
Quantum Theory

Sheet 1 — MT20

1. The potential energy for an electron in a hydrogen atom is

V (r) = −
e2

4πǫ0r

where −e is the charge of the electron, r is its distance from the nucleus, and ǫ0 is a

constant. In a circular orbit the electron has angular momentum L = mvr, where m

is the electron mass and v is its speed. In 1913 Bohr proposed that L is quantized,

satisfying L = n~ where n is a positive integer.

(a) Given that Newton’s second law for circular orbits is

m
v2

r
= V ′(r) ,

show that Bohr’s quantization implies r = n2a, where a =
4πǫ0~

2

me2
is called the

Bohr radius.

(b) Show that the total energy E = 1

2
mv2 + V (r) is given by

E = −
~
2

2ma2
·
1

n2
.

[This successfully reproduces the hydrogen atom energy levels (1.3) in the lecture

notes, but a full quantum mechanical treatment will only appear at the end of our

course.]

2. A particle of mass m moves in the interval [−a, a] where the potential V = V0 is

constant. Using the stationary state Schrödinger equation show that the energy levels

of the system are

En = V0 +
n2π2

~
2

8ma2
,

where n is a positive integer, and find the corresponding normalized wave functions.

Show that the wave functions are all either even or odd functions of x.

3. A particle of mass m moving on the x-axis has a (non-normalized) ground state wave

function sech2 x with energy −2~2/m.

(a) Show that the potential is V (x) = −3~
2

m
sech2 x.

(b) An excited state wave function for the particle is ψ(x) = tanh x sech x. What is

the energy of this state?
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4. Consider a particle of mass m confined to a box in three dimensions, with potential

V (x, y, z) =







0 , 0 < x < a , 0 < y < b , 0 < z < c ,

+∞ otherwise ,

where (x, y, z) are Cartesian coordinates. By separating variables in the stationary state

Schrödinger equation, show that the allowed energies of the particle are

En1,n2,n3
=
π2
~
2

2m

(

n2

1

a2
+
n2

2

b2
+
n2

3

c2

)

,

where n1, n2, n3 are positive integers, and find the corresponding normalized wave func-

tions. [You may use the results for the one-dimensional box.]

5. A particle of mass m moves on the x-axis in a potential V (x), where V is an even

function (that is V (x) = V (−x)). Let ψ(x) be a normalized wave function satisfying

the stationary state Schrödinger equation with energy E.

(a) Show that ψ̃(x) ≡ ψ(−x) is also a normalized wave function.

(b) By considering the wave functions ψ± = ψ ± ψ̃, or otherwise, deduce that there is

either an even or an odd wave function (or both) satisfying the same Schrödinger

equation.

6. Suppose that Ψ(x, t) satisfies the one-dimensional time-dependent Schrödinger equation

with potential V (x) (assumed real). We define ρ(x, t) = |Ψ(x, t)|2 and

j(x, t) =
i~

2m

(

Ψ
∂Ψ

∂x
−Ψ

∂Ψ

∂x

)

.

(a) Show that, as a consequence of the Schrödinger equation,

∂ρ

∂t
+
∂j

∂x
= 0 .

(b) Show further that j vanishes identically if and only if there exists a nowhere zero

function λ(t) such that λ(t)Ψ(x, t) takes only real values.

7. * (Optional) Verify that the Gaussian wave packet

Ψ(x, t) =
1

π1/4
√

1 + (i~t/m)
exp

[

−
x2

2[1 + (i~t/m)]

]

,

satisfies the free Schrödinger equation and is normalized for all times t.
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