. Suppose that G is a topological group and H ď G is compact. Show that
the quotient map q : GÑ G{H is closed.

Local compactness can also be used to give a partial response to Example 4.4.

Proposition 6.5. Suppose that G “
Ť

nPNK
n where K is a compact symmetric neigh-

bourhood of the identity, H is a locally compact Hausdorff group, and π : G Ñ H is a
continuous bijective homomorphism. Then π is an isomorphism of topological groups.

Proof. We begin with a claim.

Claim. There is some n P N such that πpKnq is a neighbourhood.

Proof. For those familiar with the Baire Category Theorem this is particularly straight-
forward. We shall proceed directly by what is essentially the proof of the BCT for locally
compact Hausdorff spaces.

As in Theorem 6.3 the sets Kn are compact and so πpKnq is compact. Since H is
Hausdorff the sets πpKnq are therefore closed. We construct a nested sequence of closed
neighbourhoods inductively: Let U0 be a compact (and so closed since H is Hausdorff)
neighbourhood in H, and for n P N let Un Ă πpKnqc X Un´1 be a closed neighbourhood.

This is possible since (by the inductive hypothesis) Un´1 is a neighbourhood and so
contains an open neighbourhood Vn´1. But then πpKnqc X Vn´1 is open and non-empty
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since otherwise πpKnq contains a neighbourhood. It follows that πpKnqc X Un´1 contains
an open neighbourhood and so it contains a closed neighbourhood by9 Lemma 2.2.

Now by the finite intersection property of the compact space U0, the set
Ş

n Un is non-
empty. This contradicts surjectivity of π since G “

Ť

nPNK
n and the claim is proved. �

With this claim we show that if X Ă H is compact then π´1pXq is compact. Since
X is compact and πpKnq contains a neighbourhood and the set txπpKnq : x P Hu cov-
ers X, there are elements x1, . . . , xm such that X Ă

Ťm
i“1 xiπpK

nq and hence π´1pXq Ă
Ťm
i“1 π

´1pxiqK
n. However for each 1 ď i ď m there is some ni P N such that π´1pxiq P K

ni ,
whence π´1pXq Ă Kn`maxtn1,...,nmu. However since H is Hausdorff, X is closed and so
π´1pXq is closed and a subset of a compact set and so compact.

It remains to show that if C Ă G is closed then πpCq is closed (from which the result
follows). To see this suppose that y is a limit point of πpCq. H is locally compact so y
has a compact neighbourhood X. Now π´1pXq is compact and so π´1pXqXC is compact.
But then X X πpCq is compact since π is continuous. However its closure contains y and
hence it contains y. �

Again, we need something like the given hypothesis on G since otherwise we can take
G “ R (as in Example 4.4) with the discrete topology on the domain and the usual
topology on the codomain. Both are locally compact Hausdorff groups, and the identity
map between them is a bijective topological homomorphism but this is not a topological
isomorphism

In Example 1.5 we had a group endowed with a topology such that multiplication (called
addition there) was jointly continuous but inversion was not. By way of contrast we have
the following result.

Theorem 6.6 (Ellis, [Ell57b, Theorem]). Suppose that G is a locally compact Hausdorff
topological space and a group such that multiplication is jointly continuous. Then G is a
topological group.

In Example 1.6 we had a group endowed with a topology such that multiplication (called
addition there) was separately (although we did not show this) but not jointly continuous
and inversion was continuous. By way of contrast we have the following result.

Theorem 6.7 (Ellis, [Ell57a, Theorem 2]). Suppose that G is a locally compact Haus-
dorff topological space and a group such that inversion is continuous and multiplication is
separately continuous. Then G is a topological group.

Finally we mention that the coproduct topology on countable direct sums has a nice
base when the groups are locally compact.

Theorem 6.8 ([BHM75, Proposition 1]). Suppose that pGiqiPN is a sequence of locally
compact Abelian topology groups. Then the sets

ś8

i“1 Ui where Ui is open in Gi for each

9This may deserve a word or two more: for any open neighbourhood U there is an open neighbourhood
B of the identity and x P U such that xBB´1 Ă U . Then xB Ă pU cBqc Ă U but U cB is open and so
xB Ă pU cBqc Ă U .
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i P N is a base for a topology called the box topology on the algebraic direct product
ś8

i“1Gi. The algebraic direct sum
À8

i“1Gi endowed with the subspace topology inherited
from the box topology is the topological direct sum

À8

i“1Gi.

7. Totally disconnected groups

A topological space is said to be totally disconnected if the only connected components

are singletons. !4Although any discrete space is totally disconnected, the converse is not
true as we can see with a closer examination of Example 5.7.

Proposition 7.1. Suppose that G is a closed subgroup of a product of finite Hausdorff
topological groups. Then G is compact and totally disconnected.

Proof. A finite Hausdorff topological group is necessarily endowed with the discrete topol-
ogy and the properties of being compact and totally disconnected are preserved under
passing to closed subsets so it suffices for us to show that a product of finite groups en-
dowed with the discrete topology is totally disconnected. Let pGiqiPI be a sequence of such
groups indexed by a set I.

Suppose that X Ă
ś

iPI Gi is connected and x, y P X have x ‰ y. Then there is some
j P I such that xj ‰ yj and the set U :“ tz P

ś

iPI Gi : zj “ xju is open and closed since
Gj is finite so X is a disjoint union of the the two open and closed sets XXU and XXU c.
x is in the former of these and y is in the latter contradicting the connectivity of X. The
result is proved. �

One of the results of this section is a converse to the above, but before going down this
path it is helpful to have a more concrete example.

The p-adic integers are an important object in number theory for a variety of reasons,
and they will provide us with an interesting class of examples of topological groups. For
p P N we define the p-adic integers to be the (closed) subgroup

Zp :“

#

x P
ź

nPN0

Z{pn`1Z : xi`1 ” xi pmod piq for all i P N

+

,

where the group operation is inherited from the product. This is a compact totally dis-
connected group by Proposition 7.1. It can be helpful to think of the p-adic numbers more
concretely as numbers written in base p extended infinitely to the left with addition defined
in the same way as for the integers, and negation defined so as to ensure that x ` p´xq
sum to the all-0s string e.g. for the sum and negation in Z7 we have

. . . 1 6 2 3
+ . . . 2 4 3 4

. . . 4 3 6 0
-(. . . 325) = . . . 342

The integers embed into Zp by writing a number in base p and prefixing it with a countable
infinity of leading 0s on the left, and in particular while the integers are countable the p-
adics are uncountable.
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The p-adic integers can be extended to the p-adic numbers, denoted Qp. This is a
locally compact and totally disconnected Hausdorff group in which the p-adic integers are
a compact open subgroup; we shall not concern ourselves with its particular nature now,
but the main result of this section is a characterisation of totally disconnected locally
compact Hausdorff groups.

Theorem 7.2 (Van Dantzig’s Theorem). Suppose that G is a Hausdorff topological group.
Then G is locally compact and totally disconnected if and only if every neighbourhood of
the identity contains a compact open subgroup.

Proof of ð. If x and y are distinct points then since G is Hausdorff there is an open set
U containing x and not y; let H be a compact open subgroup (though set is enough here)
contained in x´1U . Since H is open it is closed and so if C is a set containing x and
y then C X xH and C X pxHqc is a partition of C into (relatively) open and (relatively)
closed sets containing x and y respectively. Thus C is not connected and hence G is totally
disconnected. �

The proof in the other direction requires more work, with the next lemma being the key
driver.

Lemma 7.3. Suppose that G is a totally disconnected Hausdorff group, K is a compact
neighbourhood of the identity, and y ‰ 1G. Then there is a relatively open and closed subset
of K containing the identity and not containing y.

Proof. It is most convenient for our topological language to refer to K as a topological
space i.e. when we say open set we shall mean relatively open in K so a set of the form
K X U for U open in G. K is certainly totally disconnected in the relative topology.
Moreover K is normal: this follows from Theorem 6.3, since any relatively closed set in K
is also closed in G (since K is closed as a result of G being Hausdorff).

Let C be the intersection of all the closed and open subsets of K containing the identity,
and suppose that C “ A \ B for closed sets A and B with 1G P B. By normality of K
there is an open set U containing A whose closure is disjoint from B. Thus BU :“ UzU
is closed and disjoint from C, and by the definition of C, for each x P BU there is closed
and open set Ux containing the identity such that x R Ux. Thus tKzUx : x P BUu is
an (open) cover of BU , but the latter is a closed subset of the compact set K. Thus
it is compact and there are elements x1, . . . , xm such that BU Ă

Ťm
i“1KzUxi , and hence

Şm
i“1 Uxi Ă KzpUzUq “ U Y pKzUq. It follows that V :“

Şm
i“1 UxizU “

Şm
i“1 UxizU , and

hence V is both open and closed. By design AXV “ H and also 1G P V . But then C Ă V
and so A “ H. We have shown that C is connected, but then since 1G P C and K is
totally disconnected we have C “ t1Gu. Since y ‰ 1G there is some closed and open set U
in K such that 1G P U and y R U as required. �

!4In a general topological space X the intersection of all closed and open sets containing
an element x is called a quasi-component and it is not necessarily a connected component.

Exercise 7.4. Suppose that X is a compact Hausdorff space. Show that X is normal.
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Theorem (Theorem 7.2 ñ). Suppose that G is a totally disconnected locally compact
Hausdorff topological group. Then every neighbourhood of the identity contains a compact
open subgroup.

Proof. Suppose S is the given neighbourhood; let T be an open neighbourhood of the
identity in S; let K be a compact neighbourhood of the identity (which exists by local
compactness); and finally let N be an open neighbourhood of the identity in K. Then
V :“ N X T is an open neighbourhood of the identity contained in S, and V Ă K, so V
has compact closure.

By Lemma 7.3 applied to V , for each x P BV :“ V zV there is a relatively open and
closed set Vx such that x R Vx and 1G P Vx. As before, by compactness there are elements
x1, . . . , xm such that tV c

x1
, . . . , V c

xmu is a finite open cover of BV and then U :“ Vx1X¨ ¨ ¨XVxm
contains 1G, is relatively open and closed in V and is contained in V . The set U so defined
is relatively open in V and so U “ V X L for some open set L, hence U “ U X V “

V X L X V “ L X V is open in G. Similarly, U so defined is relatively closed so that
V zU “ V X L for some (other) open L and hence V zU “ pV zUq X V “ V X L is open
and hence U is closed (seeing as U Ă V ). We conclude that U is an open and closed (so
compact) neighbourhood of the identity contained in S.

For each x P U there is an open neighbourhood of the identity Vx such that xVx Ă U , and
by Lemma 2.2 a further open neighbourhoodWx such thatW 2

x Ă Vx. The set txWx : x P Uu

is then an open cover of U and so there is a finite sub-cover such that U Ă
Ťk
i“1 xiWxi ;

put W :“
Şk
i“1Wxi so that UW Ă U . Now let H be the open subgroup generated by W

so that H Ă UH Ă U which is an open, and so closed, subgroup of V which itself has a
compact closure. It follows that H is a compact open subgroup as required. �

Exercise 7.5. Suppose that G is a totally disconnected locally compact Hausdorff group.
Show that every compact subgroup of G is contained in an open compact subgroup.

When we have compactness not just local compactness the examples given in Proposition
7.1 turn out to be the only ones – these are called the profinite groups. To show this we
need an additional lemma.

Lemma 7.6. Suppose that G is a compact Hausdorff topological group and H is an open
subgroup of G. Then there is an open normal subgroup of G of finite index contained in
H.

Proof. Since G{H is an open over of G, and G is compact, it contains a finite subcover and
so G{H is finite – write G{H “ tx1H, . . . , xmHu. Let N :“

Şm
i“1 xiHx

´1
i which is a finite

intersection of open subgroups and so an open subgroup. On the other hand, if x P G
then for each j there is some i (depending on j and x) such that xxiH “ xjH. But then
pHx´1i qx

´1 “ Hx´1j and so xpxiHx
´1
i qx

´1 Ă xjHx
´1
j , whence xNx´1 Ă xjHx

´1
j . However,

j was arbitrary and so xNx´1 Ă N . But this is true for all x P G and hence N is normal
as required. Finally, N is an open subgroup of G so G{N is an open cover of the compact
group G. Since G{N is a partition the only subcover is the whole set and so we conclude
that the index of N in G is finite. The lemma is proved. �
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Exercise 7.7. Suppose that H ď G are groups and |G{H| “ d. Show that there is a
subgroup N ď H which is normal in G such that |G : N | ď d!.

Theorem 7.8. Suppose that G is a topological group. Then G is a compact Hausdorff
totally disconnected group if and only if it is (topologically isomorphic to) a closed subgroup
of a product of finite groups.

Proof. The if direction is Proposition 7.1. In the other direction write C for the set of open
subgroups of G, and for each H P C let NpHq be a finite index (open) normal subgroup
guaranteed by Lemma 7.6. Then consider the continuous homomorphism

φ : GÑ
ź

HPC
G{NpHq;x ÞÑ pxNpHqqHPC.

The product on the right is a product of finite groups. Moreover, the map is an injection:
if x ‰ 1G then since G is Hausdorff there is an open neighbourhood U of 1G with x R U .
By Theorem 7.2 there is a compact open subgroup H contained in U so x R H. Then
xNpHq ‰ NpHq and so φpxq ‰ 1.

Since G is compact and the map continuous, the image is compact and the product is
Hausdorff so the image is closed. The result is proved. �

We saw in Lemma 4.2 that if G is a topological group then the connected component of
the identity L is a closed normal subgroup. This gives rise to a short exact sequence

0 Ñ LÑ GÑ G{LÑ 0,

and if G is locally compact and Hausdorff then by Exercise 6.1 L and G{L are also locally
compact (and Hausdorff). The group L is a connected locally compact Hausdorff group
and the group G{L is a totally disconnected locally compact Hausdorff group. Although
this seems very promising the groups L and G{L can still fit together in many varied ways.

8. The Haar integral

We now turn to one of the most beautiful aspects of the theory of topological groups.
This describes the way the topology and the algebra naturally give rise to a measure. First,
given a group G and a function f : GÑ C we write

λxpfqpyq :“ fpx´1yq and ρxpfqpyq :“ fpyxq for all x, y P G.

These are left actions in the sense that λxypfq “ λxpλypfqq and ρxypfq “ ρxpρypfqq for all
x, y P G.

Given a topological space X we write CcpctpXq for the set of continuous compactly
supported functions on X, and C`cpctpXq for the set of non-negative elements of CcpctpXq.

If G is a topological group then λ and ρ both restrict to action on the set CcpctpGq, and
we say that a non-zero linear map I : CcpctpGq Ñ C with Ipfq ě 0 whenever f P C`cpctpGq
and Ipλxpfqq “ Ipfq for all x P G and f P CcpctpGq is a left invariant Haar integral,
and similarly on the right.
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To provide a sufficient supply of continuous compactly supported functions we shall need
a result called Urysohn’s Lemma. The proof is sufficiently similar to the proof of Theorem
3.4 that we shall not give it.

Theorem 8.1 (Urysohn’s Lemma). Suppose that X is a normal topological space. Then
for every pair of disjoint closed sets A and B there is a continuous function f : X Ñ r0, 1s
with fpaq “ 1 for all a P A and fpbq “ 0 for all b P B.

A key tool for us will be approximating continuous functions in two variables by sums
of products of continuous functions in one variable.

Lemma 8.2. Suppose that G is a locally compact Hausdorff topological group and K Ă G
is compact and F : G ˆ G Ñ C is continuous with support in K ˆK. Then for all ε ą 0
there are elements u1, . . . , uk, v1, . . . , vk P CpGq with support in K such that

›

›

›

›

›

F ´
k
ÿ

j“1

ujvj

›

›

›

›

›

8

ă ε.

Proof. We define some auxiliary sets: for i P t1, 2u put

Ai :“ txi : |F px1, x2q| ě 2εu, Bi :“ txi : |F px1, x2q| ą εu,

and
Ci :“ txi : |F px1, x2q| ě εu, Di :“ txi : |F px1, x2q| ą ε{2u.

Then the sets A1, A2, C1, C2 are closed while B1, B2, D1, D2 are open. Urysohn’s Lemma
gives continuous functions H1, H2 : GÑ r0, 1s with Hipxq “ 1 for all x P Ai and Hipxq “ 0
for all x P GzBi, where i P t1, 2u. And similarly, continuous functions H 1

1, H
1
2 : G Ñ r0, 1s

with H 1
ipxq “ 1 for all x P Ci and H 1

ipxq “ 0 for all x P GzDi, where i P t1, 2u.
Let

V :“

#

n
ÿ

i“1

αiβi : n P N, αi, βi P CpGq, suppαi, supp βi Ă K

+

,

and V 1 :“ tf |C1ˆC2 : f P V u. Then V 1 is a conjugation-closed subalgebra of CpC1 ˆ C2q.
It contains the constant functions since λH 1

1H
1
2 P V for all λ P C, and it separates points

by Urysohn’s Lemma (or even just Theorem 3.4) since given px1, x2q, px
1
1, x

1
2q P C1 ˆ C2

distinct then either x1 ‰ x11 and so there is a continuous function u such that upx1q ‰ upx11q
whence uH 1

1H
1
2 P V ; or x2 ‰ x12 and we argue similarly. Given this we may apply the Stone-

Weierstrass Theorem (see e.g. [Pri17, Theorem 5.10] for the real case) to see that V 1 is
dense in CpC1 ˆ C2q – let u1, . . . , uk, v1, . . . , vk P CpGq with suppui, supp vi Ă K be such
that

(8.1)

ˇ

ˇ

ˇ

ˇ

ˇ

F px1, x2q ´
k
ÿ

i“1

uipx1qvipx2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε for all x1 P C1, x2 P C2.

Put

F 1px1, x2q :“
k
ÿ

i“1

H1px1quipx1qH2px2qvipx2q,
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and note that

F 1px1, x2q “

$

’

&

’

%

řk
i“1 uipx1qvipx2q if x P A1 ˆ A2

H1px1qH2px2q
řk
i“1 uipx1qvipx2q if x P pB1 ˆB2qzpA1 ˆ A2q

0 if x R B1 ˆB2

.

First, since A1 ˆ A2 Ă C1 ˆ C2 we have |F pxq ´ F 1pxq| ď ε for all x P A1 ˆ A2. Secondly,
by definition of B1 and B2 we have |F pxq| ď ε if x R B1ˆB2 and hence |F pxq ´F 1pxq| ď ε
there. Finally, if x P pB1 ˆB2qzpA1 ˆ A2q then x P C1 ˆ C2 and so (by (8.1))

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1

uipx1qvipx2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď |F px1, x2q| ` ε,

whence |F 1pxq| ď |F pxq| ` ε. However x R A1 ˆ A2 and so |F pxq| ă 2ε, whereupon
|F 1pxq ´F pxq| ă 5ε. It follows that F 1 is a suitable approximation (at least after rescaling
ε) and the result is proved. �

The first result we are leading up to is the uniqueness of Haar integrals. To establish
this we shall need to understand how two Haar integrals interact, and to do this we need
some notation: given a linear functional I : CcpctpGq Ñ C and a function F px, yq with
y ÞÑ F px, yq in CcpctpGq then we write IyF px, yq for the functional I applied to the function
y ÞÑ F px, yq, and similarly if x ÞÑ F px, yq is in CcpctpGq then we write IxF px, yq for the
functional I applied to the function x ÞÑ F px, yq.

Lemma 8.3. Suppose that G is a locally compact Hausdorff group, I and J are left Haar
integrals on G, and F P CcpctpG

2q. Then the map x ÞÑ JyF px, yq is continuous and
compactly supported, so that IxJyF px, yq exists. Similarly y ÞÑ IxF px, yq is continuous and
compactly supported, so that JyIxF px, yq exists and moreover

IxJyF px, yq “ JyIxF px, yq.

Proof. Since F P CcpctpG
2q has compact support, and the projection functions are contin-

uous, there is a compact set K such that F has support in K ˆK. By Lemma 8.2 for all
ε ą 0 there are continuous functions u1, . . . , uk, v1, . . . , vk supported in K such that

´ε`
j
ÿ

j“1

ujpxqvjpyq ď F px, yq ď ε`
j
ÿ

j“1

ujpxqvjpyq for all x, y P G.

Let U be an open neighbourhood of the identity with compact closure. Apply Urysohn’s
Lemma to the disjoint closed sets K and pKUqc to get a continuous function g : GÑ r0, 1s
supported on KU and with gpxq “ 1 for all x P K. Then

´εgpxqgpyq `
j
ÿ

j“1

ujpxqvjpyq ď F px, yq ď εgpxqgpyq `
j
ÿ

j“1

ujpxqvjpyq for all x, y P G.
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Thus

(8.2) ´ εgpxqJg `
k
ÿ

j“1

ujpxqJvj ď JyF px, yq ď εgpxqJg `
k
ÿ

j“1

ujpxqJvj.

Now 0 ď gpxq ď 1 and so x ÞÑ JyF px, yq is a uniform limit of continuous functions and
so continuous. Moreover, it is supported on KU which is compact and so x ÞÑ JyF px, yq
has compact support. Similarly y ÞÑ IxF px, yq is continuous and has compact support.
Finally, from (8.2) we have

´εIgJg `
k
ÿ

j“1

IujJvj ď IxJyF px, yq ď εIgJg `
k
ÿ

j“1

IujJvj

and similarly for JyIxF px, yq and so the last equality of the lemma holds since ε was
arbitrary. �

The integral of a non-negative continuous function that is not identically 0 is positive,
and this already follows from the axioms of a Haar integral:

Lemma 8.4. Suppose that G is a locally compact Hausdorff group, I is a left Haar integral
on G, and f P C`cpctpGq has If “ 0. Then f ” 0.

Proof. Suppose that f ı 0 so that there is some x0 P G such that fpx0q ą c ą 0 and hence
an open neighbourhood of the identity U such that fpx0yq ą c{2 for all y P U . Now for
any g P C`cpctpGq there is a compact set K containing the support of g and txU : x P Ku
is an open cover of K. It follows that it has a finite subcover x1U, . . . , xmU . But then

0 ď gpxq ď 2c´1}g}8

m
ÿ

i“1

fpx0x
´1
i xq,

and hence

0 ď Ig ď 2c´1}g}8

m
ÿ

i“1

Iλxix´1
0
pfq “ 2c´1}g}8mIf “ 0.

Finally, any h P CcpctpGq can be written in the form h “ h1 ´ h2 ` ih3 ´ ih4 where
h1, h2, h3, h4 P C

`
cpctpGq, and hence we have that Ih “ 0 i.e. I is identically 0 contradicting

the fact that it is a left Haar integral. The lemma follows. �

Compactly supported continuous functions on topological groups have a notion of uni-
form continuity captured in the next lemma.

Lemma 8.5. Suppose that G is a locally compact Hausdorff group and f P CcpctpGq. Then
for all ε ą 0 there is a symmetric open neighbourhood of the identity V such that

|fpxyq ´ fpyq| ă ε and |fpyxq ´ fpyq| ă ε for all x P V, y P G

Proof. Let H be an open symmetric neighbourhood of the identity with compact closure,
and K a compact set supporting f . Since f is continuous for all y P G there is an open
neighbourhood Uy of y such that |fpxq ´ fpyq| ă ε{2 for all x P Uy. For each y P G let Vy
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be a symmetric neighbourhood of the identity such that yV 2
y Ă Uy and V 2

y y Ă Uy – such a

set exists by Lemma 2.2 since py´1Uyq X pUyy
´1q is a neighbourhood of the identity.

Since HKH is compact, the open cover tyVy X Vyy : y P HKHu has a finite subcover
ty1Vy1 X Vy1y1, . . . , ymVym X Vymymu. We let V be a symmetric open neighbourhood of the
identity such that V Ă H X

Şm
i“1 Vyi . Now, suppose that x P V and y P G. If any of xy,

yx or y are in the support of f then y P HK YKH YK Ă HKH and so there is some yi
such that y P yiVyi X Vyiyi. Then xy P V 2

yi
yi Ă Uyi , yx P yiV

2
yi
Ă Uyi and y P yiV

2
yi
Ă Uyi .

The result follows by the triangle inequality. �

With these preparatory tools in hand we are ready to prove the important result that,
if it exists, the Haar integral is unique up to dilation by a positive scalar.

Theorem 8.6 (Uniqueness of the Haar Integral). Suppose that G is a locally compact
Hausdorff group and I and J are left Haar integrals on G. Then there is some λ ą 0 such
that I “ λJ .

Proof. Suppose that f1, f2 P C
`
cpctpGq are not identically 0 and write K for a compact set

containing the support of f1 and f2 (which exists since finite unions of compact sets are
compact). Let H be a compact symmetric neighbourhood of the identity in G, and let F
be a continuous function with compact support such that F |HKH is identically 1. Such
a function exists since the product of compact sets is compact so HKH is compact and
hence closed (since G is Hausdorff), and if U is a neighbourhood of the identity in H then
HKHU is open and so its complement is closed and disjoint from HKH so we can apply
Urysohn’s Lemma to get a continuous function that is 1 on HKH and 0 on KHKU c, and
so supported on HKHU Ă HKH2; the latter set is compact.

Since the support of fi is compact and fi is continuous we may apply Lemma 8.5 to
get a symmetric neighbourhood of the identity Vi such that |fipxyq ´ fipyq| ă ε and
|fipyxq´fipyq| ă ε for all y P G, x P Vi. By Lemma 2.2 let V be a symmetric neighbourhood
of the identity with V 2 Ă H X V1 X V2.

By Urysohn’s Lemma (and in fact our proof of complete regularity is enough) there is
a continuous function k : G Ñ r0, 1s with kpxq “ 0 for all x P V c and kp1Gq “ 1. Put
hpxq :“ kpxqkpx´1q so that hpxq “ hpx´1q, h ı 0 is non-negative and hpxq “ 0 for all
x R V c.

Now, by translation invariance of J we have Jxhpy
´1xq “ Jxhpxq and since px, yq ÞÑ

fipyqhpxq and px, yq ÞÑ fipyqhpy
´1xq are both continuous and compactly supported we

have
IyfipyqJxhpxq “ IyJxfipyqhpy

´1xq.

Since hpzq “ hpz´1q, Lemma 8.3 and the translation invariance of I then give

IyJxfipyqhpy
´1xq “ IyJxfipyqhpx

´1yq “ JxIyfipyqhpx
´1yq “ JxIyfipxyqhpyq.

Now,
|fipxyq ´ fipxq|hpyq ď εF pxqhpyq for all x, y P G

and so

fipxqIyhpyq ´ εIyF pxqhpyq ď Iyfipxyqhpyq ď fipxqIyhpyq ` εIyF pxqhpyq.
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We conclude that

|IfiJh´ JfiIh| ď εJFIh.

Since h and fi are not identically 0 we have Ih, Ifi ą 0 by Lemma 9.1 and so these combine
to give

ˇ

ˇ

ˇ

ˇ

Jfi
Ifi

´
Jh

Ih

ˇ

ˇ

ˇ

ˇ

ď ε
JF

Ifi
,

and hence
ˇ

ˇ

ˇ

ˇ

Jf1
If1

´
Jf2
If2

ˇ

ˇ

ˇ

ˇ

ď 2εJF

ˆ

1

If1
`

1

If2

˙

.

Since ε is arbitrary and JF , If1 and If2 are independent of ε we conclude that there is
some λ ą 0 such that Jf “ λIf for all f P C`cpctpGq. This extends to all f P CcpctpGq by
writing f as a linear combination of four elements of C`cpctpGq. �

It is now useful to consider some examples.

Exercise 8.7. Let

G :“

"ˆ

x y
0 1

˙

: x ą 0, y P R
*

.

Show that G is a subgroup of GL2pRq, and that

If :“

ż 8

´8

ż 8

0

f

ˆ

x y
0 1

˙

1

x2
dxdy

us a left Haar integral while

If :“

ż 8

´8

ż 8

0

f

ˆ

x y
0 1

˙

1

x
dxdy

is a right Haar integral.

Given a topological group G and f P CcpctpGq we write rfpxq “ fpx´1q so that r̈ is a
conjugate-linear involution on CcpctpGq. The reason for making it conjugate-linear will
become clearer later.

Lemma 8.8. Suppose that G is a locally compact Hausdorff group and I is a left (resp.

right) Haar integral on G then f ÞÑ I rf is a right (resp. left) Haar integral on G.

Proof. Note that

ρxpfqpyq “ fpyxq “ rfpx´1y´1q “ λxp rfqpy´1q “ pλxp rfqq
„
pyq.

Hence

IĆρxpfq “ Iλxp rfq “ I rf

and so the given map is invariant under right translation. It is also linear, non-trivial, and
non-negative on non-negative functions and hence it is a right Haar integral as required.
A similar argument works if I is a right Haar integral. �
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Proposition 8.9 (Modular function). Suppose that G is a locally compact Hausdorff group
supporting a left Haar integral I. Then there is a (unique) continuous homomorphism
∆ : GÑ Rą0 such that for any left Haar integral J on G we have

Jρtpfq “ ∆ptqJf for all t P G, and f P CcpctpGq.

Proof. The maps λx and ρt commute10 so that ρtpλxpfqq “ λxpρtpfqq hence the map f ÞÑ
Iρtpfq is also a left Haar integral. It follows that there is some ∆ptq such that Iρtpfq “
∆ptqIf for all f P CcpctpGq. Furthermore, if J is another left Haar integral then there
is some µ ą 0 such that Jf “ µIf for all f P CcpctpGq, and hence Jρtpfq “ µIρtpfq “
µ∆ptqIf “ ∆ptqJf and so ∆ does not depend on I.

∆ is a homomorphism since ∆pstqIf “ Iρstpfq “ Iρspρtpfqq “ ∆psqIρtpfq “ ∆psq∆ptqIf
for all s, t P G, and I is not identically 0 so there is some f such that If ‰ 0.

Finally, ∆ is continuous: To establish this, first let U be an open symmetric neighbour-
hood of the identity with compact closure and suppose that f P CcpctpGq is supported on
the compact set K. Then KU so by Urysohn’s Lemma there is g P CcpctpGq mapping into
r0, 1s with gpxq “ 1 for all x P KU . Now, let f be such that If ą 0 (we know there is an
f such that If ‰ 0, and if If ă 0 then replace f by ´f) and for y P G and δ ą 0 put

S :“ tx P G : |∆pxq ´∆pyq| ă δu “ tx P G : |Iρxpfq ´ Iρypfq| ă δIfu;

suppose that x P S. Let ε ą 0 be such that |Iρxpfq ´ Iρypfq| ă pδ ´ εqIf . By Lemma 8.5
there is an open neighbourhood V of the identity such that }ρxzpfq´ρxpfq}8 ă εIf{Iρxpgq
for all z P V . But then if z P V X U we have

|Iρxzpfq ´ Iρypfq| ď |Iρxzpfq ´ Iρxpfq| ` |Iρxpfq ´ Iρypfq|

ď }ρxzpfq ´ ρxf}8Iρxpgq ` |Iρxpfq ´ Iρypfq| ă δIf.

It follows that xz P S so that S contains an open neighbourhood of x as required. The
result is proved. �

We call the function ∆ of this proposition the modular function and a group where
∆ is identically 1 is called unimodular. Once we have shown existence of Haar integrals
we shall be able to conclude that every locally compact Hausdorff group has a modular
function.

Note that if G is compact and supports a left Haar integral then ∆pGq is compact since
∆ is continuous, and hence G is unimodular since the only compact subgroup of Rą0 is
t1u. If G is discrete then it supports a left Haar integral:

I : C`cpctpGq Ñ C; f ÞÑ
ÿ

xPG

fpxq,

which is also a right Haar integral so any discrete group is unimodular. Even more easily if
G is Abelian thenG is unimodular since then ρtpfq “ λt´1pfq for all t P G and f P CcpctpGq,
and hence Iρtpfq “ Iλt´1pfq “ If for all t P G and f P CcpctpGq.

10 !4This is just associativity of the group operation since λxpρtpfqqpyq “ ρtpfqpx
´1yq “ fppx´1yqtq “

fpx´1pytqq “ λxpfqpytq “ ρtpλxpfqqpyq for all x, y, t P G.
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On the other hand, there are non-Abelian groups that are neither compact nor discrete
that are unimodular, for example GLnpRq where a left Haar integral is given by

If “

ż

fpAq| detA|´n
ź

1ďi,jďn

dAij.

and dAij is Lebesgue measure on R.

9. Existence of a Haar Integral

In this section our aim is to show that locally compact Hausdorff groups all support a
Haar integral. We begin by defining a sort of approximation: for f, φ P C`cpctpGq with φ
not identically 0 put

(9.1) pf ;φq :“ inf

#

n
ÿ

j“1

cj : n P N; c1, . . . , cn ě 0; y1, . . . , yn P G; and
n
ÿ

j“1

cjλy´1
j
pφq ě f

+

.

We think of this as a sort of covering number and have a lemma to record some of the
basic properties.

Lemma 9.1. Suppose that f, g, φ, ψ P C`cpctpGq with φ and ψ non-zero. Then

(i) pf ;φq is well-defined;
(ii) pf ;φq ď pg;φq whenever f ď g;

(iii) pf ` g;φq ď pf ;φq ` pg;φq;
(iv) pµf ;φq “ µpf ;φq for µ ě 0;
(v) pλxpfq;φq “ pf ;φq for all x P G;

(vi) pf ;ψq ď pf ;φqpφ;ψq;
(vii) pf ;φq ě }f}8{}φ}8.

Proof. To show that pf ;φq is well-defined requires that φ is not identically 0 so that there is
some x0 P G, c ą 0 and some open neighbourhood U of the identity such that φpxq ą c for
all x P x0U . Then since the support of f is compact it is covered by a set tx1U, . . . , xnUu
and so

fpxq ď
n
ÿ

i“1

}f}8c
´1φpx0x

´1
i xq “

n
ÿ

i“1

}f}8c
´1λxix´1

0
pφqpxq,

whence the set on the right of (9.1) is non-empty and it is bounded below by 0 and so has
an infimum.

(ii), (iii), (iv), and (v) are all immediate. Finally, for (vi) and (vii) suppose c1, . . . , cn ě 0
are such that f ď

řn
j“1 cjλy´1

j
pφq, so that by (ii), (iii), (iv), and (v) we have pf ;ψq ď

řn
j“1 cjpφ;ψq; while by non-negativity of cjs and the fact that }λxpφq}8 “ }φ}8 for all

x P G we have |fpxq| ď
řn
j“1 cj}φ}8, and (vi) follows by taking infima, while (vii) follows

by taking suprema and infima. �



30 TOM SANDERS

To make use of p¨; ¨q we need to fix a non-zero reference function f0 P C
`
cpctpGq and we

put

Iφpfq :“
pf ;φq

pf0;φq

which is well-defined in view of Lemma 9.1 (vii).
Many of the properties of Lemma 9.1 translate into properties of Iφ. In particular, we

have Iφpf1 ` f2q ď Iφpf1q ` Iφpf2q; for suitable φ we also have the following converse.

Lemma 9.2. Suppose that f1, f2 P C
`
cpctpGq and ε ą 0. Then there is a symmetric open

neighbourhood of the identity V such that if φ P C`cpctpGq is not identically 0 and has
support in V then Iφpf1q ` Iφpf2q ď Iφpf1 ` f2q ` ε.

Proof. Let L be a compact symmetric neighbourhood of the identity; K be compact such
that L supp fj Ă K for j P t1, 2u; and by Urysohn’s Lemma let F : G Ñ r0, 1s be
continuous, compactly supported, and have F pxq “ 1 for all x P K. For j P t1, 2u put

gjpxq :“

#

fjpxq

f1pxq`f2pxq`εF pxq
if x P supp fj

0 otherwise
.

The functions gj are continuous and so by Lemma 8.5 (applied twice and taking the inter-
section of the open sets) for ε ą 0 there is a symmetric open neighbourhood of the identity
V such that

(9.2) |gjpyxq ´ gjpxq| ă ε for all y P V, x P G, j P t1, 2u.

Now suppose that φ P C`cpctpGq is not identically 0 and has support in V , and that
c1, . . . , cn ě 0 and y1, . . . , yn P G are such that

f1pxq ` f2pxq ` εF pxq ď
n
ÿ

i“1

ciφpyixq for all x P G.

Then by (9.2) we have

fjpxq ď
n
ÿ

i“1

ciφpyixqgjpxq ď
n
ÿ

i“1

cipgjpy
´1
i q ` εqφpyixq for all x P G, j P t1, 2u.

However, g1py
´1
i q ` g2py

´1
i q ď 1 for all 1 ď i ď n, whereupon

pf1;φq ` pf2;φq ď
n
ÿ

i“1

cip1` 2εq,

and so by Lemma 9.1 (iii) and (iv) and then (vi) (which gives Iφphq ď ph; f0q for all
h P C`cpctpGq)

Iφpf1q ` Iφpf2q ď p1` 2εqIφpf1 ` f2 ` εF q

ď p1` 2εqpIφpf1 ` f2q ` εIφpF qq

ď Iφpf1 ` f2q ` p2pf1 ` f2; f0q ` pF ; f0q ` 2pf1 ` f2; f0qpF ;F0qqε.

The result then follows since ε ą 0 was arbitrary. �
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With this we can establish the existence of a Haar integral.

Theorem 9.3. Suppose that G is a locally compact Hausdorff group. Then there is a left
Haar integral on CcpctpGq.

Proof. By complete regularity and the fact G has a compact neighbourhood there is some
f0 P C

`
cpctpGq with f0 ı 0. The set of maps I : C`cpctpGq Ñ Rě0 such that |Ipfq| ď pf ; f0q

is compact by Tychonoff’s Theorem, and the set of such maps I with Ipf0q “ 1,

(9.3) Ipfq ď Ipgq for all , f, g P C`cpctpGq with f ď g,

(9.4) Ipµfq “ µIpfq for all µ ě 0, f P C`cpctpGq,

and

(9.5) Ipλxpfqq “ Ipfq for all x P G, f P C`cpctpGq,

is closed and so also compact – denote it X.
For ε ą 0 and f, f 1 P C`cpctpGq consider the sets

Bpf, f 1; εq :“ tI P X : |Ipf ` f 1q ´ Ipfq ´ Ipf 1q| ď εu.

For any f1, f
1
1, f2, f

1
2, . . . , fn, f

1
n P C

`
cpctpGq and ε1, . . . , εn, by Lemma 9.2 there are sym-

metric open neighbourhoods of the identity V1, . . . , Vn such that if φ P C`cpctpGq is not
identically 0 and is supported in Vi then

(9.6) |Iφpfi ` f
1
iq ´ Iφpfiq ´ Iφpf

1
iq| ă εi.

The set V :“
Şn
i“1 Vi is also a symmetric open neighbourhood of the identity and by

complete regularity there is φ P C`cpctpGq that is not identically 0. Then φ is supported in
V and is not identically 0 and so Iφ enjoys (9.6) for all 1 ď i ď n. Moreover, Iφ then enjoys
(9.3) by Lemma 9.1 (ii); (9.4) by Lemma 9.1 (iv); (9.5) by Lemma 9.1 (v); Iφpf0q “ 1 by
design; and Iφpfq ď pf ; f0q by Lemma 9.1 (vi).

We conclude that
Şn
i“1Bpfi, f

1
i , εiq is non-empty which is to say the set tBpf, f 1; εq :

f, f 1 P C`cpctpGq, ε ą 0u has the finite intersection property. The sets Bpf, f 1; εq are closed
and so by compactness of X there is some I in the intersection of all the Bpf, f 1; εqs.
We extend this I to CcpctpGq by putting Ipfq :“ Ipf1q ´ Ipf2q ` iIpf3q ´ iIpf4q where
f “ f1 ´ f2 ` if3 ´ if4 and f1, f2, f3, f4 P C

`
cpctpGq. �

Given a left Haar integral we can go ahead and define a regular Borel measure on G by
setting

µpAq :“ inftIpfq : 1A ď f where f P C`cpctpGqu

but we shall not discuss that at much length. This is what is called a left Haar measure.
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10. The dual group

Suppose that G is a topological group and recall that S1 is the group of complex numbers

of modulus 1 under multiplication. We write pG for the set of continuous homomorphisms

G Ñ S1, and call the elements of pG characters. This is naturally endowed with the
structure of an Abelian group with multiplication and inversion defined by

pγ, γ1q ÞÑ px ÞÑ γpxqγ1pxqq and γ ÞÑ px ÞÑ γpxqq.

We write 1
pG for the character taking the constant value 1 and call it the trivial character.

On the face of it it is not clear whether or not there are any non-trivial characters in pG,
but it will turn out that (in general) there are. Indeed, it will turn out that much more
than this is true.

The set pG – as a set of continuous, but not necessarily compactly supported functions –
is a subset of CpGq and so can be endowed with the subspace topology, when that space is
considered as endowed with the compact-open topology, that is the topology generated
by translates of the sets

UpK, εq :“ tγ P pG : |γpxq ´ 1| ă ε for all x P Ku

as K ranges compact subsets of G.

Proposition 10.1. Suppose that G is a topological group. Then pG is an Abelian Hausdorff
topological group.

Proof. Since |γpxq´1| “ |γpxq´1| the inversion is certainly continuous. On the other hand
if |pγλqpxq ´ 1| ă ε for all x P K then since γλ is continuous and K is compact |γλ ´ 1|
achieves its bounds on K and hence there is some δ ą 0 such that |pγλqpxq´ 1| ă ε´ δ for
all x P K. But then if λ1 P λUpK, δ{2q and γ1 P γUpK, δ{2q we have

|pγ1λ1qpxq ´ 1| ď |pγ1λ1qpxq ´ pγλ1qpxq| ` |pγλ1qpxq ´ pγλqpxq| ` |pγλqpxq ´ 1|

ă δ{2` δ{2` ε´ δ “ ε.

The joint continuity of multiplication follows. The group is clearly commutative, and it
is Hausdorff since if γ ‰ λ then there is some x P G such that γpxq ‰ λpxq; put ε :“
|γpxq ´ λpxq|{2 and note that γUptxu, εq and λUptxu, εq are disjoint open sets containing
γ and λ respectively. �

We call pG endowed with the above topology the dual group of G.

Proposition 10.2. Suppose that G is a compact topological group. Then pG is discrete.

Proof. Suppose that γ P pG and suppose that there is x P G is such that γpxq ‰ 1. Let y P G
be such that |γpyq ´ 1| is maximal (which exists since G is compact and x ÞÑ |γpxq ´ 1| is
continuous) and note that by assumption this is positive. If |γpyq ´ 1| ă 1 then we have

|γpy2q ´ 1| “ |γpyq2 ´ 1| “ |p2` pγpyq ´ 1qq||γpyq ´ 1|

ě p2´ |γpyq ´ 1|q|γpyq ´ 1| ą |γpyq ´ 1|,
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since |γpyq ´ 1| ą 0 by assumption. This is a contradiction. Hence γ R UpG, 1q i.e.
UpG, 1q “ t1

pGu where 1
pG denotes the trivial character. It follows that the group is discrete.

�

Proposition 10.3. Suppose that G is a discrete topological group. Then pG is compact.

Proof. The set pG is a subset of the set of functions G Ñ S1, and the latter space is
compact when endowed with the product topology by Tychonoff’s theorem. On the other
hand since G is discrete the only compact sets in G are finite and hence the topology on
pG is the topology induced by considering it as a subspace of the set of functions G Ñ S1

with the product topology. It remains to check that pG is closed at which point it follows
that it is compact. This last fact follows since the sets tf : G Ñ S1 : fpxyq “ fpxqfpyqu
are closed for each x, y P G, and hence

č

ttf : GÑ S1 : fpxyq “ fpxqfpyqu : x, y P Gu

is closed. This is the set of all homomorphisms G Ñ S1, but all homomorphisms are

continuous since G is discrete and hence this set equals pG. �

Exercise 10.4. Show that pZ – T, pT – Z and pR – R.

A key application of our Haar integral is then the following result establishing the fact

that if G is locally compact and Hausdorff then so is pG.

Theorem 10.5. Suppose that G is a locally compact Hausdorff group. Then pG is locally
compact.

Proof. Let I be a left Haar integral on G and f0 P C
`
cpctpGq have Ipf0q “ 1. Write K for

a compact set supporting f0 and U for a compact neighbourhood of the identity (which
exists since G is locally compact). Apply Urysohn’s Lemma to get a continuous compactly
supported F : GÑ r0, 1s such that F pxq “ 1 for all x P UK. Consider

V :“ tγ P pG : |γpxq ´ 1| ď ε for all x P Ku where ε :“ 1{4IF }f0}8

so that V certainly contains an open neighbourhood of the identity: UpK, εq.
Note that if γ P V and λ P γV then by the triangle inequality we have

|Ipf0λq ´ 1| “ |Ipf0pλ´ 1qq| ď 2ε}f0}8IF ď 1{2,

and hence |Ipf0λq| ě 1{2 by the triangle inequality again.

Claim. Suppose that κ, δ ą 0. Then there is a symmetric open neighbourhood of the
identity Lδ,κ such that if |Ipf0γq| ě κ then |1´ γpyq| ă δ for all y P Lδ,κ.

Proof. By Lemma 8.5 there is an open neighbourhood of the identity Lδ,κ (which we may
assume is contained in U) such that }λypf0q ´ f0}8 ă δκ{IF . Importantly Lδ,κ does not
depend on γ. But then if y P Lδ,κ we have

|1´ γpyq|κ ď |pγpyq ´ 1qIpf0γq| “ |Ipf0pλy´1pγq ´ γq|

“ |Ippλypf0q ´ f0qγq| ď Ip|λypf0q ´ f0|q ă δ,

since supppλypf0q ´ f0q Ă UK. The claim is proved. �
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We write C for the set of functions GÑ S1 endowed with the product topology so that
C is compact. Now V is a subset of C and is closed in C since it is an intersection of closed
sets:

V “
č

ttf P C : fpxyq “ fpxqfpyqu : x, y P Gu

X
č

ttf P C : |fpxq ´ 1| ď δu : δ ą 0, x P Lδ,1{2u

X
č

tf P C : |fpxq ´ 1| ď εu : x P Ku.

Certainly all the sets on the right are closed. To see the equality note that V is a set of
homomorphisms and so contained in the first big intersection; by the claim (and the fact
that the trivial character is in V ) V is contained in the second big intersection; and by
definition of V it is contained in the third big intersection. Moreover, if f P C and f is
in the first big intersection then f is a homomorphism. If f is a homomorphism and in

the second big intersection then f is continuous, and hence in pG. Finally, the last big
intersection then restricts to elements of V .

Compactness of V (in the compact-open topology on pG) follows if every cover of the form
tγUpKγ, δγq : γ P V u (where Kγ is compact and δγ ą 0) has a finite subcover. Write Lγ for
Lδγ{2,1{2 and note that by compactness of Kγ there is a finite set Tγ such that Kγ Ă TγLγ.

Suppose that λ P γUpTγ, δγ{2qXV then γλ P UpTδ, δγ{2qXγV . Thus |Ipf0γλq| ě 1{2 and

so the claim gives |1´γpyqλpyq| ă δγ{2 for all y P Lγ. But we also have |1´γpyqλpyq| ă δγ{2

for all y P Tγ and hence by the triangle inequality |1 ´ γpyqλpyq| ă δγ for all y P Kγ. We
conclude that

γUpTγ, δγ{2q X V Ă γUpKγ, δγq X V.

But then tγUpTγ, δγ{2q : γ P V u is a cover of V by sets that are open in C, and hence it
has a finite subcover which leads to a finite subcover of our original cover. �

Exercise 10.6. Suppose that G is a topological group. Write HpGq for the set of contin-
uous homomorphisms GÑ C˚ and show that HpGq is a topological group in the compact-
open topology inherited from CpGq. On the other hand show that we may have G locally
compact and Hausdorff while HpGq is not locally compact.

As a last result of this section we have the following.

Proposition 10.7. Suppose that G is a locally compact Hausdorff group. Then the map

Gˆ pGÑ S1; px, γq ÞÑ γpxq

is continuous.

Proof. Suppose that x P G and γ P pG and let L Ă tx1 P G : |γpx1q ´ 1| ă δu be an
open set with compact closure – such exists since G is locally compact. Now suppose that
px1, γ1q P xLˆ γUpxL, δq – an open neighbourhood of px, γq – then

|γ1px1q ´ γpxq| ď |γ1px1q ´ γpx1q| ` |γpx1q ´ γpxq|

“ |pγ1γqpx1q ´ 1| ` |γpx´1x1q ´ 1| ă 2δ.

It follows that the map is continuous. �
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!4Note that this map is not a homomorphism since γpxqλpyq is not in general equal to
pγλqpxyq – it is a bihomomorphism.

11. Annihilators, Bohr sets, and Pontryagin’s map

Suppose that G is a topological group and S Ă G. The annihilator of S is the set

SK :“ tγ P pG : γpxq “ 1 for all x P Su

which is visibly a closed (since pγ, xq ÞÑ γpxq is continuous in γ by Proposition 10.7)

subgroup of pG.

Proposition 11.1. Suppose that G is a topological group and H is a closed normal subgroup

of G. Then there is a continuous algebraic isomorphism φ : zG{H Ñ HK. If G is locally
compact and Hausdorff then φ is a topological isomorphism.

Proof. We write q : GÑ G{H for the usual quotient map and consider the map

φ : zG{H Ñ HK; γ ÞÑ γ ˝ q.

First, this map is well-defined: to see this simply note that for all x P H we have γpqpxqq “
γpHq “ γp1G{Hq “ 1. It is certainly a homomorphism and injective since q is surjective.
On the other hand if γ P HK then γ is constant on cosets of H and the map γ̃ : G{H Ñ

S1;xH ÞÑ γpxq is a well-defined continuous homomorphism and φpγ̃q “ γ. We conclude
that φ is surjective.

The map q : G Ñ G{H is continuous and so φ is continuous since qpKq is compact
whenever K is compact. Finally, suppose that G is locally compact and Hausdorff. Then
there is an open neighbourhood U of the identity with compact closure. For a compact
K Ă G{H, the set tqpxUq : x P Gu is an open cover of K (since q is open) and so has
a finite subcover tqpx1Uq, . . . , qpxmUqu. Let K 1 :“ px1U Y ¨ ¨ ¨ Y xmUq X q´1pKq which is
then the union of a finite number of compact sets intersected with a closed set, and hence
compact. Moreover, qpK 1q “ K and the last part of the result is proved. �

Given a set Λ Ă pG the set ΛK is a subset of
p

pG, but there is also a set

Λ˝ :“ tx P G : γpxq “ 1 for all γ P Λu.

It will turn out that Λ˝ and ΛK are essentially the same, and to show this we shall need a
tighter handle on the topology on G.

Suppose that G is a locally compact group, Λ is a compact subset of pG, and δ ą 0. Then
we write

BohrpΛ, δq :“ tx P G : |γpxq ´ 1| ă δ for all γ P Λu

and call this set a Bohr set with frequency set Λ. A Bohr neighbourhood is a translate
of a Bohr set.

!4In the literature Bohr neighbourhood is sometimes used to mean what we are calling
a Bohr set, and sometimes Bohr sets are defined to be sets of the form

tx P G : |Arg γpxq| ă δ for all γ P Λu
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which leads to slight differences in some estimates.

Lemma 11.2. Suppose that G is a locally compact Hausdorff group, Λ is a compact subset

of pG, and δ ą 0. Then BohrpΛ, δq is open.

Proof. Fix x0 P BohrpΛ, δq. For each λ P Λ, Proposition 10.7 gives us open neighbourhoods

of the respective identities Uλ Ă G and Γλ Ă pG such that x0Uλ ˆ λΓλ is a subset of
tpx, γq : |γpxq ´ 1| ă δu. The sets tλΓλ : λ P Λu form an open cover of Λ and so there is a
finite subcover λ1Γλ1 , . . . , λmΓλm of Λ; let U 1 :“ Uλ1 X ¨ ¨ ¨ XUλm . Then x0U

1 Ă BohrpΛ, δq,
and the set is open as required. �

!4When G is Abelian it turns out that Bohr neighbourhoods form a base for the topol-
ogy on G, however in the present level of generality they do not:

Example 11.3. Suppose that G is a non-Abelian finite simple group with the Hausdorff

topology. Then pG is trivial and the Bohr neighbourhoods form a base for the indiscrete
topology on G and in particular not for the Hausdorff topology.

Proof. Any character is a homomorphism into S1 so its kernel is either trivial or the whole
of G. Since G is non-Abelian while S1 is Abelian we conclude that the kernel is the whole
of G. Since pG is trivial the Bohr neighbourhoods are all just the whole of G and so they
generate the indiscrete topology which is not the Hausdorff topology on G since G has
more than one element (the one-element group is Abelian). �

Given a topological group G we write

α : GÑ
p

pG;x ÞÑ pγ ÞÑ γpxqq,

which we shall call this the Pontryagin duality map. !4This is not standard.

Theorem 11.4. Suppose that G is a locally compact Hausdorff group. Then α is a con-
tinuous homomorphism.

Proof. The map is visibly a homomorphism and it is continuous by Lemma 11.2 given the

definition of the topology on
p

pG. �

It turns out that if G is Abelian then α is a topological isomorphism, but to prove this
we shall need a better idea of the structure of locally compact Abelian Hausdorff groups.

12. The structure of locally compact Abelian groups

In this section we shall look to develop a more detailed picture of the structure of locally
compact Abelian groups.

A topological group G is said to be monothetic if there is a (continuous) homomorphism
ZÑ G whose image is dense in G. (We regard Z as discrete here.)

Proposition 12.1. Suppose that G is a locally compact Hausdorff monothetic group. Then
G is compact or else G is topologically isomorphic to Z.
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Proof. Write Z for the image of Z in G and let U be a symmetric open neighbourhood of
the identity such that U2 has compact closure. Suppose UXZ is finite and x P UzZ. Then
for all z P U XZ there is an open set Wz containing x and not z and so x P U X

Ş

zPUXZWz

is an open set containing x and not containing any of Z. This contradicts the density of
Z.

We have two possibilities: if U X Z is finite and equal to U then, again since G is
Hausdorff, we have that G is discrete and so G is a quotient of Z and these are either finite
(and so compact) or the whole of Z.

Alternatively, U XZ is infinite. In this case let x P G be such that Z “ txn : n P Zu and
N :“ txn : n P Nu. Since U X Z is infinite and U is symmetric we see that U contains xn

for some arbitrarily large values of n, and hence Z Ă NU´1 “ NU and Z Ă N´1U . Since
ZU “ G we then have that G Ă NU2 and G Ă N´1U2, and so for each z P G we may let
npzq P N be minimal such that z P xnpzqU2.

Since U2 is compact and G Ă N´1U2 there is some n0 such that

U2 Ă tx´1, x´2, . . . , x´n0uU2.

In view of the above there is some 1 ď i ď n0 such that x´npzqz P x´iU2, whence z P
xnpzq´iU2 Ă xnpzq´iU2. By minimality of npzq it follows that npzq´ i ď 0 and so npzq ď n0.
We conclude that

G Ă tx, x2, . . . , xn0uU2

and as a finite union of compact spaces is compact. The result is proved. �

In the next lemma we make essential use of the fact that G is Abelian, and recall that
we shall write 0G for the identity of an Abelian group G, and nK for the n-fold sum of K
with itself.

Lemma 12.2. Suppose that G is an Abelian Haudorff topological group and K is a compact
symmetric neighbourhood of the identity with G “

Ť

nPN nK. Then there is some m P N
such that G contains a discrete subgroup L isomorphic to Zm, and G{L is compact with
K X L “ t0Gu.

Proof. Since K is compact so is K ` K, and since K is a neighbourhood it follows that
there is a finite set X Ă K such that K ` K Ă X ` K. Let H be the group generated
by X and note by induction that G “ K ` H. Since H is finitely generated there is a
maximal n P N0 such that Zn is a subgroup of H; let L ď H be free Abelian and discrete
in G, and have maximal – say m P N0 – generators of any subgroup with these properties.
Such exists since any free Abelian subgroup of H has at most |X| generators. Since L is
discrete and K is compact K X L is finite and so by passing to a finite index subgroup of
L we may assume K X L “ t0Gu.

Write q : G Ñ G{L for the quotient map. Since H is finitely generated, so is qpHq
and we can write qpLq “ T ` F where T is a finite torsion group and F is a free Abelian
group generated by, say, y1 ` L, . . . , yl ` L. (This is the structure theorem for finitely
generated Abelian groups.) Let Hi be the group generated by yi ` L and suppose that
there is some 1 ď i ď l such that Hi (the closure of Hi in G{L) is not compact. Then
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by Proposition 12.1 Hi is topologically isomorphic to Z i.e. discrete in G{L. Consider L1,
the group generated by yi and the elements of L. Since F is free, L1 is free and has m` 1
generators. Since Hi is discrete, tLu is open in Hi and there is an open set U Ă G{L such
that U X Hi “ tLu. But then q´1pUq X L1 “ L – Ą follows since L Ă L1 and L P U so
L Ă q´1pLq; Ă follows since if u P L1 then u “ zyi ` l for some z P Z and l P L, and if
qpuq P U the zyi ` L “ qpzyi ` lq P U , but also qyi ` L P L1{L “ Hi, so zyi ` L “ L and
hence z “ 0 and u P L as required. Since L is discrete there is an open set V Ă G such
that V X L “ t0Gu, and hence q´1pUq X V X L1 “ t0Gu and so L1 is discrete contradicting
maximality of m.

Thus Hi is compact for every 1 ď i ď l. We saw above that G “ K ` H and so
G{L “ qpK`Hq “ qpKq`T `H1`¨ ¨ ¨`Hl. The set qpKq is compact since K is compact
and q is continuous; T is compact since it is finite; and the His were shown to be compact
above. It follows that G{L is a sum of compact sets and so compact as required. �

Note that since KXL “ t0Gu we must have that L is closed in G: otherwise there would
be some x P G such that every neighbourhood of x containing infinitely many elements of
L. Let U be a symmetric neighbourhood of the identity with U ` U Ă K. Suppose that
z, w P px` Uq X L. Then z ´ w “ U ´ U “ U ` U Ă K, but also L is a subgroup and so
z ´ w P L and hence z ´ w P K X L and we have z “ w. Thus x ` U is a neighbourhood
of x intersecting L in at most 1 point.

We can also identity copies of the reals in certain groups.

Lemma 12.3. Suppose that G is connected with no infinite compact subgroup and it is
locally isomorphic to Rk, meaning that there is some neighbourhood U of 0G, an open ball B
around the origin in Rk, and a homeomorphism φ : B Ñ U such that φpx`yq “ φpxq`φpyq
whenever x, y, x` y P B. Then G is topologically isomorphic to Rk.

Proof. For each x P Rk there is some npxq P N such that for all n ě npxq we have
x{npxq P B. Suppose that n,m ě npxq. Then

nφpx{nq “ nφp

m times
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

px{nmq ` ¨ ¨ ¨ ` px{nmqq

“ np

m times
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

φpx{nmq ` ¨ ¨ ¨ ` φpx{nmqq “ nmφpx{nmq

and similarly we have mφpx{mq “ nmφpx{nmq and so tnφpx{nq : n ě npxqu has one
element – call this element ψpxq. Thus ψ is a map Rk Ñ G and our aim is to show it
is a topological isomorphism. First, it is a homomorphism: if x, y P Rk then for n ě
maxtnpxq, npyq, npx` yqu we have

ψpxq ` ψpyq “ nφpx{nq ` nφpy{nq “ nφppx` yq{nq “ ψpx` yq.

ψ is also continuous: by translation invariance it suffices to check that for sufficiently small
open neighbourhoods V of 0 in G we have ψ´1pV q open. This follows since for V Ă U
we have ψ´1pV q “ φ´1pV q which is open since φ is continuous. Similarly ψ is open. But
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then ψpRkq is an open subgroup of G which is assumed connected and so ψ is surjective.
Finally, it remains to check that ψ is injective.

If ψpxq “ 0 then nφpx{nq “ 0 for all n ě npxq. If x ‰ 0 then for m P N0 write Dm for
the group generated by φpx{npxq2mq. We have some important properties of the Dms:

(i) For 0 ď a ď 2m the elements aφpx{npxq2mq are all distinct so Dm has size at
least 2m ` 1. To see this suppose that 0 ď a, a1 ď 2m and aφpx{npxq2mq “
a1φpx{npxq2mq, so that φppa ´ a1qx{npxq2mq “ 0 (since |a ´ a1| ď 2m) and so by
the homeomorphism property of φ we have a “ a1.

(ii) Dm Ă 2npxqφpBq. To see this, it suffices to show that aφpx{npxq2mq P npxqφpBq
whenever 0 ď a ă npxq2m since npxq2mφpx{npxq2mq “ 0. Write a “ unpxq ` v
for 0 ď v ă npxq and 0 ď u ă 2m. Then aφpx{npxq2mq “ npxqφpux{npxq2mq `
vφpx{npxq2mq P 2npxqφpBq.

NowDm ď Dm`1 for allm and soD :“
Ť

mDm is also a subgroup ofG andD Ă 2npxqφpBq.
Since B has compact closure, D has compact closure and it is of course infinite since the
groups Dm are of unbounded size. This contradicts the assumption that G has no compact
infinite subgroup. �

We also need an analogue of Proposition 11.1.

Proposition 12.4. Suppose that G is a locally compact Hausdorff Abelian group and H ď

G is a closed subgroup. Then pG{HK is topologically isomorphic to pH.

This would follow from Proposition 11.1 if we had Pontryagin duality, but otherwise it

is hard to establish surjectivity of the natural map pGÑ pH; γ ÞÑ γ|H . We shall revisit this
after establishing our next key result.

Theorem 12.5 (The Principal Structure Theorem). Suppose that G is a locally compact
Hausdorff Abelian group. Then G has an open subgroup G1 which is (topologically isomor-
phic to) the direct sum of a compact group H and Rn for some n P N0.

Proof. Let L be the connected component of 0G in G. The quotient group G{L is a locally
compact Hausdorff totally disconnected group and so by van Dantzig’s Theorem there is
a compact open subgroup K in G{L. Write q : G Ñ G{L for the usual quotient map and
let G1 :“ q´1pKq which is an open subgroup of G. Since K is compact it contains no open
subgroup of infinite index (otherwise K would be a union of infinitely many disjoint open
sets – the cosets of this subgroup). Every open subgroup of G1 contains L since L is the
connected component of 0G and so G1 contains no open subgroup of infinite index (since
q is open).

As in the proof of Proposition 11.1 there is a compact neighbourhood V in G1 such that
qpV q “ K. The group (algebraically) generated by V meets every coset of L in G1 and is
open and so is the whole of G1 since L is connected. It follows that we may apply Lemma
12.2 to get a discrete subgroup H ď G1 with H free Abelian on n generators such that
G1{H is compact.

By Proposition 12.4 we have that xG1{H
K is topologically isomorphic to pH, which itself

is topologically isomorphic to Td. By Proposition 11.1 we have that HK is topologically
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isomorphic to {G1{H and is hence discrete. Hence xG1 is locally isomorphic to Rd and L1,

the component of the identity in xG1, is open in xG1. On the other hand if Γ were a compact

subgroup of xG1 then Γ˝ would be11 an open subgroup of G1, and by Proposition 11.1 we
see that G1{Γ

˝ is infinite if and only if pΓ˝qK is infinite, but Γ Ă pΓ˝qK and so if Γ is infinite
then Γ˝ has infinite index in G1 which we know not to be true. It follows by Lemma 12.3
that L1 is topologically isomorphic to Rd.

Let Λ ď xG1 be maximal subject to the condition L1 X Λ “ t0
xG1
u. Since Λ has at most

one element in each coset of L1 we see that Λ is discrete, and of course Λ ` L is a direct

sum. Moreover, Λ`L1 “ xG1. To see this, suppose there were some γ P xG1zpΛ`L
1q. Then

by maximality there would be γ0 P Λ and k P Z˚ such that γ0 ` kγ “ x P L1 where x ‰ 0.
Then kpx{k ´ γq P Λ and γ1 :“ x{k ´ γ R L1 ` Λ, and so again there is γ2 P Λ and m P Z˚
such that γ2 `mγ1 “ z P L1 and z ‰ 0. But then

kγ2 ` kmγ1 “ kz ‰ 0

and since kγ1, γ2 P Λ we see that the left is in Λ but the right in L1 contradicting the fact
that Λ ` L1 is a direct sum. We shall be done once we have completed the proof of the
duality theorem. �

13. Completing the duality theorem

We now turn to the last parts we need for the proof of the duality theorem.

Lemma 13.1. Suppose that G is an Abelian topological group and H is an open subgroup

of G. Then for every γ P pH there is λ P pG such that λ|H “ γ.

Proof. The argument here is a typical Zorn’s Lemma argument. We begin with the engine:

Claim. Suppose that γ P pH, x P GzH, and K is the group generated by x and H. Then

there is some λ P pK such that λ|H “ γ.

Proof. Let k P N0 be minimal (when N0 is partially ordered by divisibility) such that
kx P H (i.e. k is the order of x`H as an element of G{H with the convention that infinite
order is denoted 0), and let w be a kth root of γpkxq (with the convention that it is 1 if
k “ 0); define λpzx` hq :“ wzγphq for all z P Z and h P H. We need to check this is well-
defined so that if zx` h “ z1x` h1 then pz ´ z1qx “ h1´ h P H and so k � z ´ z1 (meaning
z “ z1 if k “ 0, and hence h “ h1) whence wzγphq “ wz

1

γppz ´ z1qxqγphq “ wz
1

γph1q as
required. λ is also visibly a homomorphism and the claim is proved since H is open in K,
and so λ is continuous since γ is continuous and K{H is discrete. �

Let L be the set of pairs pK,λq such that H ď K ď G and λ P pK has λ|H “ γ. This set
is partially ordered by pK,λq ď pK 1, λ1q if K ď K 1 and λ “ λ1|K . If C is a chain in L then
K˚ :“

Ť

tK : pK,λq P Cu is a group containing H and all K with pK,λq P C, and we can
define λ˚pxq for all x P K˚ by setting λ˚pxq “ λpxq whenever pK,λq P C and x P K.

11This requires duality as well: in particular that pΓ˝qK “ Γ when Γ is a closed subgroup. We shall
revisit this when we discuss separation of characters.
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Thus by Zorn’s Lemma L has a maximal element pK,λq and by the claim if x P GzK
then L would contain a larger element. This contradiction proves the result. �

The challenge with the above result is extending to the case where H is a closed subgroup
of G, in which case we need to find a way to preserve continuity on the extension which is
not a problem when H is open since then G{H is discrete.

Corollary 13.2. Suppose that G is a discrete Abelian group. Then pG separates the points
of G, and hence the Pontryagin duality map is an injection.

Proof. Suppose that x ‰ 0G. Then the group generated by x, call it H, is cyclic and so

there is γ P pH such that γpxq ‰ 1. It follows by Lemma 13.1 that this character can be
extended to G and we have the result. �

We can also use Lemma 13.1 to extend some of our other results.

Proposition 13.3. Suppose that G and H are locally compact Hausdorff Abelian groups

and φ : GÑ H is a continuous homomorphism. Then the map φ˚ : pH Ñ pG; γ ÞÑ γ ˝φ is a
well-defined continuous homomorphism. If φ is surjective then φ˚ is injective; if φ is open
and injective then φ˚ is surjective.

Proof. Certainly φ˚ is well-defined. To see that it is continuous note pφ˚q´1pUpK, δqq “
UpφpKq, δq, and if K Ă G is compact then φpKq is compact since φ is continuous. If φ is
surjective and φ˚pγq “ 1

pG then γpφpxqq “ 1 for all x P G and hence γpzq “ 1 for all z P H
i.e. γ “ 1

pH .

Now if φ is injective and open and γ P pG, then φpGq is open in H and so by Lemma 13.1
there is a continuous homomorphism λ : H Ñ S1 such that γ “ φ˚pλq as required. �

Exercise 13.4. Suppose that G a finitely generated Abelian Hausdorff topological group.
Use the structure theorem for finitely generated Abelian groups to show that the Pontryagin
duality map is a topological isomorphism.

Proposition 13.5. Suppose that G is a compact Abelian Hausdorff group. Then the Pon-
tryagin duality map is a surjection.

Proof. The map is a continuous homomorphism, and αpGq separates the points of pG. It
is also compact since G is compact and so to see it is onto we shall show that the image

is dense. Since pG is discrete, the compact sets in pG are all finite so the open sets in
p

pG are

generated by the sets UpK, δq where K Ă pG is finite.

Write L for the group generated by K and note that the embedding L Ñ pG is an
open injective homomorphism and so by Proposition 13.3 there is a continuous surjective

homomorphism φ˚ :
p

pG Ñ pL. Now αpGq separates the points of pG and so αpGq separates

the points of pL. Since L is finitely generated the Pontryagin duality map is an isomorphism

and so φ˚pαpGqq is dense in pL which tells us that αpGq is dense in
p

pG.

Of course the continuous image of a compact set is closed and so αpGq “
p

pG as required.
�
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It will be convenient to formalise what we have been doing and say that Pontryagin
duality holds for a group G if Pontryagin’s duality map is a topological isomorphism. At
this point we have shown in various exercises that Pontryagin duality holds for finitely
generated discrete Abelian groups; for T; for Z; and for R.

Exercise 13.6. Show that if duality holds for G1, . . . , Gn then it holds for G1 ‘ ¨ ¨ ¨ ‘Gn.

Rather harder that Corollary 13.2 we have the following which is usually established for
compact groups as a consequence of the Peter-Weyl Theorem.

Theorem 13.7. Suppose that G is a locally compact Hausdorff Abelian group. Then the
characters on G separate points.

Sketch proof: Suppose that x0 ‰ 0G. Our aim is to construct a character γ0 P pG such that
γ0px0q ‰ 1. We begin by choosing a continuous function with this property.

By Urysohn’s Lemma and Lemma 2.2 there is a continuous function f0 taking values in
r0, 1s with f0p0Gq “ 1 and support in a symmetric compact neighbourhood of the identity
K such that x0 R K `K.

Let I be a Haar integral for G and define an inner product on CcpctpGq:

xf, gy :“ Ipfgq for all f, g P CcpctpGq,

writing } ¨ } for the induced norm; and a map

M : CcpctpGq Ñ CcpctpGq; g ÞÑ py ÞÑ Ixpf0pxqgp´x` yqqq,

which is a well-defined linear map with }Mg} ď I|f0|}g}. In particular, if L contains the
support of g then the support of Mg is contained in K ` L.

This sort of operator is sometimes called a convolution operator and Mg is sometimes
written f ˚ g in the literature. By design M ı 0 since e.g. Mf ‰ 0 for any f P C`cpctpGq
that is not identically 0.

The space CcpctpGq endowed with the inner product x¨, ¨y has a completion which we
denote H, and the operator M extends to a map H Ñ H (which we also denote M) with
the same norm so, in particular }Mh} ď I|f0|}h} for all h P H. We shall regard CcpctpGq
as a dense subset of H in the obvious way. We write Tx : CcpctpGq Ñ CcpctpGq; f ÞÑ λxpfq
which has }Txf} “ }f} for all f P CcpctpGq by translation-invariance of the Haar integral.
These maps too extend to maps H Ñ H and also denoted Tx with }Txh} “ }h} for all
h P H. Moreover, since G is commutative TxM “MTx for all x P G.

Since M ı 0 the operator norm M is not 0. Let ε ą 0 be optimised shortly and let
h P H have unit norm and be such that |}Mh}2´}M}2| ă ε which is possible by definition.
Then |xh,M˚Mhy ´ }M}2| ă ε, and so

}M˚Mh´ }M}2h}2 ď 2}M}4 ´ 2}M}2p}M}2 ´ εq “ 2ε}M}4.

If G is compact then the operator M is compact and we can go further than this and
identify a non-trivial eigenspace of M˚M . The dimension of this space is finite and is
closed under the action of the operators Tx. This gives a continuous homomorphism from
G to UnpCq, the nˆ n unitary matrices (where n is finite). Since G is Abelian these maps
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commute and can be simultaneously diagonalised which leads to the homomorphism we
want. �

As a final element we have the next lemma which provides a way of bootstrapping almost
homomorphism to give actual homomorphisms.

Lemma 13.8. Suppose that G is a Hausdorff Abelian topological group containing a sym-
metric compact neighbourhood of the identity K with G “

Ť

nPN nK, and γ : GÑ C˚ (not
necessarily a homomorphism) is continuous and has

ˇ

ˇ

ˇ

ˇ

γpx` yq

γpxqγpyq
´ 1

ˇ

ˇ

ˇ

ˇ

ă ε ă
1

3
for all x, y P G.

Then there is λ P pG such that |λpxq ´ γpxq| “ Opεq for all x P G.

Sketch proof: The idea here is that we can take a map which is ‘almost’ a homomorphism
and find a nearby map which is actually is a homomorphism.

By Urysohn’s Lemma there is Fn : G Ñ r0, 1s be continuous with Fnpxq “ 1 for all
x P nK and suppFn Ă pn` 1qK. In particular for all x P G and ε ą 0 there is n such that
Ip|λxpFnq ´ Fx|q ă ε.

Since G is a locally compact Hausdorff group it supports a Haar integral I. Put

λpxq :“ γpxq lim
nÑ8

exp

¨

˝

IwFnpwq log
´

γpx`wq
γpwqγpxq

¯

IFn

˛

‚ for all x P G.

This makes sense provided ε ă 1 since log z is well-defined and continuous on tz P Z :
|z ´ 1| ă 1u, and it is a locally uniform limit of continuous functions and so continuous.
Note that

|λpxq ´ γpxq| “ Opεq for all x P G

by monotonicity of the Haar integral.
For course, for all x, y, z P G we have

γppx` yq ` wq

γpx` yqγpwq
¨
γpxqγpwq

γpx` wq
¨
γpyqγpwq

γpy ` wq

“
γpx` py ` wqq

γpxqγpy ` wq
¨
γpxqγpwq

γpx` wq
¨
γpxqγpyq

γpx` yq
,
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and hence for ε ă 1{3 (which is used to ensure that log abc “ log a` log b` log c whenever
|a´ 1|, |b´ 1|, |c´ 1| ă 1{3) we have

λpx` yq

λpxqλpyq
“
γpx` yq

γpxqγpyq
¨ lim
nÑ8

exp

¨

˝

IwFnpwq log
´

γppx`yq`wq
γpx`yqγpwq

¨
γpxqγpwq
γpx`wq

¨
γpyqγpwq
γpy`wq

¯

IFn

˛

‚

“
γpx` yq

γpxqγpyq
¨ lim
nÑ8

exp

¨

˝

IwFnpwq log
´

γpx`py`wqq
γpxqγpy`wq

¨
γpxqγpwq
γpx`wq

¨
γpxqγpyq
γpx`yq

¯

IFn

˛

‚

“ lim
nÑ8

exp

¨

˝

IwFnpwq
´

γpx`py`wqq
γpxqγpy`wq

¯

IFn
´

IwFnpwq log
´

γpx`wq
γpxqγpwq

¯

IFn

˛

‚“ 1.

The result is proved. �

Corollary 13.9 (Pontryagin Duality). Suppose that G is a locally compact Abelian Haus-
dorff group. Then α is a topological isomorphism.

Sketch proof: Theorem 13.7 gives that α is injective and then an application of Stone-
Weierstrass will give that αpGq is dense from which one can establish the result. �
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