Quantum Theory
Sheet 1 — MT20

1. The potential energy for an electron in a hydrogen atom is

62

V(r)=

dmegr

where —e is the charge of the electron, r is its distance from the nucleus, and ¢, is a
constant. In a circular orbit the electron has angular momentum L = mur, where m
is the electron mass and v is its speed. In 1913 Bohr proposed that L is quantized,

satisfying L = nh where n is a positive integer.

(a) Given that Newton’s second law for circular orbits is

Amegh?
€0 is called the

show that Bohr’s quantization implies r = n?a, where a = 5
me
Bohr radius.

(b) Show that the total energy E = $mv® + V (r) is given by

h? 1
F=——.-—.
2ma? n?

[This successfully reproduces the hydrogen atom energy levels (1.3) in the lecture
notes, but a full quantum mechanical treatment will only appear at the end of our

course.]

2. A particle of mass m moves in the interval [—a,a] where the potential V' = 1} is
constant. Using the stationary state Schrodinger equation show that the energy levels

of the system are
n’n?h?

E, =V,
o+ 8ma?

)

where n is a positive integer, and find the corresponding normalized wave functions.

Show that the wave functions are all either even or odd functions of .

3. A particle of mass m moving on the z-axis has a (non-normalized) ground state wave

function sech® 2 with energy —2h2/m.

(a) Show that the potential is V() = —32 sech® .

(b) An excited state wave function for the particle is ¢(z) = tanhxsechz. What is
the energy of this state?
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4.

7.
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Consider a particle of mass m confined to a box in three dimensions, with potential

0, O<zrz<a,0<y<b,0<z<ec,
Vz,y,2) =
400 otherwise ,

where (z,y, z) are Cartesian coordinates. By separating variables in the stationary state

Schrodinger equation, show that the allowed energies of the particle are

wh? (n? n2 n?
(_1+_2+_3) |

En nag,n3
1,n2,n3 2m Cl2 bQ CQ

where ny,no, ng are positive integers, and find the corresponding normalized wave func-

tions. [You may use the results for the one-dimensional boz.

. A particle of mass m moves on the z-axis in a potential V(z), where V is an even

function (that is V(z) = V(—=x)). Let 1(z) be a normalized wave function satisfying

the stationary state Schrodinger equation with energy E.
(a) Show that ¢)(x) = 1(—z) is also a normalized wave function.

(b) By considering the wave functions ¢y = 1) £ 1@, or otherwise, deduce that there is
either an even or an odd wave function (or both) satisfying the same Schrodinger

equation.

Suppose that W¥(z,t) satisfies the one-dimensional time-dependent Schrédinger equation
with potential V(z) (assumed real). We define p(x,t) = |¥(x,t)|? and

jlx,t) = i <\Ila—\1’ —Wa—qj> .

E—F%:O.

(b) Show further that j vanishes identically if and only if there exists a nowhere zero
function A\(¢) such that A(¢)¥(x,t) takes only real values.

* (Optional) Verify that the Gaussian wave packet

1 x?
T+ (htm) T {_2[1 + (iht/m)]] ’

satisfies the free Schrodinger equation and is normalized for all times ¢.

U(x,t) =
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