Part A Probability

Michaelmas Term 2020

Matthias Winkel

winkel@stats.ox.ac.uk or

winkel@maths.ox.ac.uk

Themes of the course

- Convergence of random variables
- Probabilistic limit laws:
 - Laws of large numbers
 - Central limit theorem
- ► Joint distributions
- ► Random *processes*:
 - Markov chains
 - Poisson processes

Review

Probability spaces and random variables

A probability space is a collection $(\Omega, \mathcal{F}, \mathbb{P})$ where:

- $ightharpoonup \Omega$ is a set, called the sample space.
- $ightharpoonup \mathcal{F}$ is a collection of subsets of Ω . An element of \mathcal{F} is called an event.
- ▶ \mathbb{P} is a function from \mathcal{F} to [0,1], called the probability measure. It assigns a probability to each event in \mathcal{F} .

If we think of the probability space as modelling some "experiment", then Ω represents the "set of outcomes" of the experiment.

Events

The set of events \mathcal{F} should satisfy the following natural conditions:

- (1) $\Omega \in \mathcal{F}$
- (2) If \mathcal{F} contains some set A then \mathcal{F} also contains its complement A^c (i.e. $\Omega \setminus A$).
- (3) If $(A_i, i \in \mathcal{I})$ is a finite or countably infinite collection of events in \mathcal{F} , then their union $\bigcup_{i \in \mathcal{I}} A_i$ is also in \mathcal{F} .

By combining (2) and (3), we can also get finite or countable *intersections* as well as unions.

Probability axioms

The probability measure \mathbb{P} should satsify the following conditions:

- (1) $\mathbb{P}(\Omega) = 1$
- (2) If $(A_i, i \in \mathcal{I})$ is a finite or countably infinite collection of **disjoint** events, then

$$\mathbb{P}\left(\bigcup_{i\in\mathcal{I}}A_i\right) = \sum_{i\in\mathcal{I}}\mathbb{P}(A_i).$$

The second condition is known as countable additivity.

Random variables

A random variable is a function from Ω , for example to \mathbb{R} .

A random variable represents an observable in our experiment; something we can measure.

Formally, for a function $X:\Omega\mapsto\mathbb{R}$ to be a random variable, we require that the events

$$\{\omega \in \Omega \colon X(\omega) \le x\}$$

are contained in \mathcal{F} , for every x. (Then by taking complements and unions, we will in fact have that the event $\{\omega \in \Omega \colon X(\omega) \in B\}$ is in \mathcal{F} for a very large class of sets B).

We normally write just $\{X \in B\}$ for $\{\omega \in \Omega \colon X(\omega) \in B\}$. We write $\mathbb{P}(X \in B)$ for the probability of the event $\{X \in B\}$.

- ▶ Within one experiment, there will be many observables! That is, on the same probability space we can consider many different random variables.
- We generally do not work with the sample space Ω directly. Instead we work directly with the **events** and **random** variables (the "observables") in the experiment.

Examples of systems (or "experiments") that we might model using a probability space.

- Throw two dice, one red, one blue. Random variables: the score on the red die; the score on the blue die; the sum of the two; the maximum of the two; the indicator function of the event that the blue score exceeds the red score.
- A Geiger counter detecting particles emitted by a radioactive source. Random variables: the time of the kth particle detected, for $k = 1, 2, \ldots$; the number of particles detected in the time interval [0, t] for $t \in \mathbb{R}_+, \ldots$
- A model for the evolution of a financial market. Random variables: the prices of various stocks at various times; interest rates at various times; exchange rates at various times....
- ► The growth of a colony of bacteria. Random variables: the number of bacteria present at a given time; the diameter of the colonised region at a given time....
- ▶ A call-centre. The time of arrival of the *k*th call; the length of service required by the *k*th caller; the wait-time of the *k*th caller in the queue before receiving service....

Distribution

The distribution of a random variable X is summarised by its (cumulative) distribution function:

$$F_X(x) = \mathbb{P}(X \le x).$$

Once we know F we can obtain $\mathbb{P}(X \in B)$ for a large class of sets B by taking complements and unions.

F obeys the following properties:

- (1) F is non-decreasing
- (2) F is right-continuous
- (3) $F(x) \to 0$ as $x \to -\infty$
- (4) $F(x) \to 1$ as $x \to \infty$.

Note that two different random variables (two different "observables" within the same experiment) can have the same distribution. If X and Y have the same distribution we write $X \stackrel{d}{=} Y$.

Discrete random variables

A random variable X is discrete if there is a finite or countably infinite set B such that $\mathbb{P}(X \in B) = 1$.

We can represent its distribution by the probability mass function

$$p_X(x) = \mathbb{P}(X = x), \text{ for } x \in \mathbb{R}$$

We have

- $\triangleright \sum_{x} p_X(x) = 1$
- ▶ $\mathbb{P}(X \in A) = \sum_{x \in A} p_X(x)$ for any set $A \subseteq \mathbb{R}$.

Continuous random variables

A random variable X is continuous if its distribution function F can be written as an integral; i.e. there is a function f such that

$$\mathbb{P}(X \le x) = F(x) = \int_{-\infty}^{x} f(u)du.$$

f is the (probability) density function of X.

f is not unique; for example we can change the value at any single point without affecting the integral. At points where F is differentiable, it's natural to take f(x)=F'(x).

For general (well-behaved) sets B,

$$\mathbb{P}(X \in B) = \int_{x \in B} f(x) dx.$$

Expectation

If X is discrete, its expectation (or mean) is given by

$$\mathbb{E}(X) = \sum_{x} x p_X(x).$$

For X continuous, instead

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

We could unify these definitions (and extend to random variables which are neither discrete nor continuous). For example, consider approximations of a general random variable by discrete random variables (analogous to the construction of an integral of a general function by defining the integral of a step function using sums, and then extending to general functions using approximation by step functions).

Properties of expectation

- (1) $\mathbb{E} I_A = \mathbb{P}(A)$ for any event A.
- (2) If $\mathbb{P}(X \geq 0) = 1$ then $\mathbb{E} X \geq 0$.
- (3) (Linearity 1): $\mathbb{E}(aX) = a\mathbb{E}X$ for any constant a.
- (4) (Linearity 2): $\mathbb{E}(X+Y) = \mathbb{E}X + \mathbb{E}Y$.

Expectation of a function of a random variable:

$$\mathbb{E}\,g(X) = \sum_x g(x) p_X(x) \text{ (discrete case)}$$

$$\mathbb{E}\,g(X) = \int_{-\infty}^{\infty} g(x)f(x)dx \text{ (continuous case)}$$

Variance and covariance

The variance of a random variable X is defined by

$$Var(X) = \mathbb{E}\left[(X - \mathbb{E}X)^2\right]$$
$$= \mathbb{E}(X^2) - (\mathbb{E}X)^2.$$

The covariance of two random variables X and Y is defined by

$$Cov(X, Y) = \mathbb{E} [(X - \mathbb{E} X)(Y - \mathbb{E} Y)]$$

= $\mathbb{E} (XY) - (\mathbb{E} X)(\mathbb{E} Y).$

Properties:

$$\operatorname{Var}(aX + b) = a^{2} \operatorname{Var} X$$

$$\operatorname{Cov}(aX + b, cY + d) = ac \operatorname{Cov}(X, Y)$$

$$\operatorname{Var}(X + Y) = \operatorname{Var} X + \operatorname{Var} Y + 2 \operatorname{Cov}(X, Y)$$

$$\operatorname{Var}(X_{1} + X_{2} + \dots + X_{n}) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{1 \leq i \leq n} \operatorname{Cov}(X_{i}, X_{j}).$$

Independence

Events A and B are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

More generally, a collection of events $\{A_i, i \in \mathcal{I}\}$ are independent if

$$\mathbb{P}\left(\bigcap_{i\in J} A_i\right) = \prod_{i\in J} \mathbb{P}(A_i)$$

for all finite subsets J of \mathcal{I} .

Random variables X_1,\ldots,X_n are independent if for all $B_1,\ldots,B_n\subset\mathbb{R}$, the events $\{X_1\in B_1\},\ldots,\{X_n\in B_n\}$ are independent.

In fact, it's sufficient that for all x_1, \ldots, x_n ,

$$\mathbb{P}(X_1 < x_1, \dots, X_n < x_n) = \mathbb{P}(X_1 < x_1) \dots \mathbb{P}(X_n < x_n).$$

If X and Y are independent, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, i.e. $\mathrm{Cov}(X,Y) = 0$. The converse is **not** true!

Examples of probability distributions

Continuous:

Uniform, exponential, normal, gamma...

Discrete:

Discrete uniform, Bernoulli, binomial, geometric, Poisson...