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Themes of the course

» Convergence of random variables
» Probabilistic limit laws:
» Laws of large numbers
» Central limit theorem
» Joint distributions
» Random processes:

» Markov chains
» Poisson processes



Review
Probability spaces and random variables

A probability space is a collection (€2, F,P) where:
> () is a set, called the sample space.
» F is a collection of subsets of 2. An element of F is called an
event.

» P is a function from F to [0, 1], called the probability
measure. It assigns a probability to each event in F.

If we think of the probability space as modelling some
“experiment”, then () represents the “set of outcomes”’ of the
experiment.



Events

The set of events F should satisfy the following natural conditions:

(1) Qe F

(2) If F contains some set A then F also contains its
complement A€ (i.e. 2\ A).

(3) If (A;,i € Z) is a finite or countably infinite collection of
events in F, then their union UIEI A; is also in F.

By combining (2) and (3), we can also get finite or countable
intersections as well as unions.



Probability axioms

The probability measure P should satsify the following conditions:

(1) P(2) =1

(2) If (4,7 € Z) is a finite or countably infinite collection of
disjoint events, then

P (U Ai> => P(A).

1€l i€l

The second condition is known as countable additivity.



Random variables

A random variable is a function from €2, for example to R.
A random variable represents an observable in our experiment;
something we can measure.

Formally, for a function X : 2 — R to be a random variable, we
require that the events

{we: X(w) <z}

are contained in F, for every x. (Then by taking complements and
unions, we will in fact have that the event {w € Q: X(w) € B} is
in F for a very large class of sets B).

We normally write just {X € B} for {w € Q: X(w) € B}. We
write P(X € B) for the probability of the event {X € B}.



» Within one experiment, there will be many observables! That

is, on the same probability space we can consider many
different random variables.

> We generally do not work with the sample space €2 directly.
Instead we work directly with the events and random
variables (the “observables”) in the experiment.



Examples of systems (or “experiments”) that we might model using a
probability space.

>

Throw two dice, one red, one blue. Random variables: the score on the
red die; the score on the blue die; the sum of the two; the maximum of
the two; the indicator function of the event that the blue score exceeds
the red score....

A Geiger counter detecting particles emitted by a radioactive source.
Random variables: the time of the kth particle detected, for k =1,2,...;
the number of particles detected in the time interval [0,¢] for t € Ry, ...

A model for the evolution of a financial market. Random variables: the
prices of various stocks at various times; interest rates at various times;
exchange rates at various times....

The growth of a colony of bacteria. Random variables: the number of
bacteria present at a given time; the diameter of the colonised region at a
given time....

A call-centre. The time of arrival of the kth call; the length of service
required by the kth caller; the wait-time of the kth caller in the queue
before receiving service....



Distribution

The distribution of a random variable X is summarised by its
(cumulative) distribution function:

Fx(z) =P(X < x).

Once we know F' we can obtain P(X € B) for a large class of sets B by taking

complements and unions.

F obeys the following properties:

(1) F is non-decreasing

(2) F'is right-continuous

(3) F(x) > 0asx — —o0

(4) F(z) = 1asx — o0.

Note that two different random variables (two different “observables” within

the same experiment) can have the same distribution. If X and Y have the

same distribution we write X < V.



Discrete random variables

A random variable X is discrete if there is a finite or countably
infinite set B such that P(X € B) = 1.

We can represent its distribution by the probability mass function
px(z) =P(X =2z), forz € R

We have

> > px(x) =1
> P(X € A) =) capx(z) for any set A C R.



Continuous random variables

A random variable X is continuous if its distribution function F'
can be written as an integral; i.e. there is a function f such that

P(X <z) = F(z) = /_z f(u)du.

f is the (probability) density function of X.

f is not unique; for example we can change the value at any single point
without affecting the integral. At points where F' is differentiable, it's natural
to take f(x) = F'(x).

For general (well-behaved) sets B,

P(X € B) = / @



Expectation

If X is discrete, its expectation (or mean) is given by
E(X) = Zarpx(x).

For X continuous, instead

We could unify these definitions (and extend to random variables which are
neither discrete nor continuous). For example, consider approximations of a
general random variable by discrete random variables (analogous to the
construction of an integral of a general function by defining the integral of a
step function using sums, and then extending to general functions using

approximation by step functions).



Properties of expectation

(1) EI4 =P(A) for any event A.

(2) FP(X >0)=1then EX > 0.

(3) (Linearity 1): E (aX) = aE X for any constant a.
(4)

4) (Linearity 2): E(X+Y)=EX +EY.

Expectation of a function of a random variable:

Eg(X) = Zg(x)px(x) (discrete case)

Eg(X) = /00 g(x) f(x)dx (continuous case)

—00



Variance and covariance
The variance of a random variable X is defined by
Var(X) =E [(X —EX)?|
=E(X? - (EX)2
The covariance of two random variables X and Y is defined by
Cov(X,)Y)=E[(X-EX)(Y —-EY)]
=E(XY)—-(EX)(EY).

Properties:
Var(aX + b) = a® Var X
Cov(aX +b,cY +d) = acCov(X,Y)
Var(X +Y) = Var X + VarY + 2Cov(X,Y)

Var(Xy 4 Xg+ -+ Xp) = > Var(X;)+2 Y Cov(X;, X;).
=1

1<i<j<n



Independence
Events A and B are independent if
P(AN B) =P(A)P(B).
More generally, a collection of events {A;,7 € Z} are independent if
P (ﬂ Ai> =[P4
icJ icJ

for all finite subsets J of Z.



Random variables X1, ..., X, are independent if for all
Bi,...,B, CR, the events {X; € B1},...,{X, € B} are
independent.

In fact, it's sufficient that for all x1,...,z,,

P(X; <zp,...,X, <x,) =P(X; <x1)...P(X, < zp).

If X and Y are independent, then E (XY) =E (X)E (Y), i.e.
Cov(X,Y) = 0. The converse is not true!



Examples of probability distributions

» Continuous:
Uniform, exponential, normal, gamma...
» Discrete:
Discrete uniform, Bernoulli, binomial, geometric, Poisson...



