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Themes of the course

I Convergence of random variables
I Probabilistic limit laws:

I Laws of large numbers
I Central limit theorem

I Joint distributions
I Random processes:

I Markov chains
I Poisson processes



Review

Probability spaces and random variables

A probability space is a collection (Ω,F ,P) where:

I Ω is a set, called the sample space.

I F is a collection of subsets of Ω. An element of F is called an
event.

I P is a function from F to [0, 1], called the probability
measure. It assigns a probability to each event in F .

If we think of the probability space as modelling some
“experiment”, then Ω represents the “set of outcomes” of the
experiment.



Events

The set of events F should satisfy the following natural conditions:

(1) Ω ∈ F
(2) If F contains some set A then F also contains its

complement Ac (i.e. Ω \A).

(3) If (Ai, i ∈ I) is a finite or countably infinite collection of
events in F , then their union

⋃
i∈I Ai is also in F .

By combining (2) and (3), we can also get finite or countable
intersections as well as unions.



Probability axioms

The probability measure P should satsify the following conditions:

(1) P(Ω) = 1

(2) If (Ai, i ∈ I) is a finite or countably infinite collection of
disjoint events, then

P

(⋃
i∈I

Ai

)
=
∑
i∈I

P(Ai).

The second condition is known as countable additivity.



Random variables

A random variable is a function from Ω, for example to R.

A random variable represents an observable in our experiment;
something we can measure.

Formally, for a function X : Ω 7→ R to be a random variable, we
require that the events

{ω ∈ Ω: X(ω) ≤ x}

are contained in F , for every x. (Then by taking complements and
unions, we will in fact have that the event {ω ∈ Ω: X(ω) ∈ B} is
in F for a very large class of sets B).

We normally write just {X ∈ B} for {ω ∈ Ω: X(ω) ∈ B}. We
write P(X ∈ B) for the probability of the event {X ∈ B}.



I Within one experiment, there will be many observables! That
is, on the same probability space we can consider many
different random variables.

I We generally do not work with the sample space Ω directly.
Instead we work directly with the events and random
variables (the “observables”) in the experiment.



Examples of systems (or “experiments”) that we might model using a
probability space.

I Throw two dice, one red, one blue. Random variables: the score on the
red die; the score on the blue die; the sum of the two; the maximum of
the two; the indicator function of the event that the blue score exceeds
the red score....

I A Geiger counter detecting particles emitted by a radioactive source.
Random variables: the time of the kth particle detected, for k = 1, 2, . . . ;
the number of particles detected in the time interval [0, t] for t ∈ R+, ...

I A model for the evolution of a financial market. Random variables: the
prices of various stocks at various times; interest rates at various times;
exchange rates at various times....

I The growth of a colony of bacteria. Random variables: the number of
bacteria present at a given time; the diameter of the colonised region at a
given time....

I A call-centre. The time of arrival of the kth call; the length of service
required by the kth caller; the wait-time of the kth caller in the queue
before receiving service....



Distribution

The distribution of a random variable X is summarised by its
(cumulative) distribution function:

FX(x) = P(X ≤ x).

Once we know F we can obtain P(X ∈ B) for a large class of sets B by taking

complements and unions.

F obeys the following properties:

(1) F is non-decreasing

(2) F is right-continuous

(3) F (x)→ 0 as x→ −∞
(4) F (x)→ 1 as x→∞.

Note that two different random variables (two different “observables” within

the same experiment) can have the same distribution. If X and Y have the

same distribution we write X
d
= Y .



Discrete random variables

A random variable X is discrete if there is a finite or countably
infinite set B such that P(X ∈ B) = 1.

We can represent its distribution by the probability mass function

pX(x) = P(X = x), for x ∈ R

We have

I
∑

x pX(x) = 1

I P(X ∈ A) =
∑

x∈A pX(x) for any set A ⊆ R.



Continuous random variables

A random variable X is continuous if its distribution function F
can be written as an integral; i.e. there is a function f such that

P(X ≤ x) = F (x) =

∫ x

−∞
f(u)du.

f is the (probability) density function of X.

f is not unique; for example we can change the value at any single point

without affecting the integral. At points where F is differentiable, it’s natural

to take f(x) = F ′(x).

For general (well-behaved) sets B,

P(X ∈ B) =

∫
x∈B

f(x)dx.



Expectation

If X is discrete, its expectation (or mean) is given by

E (X) =
∑
x

xpX(x).

For X continuous, instead

E (X) =

∫ ∞
−∞

xf(x)dx.

We could unify these definitions (and extend to random variables which are

neither discrete nor continuous). For example, consider approximations of a

general random variable by discrete random variables (analogous to the

construction of an integral of a general function by defining the integral of a

step function using sums, and then extending to general functions using

approximation by step functions).



Properties of expectation

(1) E IA = P(A) for any event A.

(2) If P(X ≥ 0) = 1 then EX ≥ 0.

(3) (Linearity 1): E (aX) = aEX for any constant a.

(4) (Linearity 2): E (X + Y ) = EX + EY .

Expectation of a function of a random variable:

E g(X) =
∑
x

g(x)pX(x) (discrete case)

E g(X) =

∫ ∞
−∞

g(x)f(x)dx (continuous case)



Variance and covariance

The variance of a random variable X is defined by

Var(X) = E
[
(X − EX)2

]
= E (X2)− (EX)2.

The covariance of two random variables X and Y is defined by

Cov(X,Y ) = E [(X − EX)(Y − EY )]

= E (XY )− (EX)(EY ).

Properties:

Var(aX + b) = a2 VarX

Cov(aX + b, cY + d) = acCov(X,Y )

Var(X + Y ) = VarX + VarY + 2 Cov(X,Y )

Var(X1 + X2 + · · ·+ Xn) =

n∑
i=1

Var(Xi) + 2
∑

1≤i<j≤n
Cov(Xi, Xj).



Independence

Events A and B are independent if

P(A ∩B) = P(A)P(B).

More generally, a collection of events {Ai, i ∈ I} are independent if

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai)

for all finite subsets J of I.



Random variables X1, . . . , Xn are independent if for all
B1, . . . , Bn ⊂ R, the events {X1 ∈ B1}, . . . , {Xn ∈ Bn} are
independent.

In fact, it’s sufficient that for all x1, . . . , xn,

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn).

If X and Y are independent, then E (XY ) = E (X)E (Y ), i.e.
Cov(X,Y ) = 0. The converse is not true!



Examples of probability distributions

I Continuous:
Uniform, exponential, normal, gamma...

I Discrete:
Discrete uniform, Bernoulli, binomial, geometric, Poisson...


