◆□▶ ◆□▶ ▲≡▶ ▲≡▶ ▲□▶ ▲□▶

Consider the square root 'function' $z^{1/2}$. Can we make a choice of $z^{1/2}$ to obtain a **continuous** or even better **holomorphic** function?

Consider the square root 'function' $z^{1/2}$. Can we make a choice of $z^{1/2}$ to obtain a **continuous** or even better **holomorphic** function?

 $z = re^{i\theta}$ with $\theta \in [0, 2\pi)$. Then $z^{1/2} = \pm r^{1/2}e^{i\theta/2}$. So we may define a square root function *f* by

 $f(z)=f(re^{i\theta})=r^{1/2}e^{i\theta/2}.$

▲□▶▲□▶▲□▶▲□▶ □ の�?

Consider the square root 'function' $z^{1/2}$. Can we make a choice of $z^{1/2}$ to obtain a **continuous** or even better **holomorphic** function?

 $z = re^{i\theta}$ with $\theta \in [0, 2\pi)$. Then $z^{1/2} = \pm r^{1/2}e^{i\theta/2}$. So we may define a square root function *f* by

$$f(z) = f(re^{i\theta}) = r^{1/2}e^{i\theta/2}.$$

But *f* is not continuous on the whole plane: For $\theta \to 0$, $re^{i\theta}$, $re^{i(2\pi-\theta)} \to r$, but $f(re^{i\theta}) \to r^{1/2}$, $f(re^{i(2\pi-\theta)}) = r^{1/2}e^{i(\pi-\theta/2)} \to -r^{1/2}$.

Consider the square root 'function' $z^{1/2}$. Can we make a choice of $z^{1/2}$ to obtain a **continuous** or even better **holomorphic** function?

 $z = re^{i\theta}$ with $\theta \in [0, 2\pi)$. Then $z^{1/2} = \pm r^{1/2}e^{i\theta/2}$. So we may define a square root function *f* by

$$f(z) = f(re^{i\theta}) = r^{1/2}e^{i\theta/2}.$$

▲□▶▲□▶▲□▶▲□▶ □ の�?

But *f* is not continuous on the whole plane: For $\theta \to 0$, $re^{i\theta}$, $re^{i(2\pi-\theta)} \to r$, but $f(re^{i\theta}) \to r^{1/2}$, $f(re^{i(2\pi-\theta)}) = r^{1/2}e^{i(\pi-\theta/2)} \to -r^{1/2}$.

Still f(z) is continuous on $\mathbb{C}\setminus R$ where $R = \{z \in \mathbb{C} : \Im(z) = 0, \Re(z) > 0\}.$

Consider the square root 'function' $z^{1/2}$. Can we make a choice of $z^{1/2}$ to obtain a **continuous** or even better **holomorphic** function?

 $z = re^{i\theta}$ with $\theta \in [0, 2\pi)$. Then $z^{1/2} = \pm r^{1/2}e^{i\theta/2}$. So we may define a square root function *f* by

$$f(z) = f(re^{i\theta}) = r^{1/2}e^{i\theta/2}.$$

But *f* is not continuous on the whole plane: For $\theta \to 0$, $re^{i\theta}$, $re^{i(2\pi-\theta)} \to r$, but $f(re^{i\theta}) \to r^{1/2}$, $f(re^{i(2\pi-\theta)}) = r^{1/2}e^{i(\pi-\theta/2)} \to -r^{1/2}$.

Still f(z) is continuous on $\mathbb{C}\setminus R$ where $R = \{z \in \mathbb{C} : \Im(z) = 0, \Re(z) > 0\}$. f(z) is holomorphic on $\mathbb{C}\setminus R$:

$$\frac{f(a+h)-f(a)}{h} = \frac{f(a+h)-f(a)}{f^2(a+h)-f^2(a)} = \frac{1}{f(a+h)+f(a)} \to \frac{1}{2f(a)}$$

as $h \to 0$.

Multifunctions

The positive real axis is called a branch cut for the *multi-valued* function $z^{1/2}$.

If we set

$$g(z) = g(re^{i\theta}) = r^{1/2}e^{i(\frac{\theta}{2}+\pi)} = -r^{1/2}e^{i\theta/2}$$

we obtain another *branch* of $z^{1/2}$ on $\mathbb{C} \setminus R$.

Multifunctions

The positive real axis is called a branch cut for the *multi-valued* function $z^{1/2}$.

If we set

$$g(z) = g(re^{i\theta}) = r^{1/2}e^{i(\frac{\theta}{2}+\pi)} = -r^{1/2}e^{i\theta/2}$$

we obtain another *branch* of $z^{1/2}$ on $\mathbb{C} \setminus R$.

Definition

A multi-valued function or multifunction on a subset $U \subseteq \mathbb{C}$ is a map $f: U \to \mathcal{P}(\mathbb{C})$ assigning to each point in U a subset of the complex numbers. A branch of f on a subset $V \subseteq U$ is a function $g: V \to \mathbb{C}$ such that $g(z) \in f(z)$, for all $z \in V$. If g is continuous (or holomorphic) on V we refer to it as a continuous, (respectively holomorphic) branch of f.

Multifunctions

The positive real axis is called a branch cut for the *multi-valued* function $z^{1/2}$.

If we set

$$g(z) = g(re^{i\theta}) = r^{1/2}e^{i(\frac{\theta}{2}+\pi)} = -r^{1/2}e^{i\theta/2}$$

we obtain another *branch* of $z^{1/2}$ on $\mathbb{C} \setminus R$.

Definition

A multi-valued function or multifunction on a subset $U \subseteq \mathbb{C}$ is a map $f: U \to \mathcal{P}(\mathbb{C})$ assigning to each point in U a subset of the complex numbers. A branch of f on a subset $V \subseteq U$ is a function $g: V \to \mathbb{C}$ such that $g(z) \in f(z)$, for all $z \in V$. If g is continuous (or holomorphic) on V we refer to it as a continuous, (respectively holomorphic) branch of f.

Notation: [f(z)] so eg $[Log(z)] = \{w \in \mathbb{C} : e^w = z\}.$

Two types of discontinuity: 'accidental' depending on the branch cut we used and 'unavoidable' called branch points.

Two types of discontinuity: 'accidental' depending on the branch cut we used and 'unavoidable' called branch points.

So for the multifunction $[z^{1/2}]$ we obtain holomorphic branches on $\mathbb{C}\setminus R$ where R is the *x*-axis. The positive points on *x*-axis are 'accidental' discontinuities but 0 appears in all branch cuts, it is a branch point.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ↔

Two types of discontinuity: 'accidental' depending on the branch cut we used and 'unavoidable' called branch points.

So for the multifunction $[z^{1/2}]$ we obtain holomorphic branches on $\mathbb{C}\setminus R$ where R is the *x*-axis. The positive points on *x*-axis are 'accidental' discontinuities but 0 appears in all branch cuts, it is a branch point.

うしん 山田 ・山田・山田・山田・

This is because it is not possible to choose a continuous branch of $[z^{1/2}]$ on any open set containing 0.

Let $z = re^{2\pi i t}$, $t \in [0, 1]$ and let's say $f : [0, 1] \to \mathbb{C}$ is a continuous choice of $z^{1/2}$ on this circle.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● のへで

Let $z = re^{2\pi i t}$, $t \in [0, 1]$ and let's say $f : [0, 1] \to \mathbb{C}$ is a continuous choice of $z^{1/2}$ on this circle. Then $f(0) = \pm \sqrt{r}$. Say $f(0) = \sqrt{r}$. Let

 $s = \sup\{t \in [0, 1] : f(t) = \sqrt{r}e^{\pi i t}\}$

If s < 1 then by continuity $f(s) = \sqrt{r}e^{\pi i s}$.

Let $z = re^{2\pi i t}$, $t \in [0, 1]$ and let's say $f : [0, 1] \to \mathbb{C}$ is a continuous choice of $z^{1/2}$ on this circle. Then $f(0) = \pm \sqrt{r}$. Say $f(0) = \sqrt{r}$. Let

 $s = \sup\{t \in [0,1] : f(t) = \sqrt{r}e^{\pi i t}\}$

If s < 1 then by continuity $f(s) = \sqrt{r}e^{\pi i s}$.

Again by continuity $f(s') = \sqrt{r}e^{\pi i s'}$ for s' 'close' to s, s' > s, a contradiction.

Let $z = re^{2\pi i t}$, $t \in [0, 1]$ and let's say $f : [0, 1] \to \mathbb{C}$ is a continuous choice of $z^{1/2}$ on this circle. Then $f(0) = \pm \sqrt{r}$. Say $f(0) = \sqrt{r}$. Let

$$s = \sup\{t \in [0, 1] : f(t) = \sqrt{r}e^{\pi i t}\}$$

If s < 1 then by continuity $f(s) = \sqrt{r}e^{\pi i s}$.

Again by continuity $f(s') = \sqrt{r}e^{\pi i s'}$ for s' 'close' to s, s' > s, a contradiction.

So s = 1. But then $f(0) = \sqrt{r} \neq f(1) = \sqrt{r}e^{\pi i} = -\sqrt{r}$, however $re^{2\pi i \cdot 0} = re^{2\pi i \cdot 1}$

Suppose that $f: U \to \mathcal{P}(\mathbb{C})$ is a multi-valued function defined on an open subset U of \mathbb{C} . We say that $z_0 \in U$ is not a branch point of f if there is an open disk $D \subseteq U$ containing z_0 such that there is a holomorphic branch of f defined on $D \setminus \{z_0\}$. We say z_0 is a branch point otherwise.

Suppose that $f: U \to \mathcal{P}(\mathbb{C})$ is a multi-valued function defined on an open subset U of \mathbb{C} . We say that $z_0 \in U$ is not a branch point of f if there is an open disk $D \subseteq U$ containing z_0 such that there is a holomorphic branch of f defined on $D \setminus \{z_0\}$. We say z_0 is a branch point otherwise.

When $\mathbb{C}\setminus U$ is bounded, we say that *f* does not have a branch point at ∞ if there is a holomorphic branch of *f* defined on $\mathbb{C}\setminus B(0, R) \subseteq U$ for some R > 0. Otherwise we say that ∞ is a branch point of *f*.

Suppose that $f: U \to \mathcal{P}(\mathbb{C})$ is a multi-valued function defined on an open subset U of \mathbb{C} . We say that $z_0 \in U$ is not a branch point of f if there is an open disk $D \subseteq U$ containing z_0 such that there is a holomorphic branch of f defined on $D \setminus \{z_0\}$. We say z_0 is a branch point otherwise.

When $\mathbb{C}\setminus U$ is bounded, we say that f does not have a branch point at ∞ if there is a holomorphic branch of f defined on $\mathbb{C}\setminus B(0, R) \subseteq U$ for some R > 0. Otherwise we say that ∞ is a branch point of f.

A branch cut for a multifunction *f* is a curve in the plane on whose complement we can pick a holomorphic branch of *f*. Thus a branch cut must contain all the branch points.

Suppose that $f: U \to \mathcal{P}(\mathbb{C})$ is a multi-valued function defined on an open subset U of \mathbb{C} . We say that $z_0 \in U$ is not a branch point of f if there is an open disk $D \subseteq U$ containing z_0 such that there is a holomorphic branch of f defined on $D \setminus \{z_0\}$. We say z_0 is a branch point otherwise.

When $\mathbb{C}\setminus U$ is bounded, we say that *f* does not have a branch point at ∞ if there is a holomorphic branch of *f* defined on $\mathbb{C}\setminus B(0, R) \subseteq U$ for some R > 0. Otherwise we say that ∞ is a branch point of *f*.

A branch cut for a multifunction *f* is a curve in the plane on whose complement we can pick a holomorphic branch of *f*. Thus a branch cut must contain all the branch points.

For example $0, \infty$ are the branch points of $[z^{1/2}]$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

The Logarithm

 $[Log(z)] = \{log(|z|) + i(\theta + 2n\pi) : n \in \mathbb{Z}\}$ where $z = |z|e^{i\theta}$.

We get a branch by making a choice for the argument:

The Logarithm

 $[Log(z)] = \{log(|z|) + i(\theta + 2n\pi) : n \in \mathbb{Z}\}$ where $z = |z|e^{i\theta}$. We get a branch by making a choice for the argument:

 $L(z) = \log(|z|) + i \arg(z)$, where $\arg(z) \in (-\pi, \pi]$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

this is called the principal branch of Log.

The Logarithm

 $[Log(z)] = \{log(|z|) + i(\theta + 2n\pi) : n \in \mathbb{Z}\}$ where $z = |z|e^{i\theta}$. We get a branch by making a choice for the argument:

 $L(z) = \log(|z|) + i \arg(z)$, where $\arg(z) \in (-\pi, \pi]$

this is called the principal branch of Log.

We may define other branches of the logarithm by

 $L_n(z) = \mathsf{L}(z) + 2in\pi$

▲□▶▲□▶▲□▶▲□▶ □ ∽��?

The Logarithm

 $[Log(z)] = \{log(|z|) + i(\theta + 2n\pi) : n \in \mathbb{Z}\}$ where $z = |z|e^{i\theta}$. We get a branch by making a choice for the argument:

 $L(z) = \log(|z|) + i \arg(z)$, where $\arg(z) \in (-\pi, \pi]$

this is called the principal branch of Log.

We may define other branches of the logarithm by

 $L_n(z) = \mathsf{L}(z) + 2in\pi$

The branch points of [Log(z)] are 0 and ∞ , as it is not possible to make a continuous choice of logarithm on any circle S(0, r).

We note that L(z) is also holomorphic. Indeed for small $h \neq 0$, $L(a+h) \neq L(a)$ and

$$\frac{L(a+h)-L(a)}{h}=\frac{L(a+h)-L(a)}{exp(L(a+h))-exp(L(a))},$$

We note that L(z) is also holomorphic. Indeed for small $h \neq 0$, $L(a+h) \neq L(a)$ and

$$\frac{L(a+h)-L(a)}{h}=\frac{L(a+h)-L(a)}{exp(L(a+h))-exp(L(a))},$$

We have

$$\lim_{h\to 0}\frac{\exp(L(a+h))-\exp(L(a))}{L(a+h)-L(a)}=\exp'(L(a))=a$$

since when $h \rightarrow 0$, $L(a + h) - L(a) \rightarrow 0$ by the continuity of *L*. So we have L'(a) = 1/a.

▲□▶▲□▶▲□▶▲□▶ □ のへで

We note that L(z) is also holomorphic. Indeed for small $h \neq 0$, $L(a+h) \neq L(a)$ and

$$\frac{L(a+h)-L(a)}{h}=\frac{L(a+h)-L(a)}{exp(L(a+h))-exp(L(a))},$$

We have

$$\lim_{h\to 0}\frac{exp(L(a+h))-exp(L(a))}{L(a+h)-L(a)}=exp'(L(a))=a$$

since when $h \rightarrow 0$, $L(a + h) - L(a) \rightarrow 0$ by the continuity of *L*. So we have L'(a) = 1/a.

We note that the same argument applies to any continuous branch of the logarithm.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Complex powers

 $[\mathbf{z}^{\alpha}]$ where $\alpha \in \mathbb{C}$:

Complex powers

 $[\mathbf{z}^{\alpha}]$ where $\alpha \in \mathbb{C}$:

$$[\mathbf{Z}^{\alpha}] := \exp(\alpha \cdot [\mathsf{Log}(\mathbf{Z})]) = \{\exp(\alpha \cdot \mathbf{W}) : \mathbf{W} \in \mathbb{C}, \mathbf{e}^{\mathbf{W}} = \mathbf{Z}\}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

any holomorphic branch of [Log(z)] gives a holomorphic branch of $[z^{\alpha}]$. If we pick L(z) we get the principal branch of $[z^{\alpha}]$.

Complex powers

 $[\mathbf{z}^{\alpha}]$ where $\alpha \in \mathbb{C}$:

$$[\mathbf{Z}^{\alpha}] := \exp(\alpha \cdot [\operatorname{Log}(\mathbf{Z})]) = \{\exp(\alpha \cdot \mathbf{W}) : \mathbf{W} \in \mathbb{C}, \mathbf{e}^{\mathbf{W}} = \mathbf{Z}\}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

any holomorphic branch of [Log(z)] gives a holomorphic branch of $[z^{\alpha}]$. If we pick L(z) we get the principal branch of $[z^{\alpha}]$.

Note $(z_1 z_2)^{\alpha} \neq z_1^{\alpha} z_2^{\alpha}$ in general!

$$[(1 + z)^{\alpha}] = \{\exp(\alpha \cdot w) : w \in \mathbb{C}, \exp(w) = 1 + z\}.$$

Using *L*(*z*) we obtain a branch

 $f(z) = \exp(\alpha \cdot L(1+z))$

$$[(1 + z)^{\alpha}] = \{\exp(\alpha \cdot w) : w \in \mathbb{C}, \exp(w) = 1 + z\}.$$

Using *L*(*z*) we obtain a branch

 $f(z) = \exp(\alpha \cdot L(1+z))$

Let $\binom{\alpha}{k} = \frac{1}{k!} \alpha . (\alpha - 1) ... (\alpha - k + 1)$. Define

$$s(z) = \sum_{k=0}^{\infty} {\alpha \choose k} z^k,$$

$$[(1+z)^{\alpha}] = \{\exp(\alpha \cdot w) : w \in \mathbb{C}, \exp(w) = 1+z\}.$$

Using *L*(*z*) we obtain a branch

 $f(z) = \exp(\alpha \cdot L(1+z))$

Let $\binom{\alpha}{k} = \frac{1}{k!} \alpha . (\alpha - 1) \dots (\alpha - k + 1)$. Define

$$s(z) = \sum_{k=0}^{\infty} {\alpha \choose k} z^k,$$

By the ratio test, s(z) has radius of convergence equal to 1, so that s(z) defines a holomorphic function in B(0, 1).

$$[(1+z)^{\alpha}] = \{\exp(\alpha \cdot w) : w \in \mathbb{C}, \exp(w) = 1+z\}.$$

Using *L*(*z*) we obtain a branch

 $f(z) = \exp(\alpha \cdot L(1+z))$

Let $\binom{\alpha}{k} = \frac{1}{k!} \alpha . (\alpha - 1) \dots (\alpha - k + 1)$. Define

$$s(z) = \sum_{k=0}^{\infty} {\alpha \choose k} z^k,$$

By the ratio test, s(z) has radius of convergence equal to 1, so that s(z) defines a holomorphic function in B(0, 1). Differentiating term by term: $(1 + z)s'(z) = \alpha \cdot s(z)$.

$$S(z) = \sum k {\binom{\alpha}{k}} Z^{k-1} = \sum (\alpha - k + 1) {\binom{\alpha}{k-1}} Z^{k-1}, \quad ZS'(z) = \sum (k-1) {\binom{\alpha}{k-1}} Z^{k-1}$$

$$[(1+z)^{\alpha}] = \{\exp(\alpha \cdot w) : w \in \mathbb{C}, \exp(w) = 1+z\}.$$

Using *L*(*z*) we obtain a branch

 $f(z) = \exp(\alpha \cdot L(1+z))$

Let $\binom{\alpha}{k} = \frac{1}{k!} \alpha . (\alpha - 1) \dots (\alpha - k + 1)$. Define

$$s(z) = \sum_{k=0}^{\infty} {\alpha \choose k} z^k,$$

By the ratio test, s(z) has radius of convergence equal to 1, so that s(z) defines a holomorphic function in B(0, 1). Differentiating term by term: $(1 + z)s'(z) = \alpha \cdot s(z)$. Now f(z) is defined on all of B(0, 1). We claim that f(z) = s(z) on B(0, 1).
Let
$$g(z) = s(z) \exp(-\alpha \cdot L(1+z))$$

Let
$$g(z) = s(z) \exp(-\alpha \cdot L(1+z))$$

 $g'(z) = (s'(z) - \alpha s(z)L'((1+z)) \exp(-\alpha \cdot L(1+z)) = 0$ since $s'(z) = \frac{\alpha \cdot s(z)}{1+z}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let
$$g(z) = s(z) \exp(-\alpha \cdot L(1+z))$$

$$g'(z) = (s'(z) - \alpha s(z)L'((1+z)) \exp(-\alpha \cdot L(1+z)) = 0$$

since $s'(z) = \frac{\alpha \cdot s(z)}{1+z}$. Also g(0) = 1 so, since B(0, 1) is connected g is constant and s(z) = f(z).

Let
$$g(z) = s(z) \exp(-\alpha \cdot L(1+z))$$

$$g'(z) = (s'(z) - \alpha s(z)L'((1+z)) \exp(-\alpha \cdot L(1+z)) = 0$$

since $s'(z) = \frac{\alpha \cdot s(z)}{1+z}$. Also g(0) = 1 so, since B(0, 1) is connected g is constant and s(z) = f(z).

We used here the following:

Fact. If for a holomorphic function g, g'(z) = 0 for all z in a connected open set, then it is constant. We have already proven this when the open set is \mathbb{C} and we will prove it soon in general.

 $[arg(z)] := \{ \theta \in \mathbb{R} : z = |z|e^{i\theta} \}$ defined on $\mathbb{C} \setminus \{0\}$. Clearly if $z = |z|e^{i\theta}$ then arg(z) is equal to the set $\{\theta + 2n\pi : n \in \mathbb{Z}\}$.

 $[\arg(z)] := \{ \theta \in \mathbb{R} : z = |z|e^{i\theta} \}$ defined on $\mathbb{C} \setminus \{0\}$. Clearly if $z = |z|e^{i\theta}$ then $\arg(z)$ is equal to the set $\{\theta + 2n\pi : n \in \mathbb{Z}\}$.

We claim that there is no continuous branch of [arg(z)] on $\mathbb{C} \setminus \{0\}$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

 $[\arg(z)] := \{ \theta \in \mathbb{R} : z = |z|e^{i\theta} \}$ defined on $\mathbb{C} \setminus \{0\}$. Clearly if $z = |z|e^{i\theta}$ then $\arg(z)$ is equal to the set $\{\theta + 2n\pi : n \in \mathbb{Z}\}$.

We claim that there is no continuous branch of [arg(z)] on $\mathbb{C} \setminus \{0\}$.

Indeed consider the circle $S = \{z : |z| = 1\}$. Suppose that f(z) is a continuous branch of $[\arg(z)]$ defined on *S*. Let's say that $f(1) = 2n\pi, n \in \mathbb{Z}$.

 $[\arg(z)] := \{ \theta \in \mathbb{R} : z = |z|e^{i\theta} \}$ defined on $\mathbb{C} \setminus \{0\}$. Clearly if $z = |z|e^{i\theta}$ then $\arg(z)$ is equal to the set $\{\theta + 2n\pi : n \in \mathbb{Z}\}$.

We claim that there is no continuous branch of [arg(z)] on $\mathbb{C} \setminus \{0\}$.

Indeed consider the circle $S = \{z : |z| = 1\}$. Suppose that f(z) is a continuous branch of $[\arg(z)]$ defined on *S*. Let's say that $f(1) = 2n\pi, n \in \mathbb{Z}$.

Consider $g : [0, 2\pi) \to \mathbb{R}$ given by $g(t) = 2n\pi + t$. We claim that $f(e^{it}) = g(t)$ for all $t \in [0, 2\pi)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □▶ ● の < @

 $[arg(z)] := \{ \theta \in \mathbb{R} : z = |z|e^{i\theta} \}$ defined on $\mathbb{C} \setminus \{0\}$. Clearly if $z = |z|e^{i\theta}$ then arg(z) is equal to the set $\{\theta + 2n\pi : n \in \mathbb{Z}\}$.

We claim that there is no continuous branch of [arg(z)] on $\mathbb{C} \setminus \{0\}$.

Indeed consider the circle $S = \{z : |z| = 1\}$. Suppose that f(z) is a continuous branch of $[\arg(z)]$ defined on *S*. Let's say that $f(1) = 2n\pi, n \in \mathbb{Z}$.

Consider $g : [0, 2\pi) \to \mathbb{R}$ given by $g(t) = 2n\pi + t$. We claim that $f(e^{it}) = g(t)$ for all $t \in [0, 2\pi)$.

We note that $f(e^{i0}) = g(0) = 2n\pi$. Since *f* is continuous there is some $\delta > 0$ such that $f(e^{it}) = g(t)$ for all $t \in [0, \delta)$.

For example pick δ so that: $|t - 0| < \delta \Rightarrow |f(e^{it}) - f(e^{i0})| < 1$.

<□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For example pick δ so that: $|t - 0| < \delta \Rightarrow |f(e^{it}) - f(e^{i0})| < 1$. Consider now the set $A = \{t : f(e^{it}) = g(t)\} \subseteq [0, 2\pi)$.

For example pick δ so that: $|t - 0| < \delta \Rightarrow |f(e^{it}) - f(e^{i0})| < 1$. Consider now the set $A = \{t : f(e^{it}) = g(t)\} \subseteq [0, 2\pi)$. This is an open and closed subset of $[0, 2\pi)$, so, since $[0, 2\pi)$ is connected, $A = [0, 2\pi)$, which proves our claim.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □▶ ● の < @

For example pick δ so that: $|t - 0| < \delta \Rightarrow |f(e^{it}) - f(e^{i0})| < 1$. Consider now the set $A = \{t : f(e^{it}) = g(t)\} \subseteq [0, 2\pi)$.

This is an open and closed subset of $[0, 2\pi)$, so, since $[0, 2\pi)$ is connected, $A = [0, 2\pi)$, which proves our claim.

But then $\lim_{t\to 2\pi} f(e^{it}) = 2(n+1)\pi \neq f(1)$, while $\lim_{t\to 2\pi} e^{it} = 1$, so *f* is not continuous.

For example pick δ so that: $|t - 0| < \delta \Rightarrow |f(e^{it}) - f(e^{i0})| < 1$. Consider now the set $A = \{t : f(e^{it}) = g(t)\} \subseteq [0, 2\pi)$.

This is an open and closed subset of $[0, 2\pi)$, so, since $[0, 2\pi)$ is connected, $A = [0, 2\pi)$, which proves our claim.

But then $\lim_{t\to 2\pi} f(e^{it}) = 2(n+1)\pi \neq f(1)$, while $\lim_{t\to 2\pi} e^{it} = 1$, so *f* is not continuous.

On the other hand one sees easily that it is possible to define a continuous branch f(z) of $[\arg(z)]$ on $\mathbb{C} \setminus [0, -\infty)$, for example by choosing f(z) to be the unique element of $[\arg(z)] \cap (-\pi, \pi)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □▶ ● の < @

For example pick δ so that: $|t - 0| < \delta \Rightarrow |f(e^{it}) - f(e^{i0})| < 1$.

Consider now the set $A = \{t : f(e^{it}) = g(t)\} \subseteq [0, 2\pi)$.

This is an open and closed subset of $[0, 2\pi)$, so, since $[0, 2\pi)$ is connected, $A = [0, 2\pi)$, which proves our claim.

But then $\lim_{t\to 2\pi} f(e^{it}) = 2(n+1)\pi \neq f(1)$, while $\lim_{t\to 2\pi} e^{it} = 1$, so *f* is not continuous.

On the other hand one sees easily that it is possible to define a continuous branch f(z) of $[\arg(z)]$ on $\mathbb{C} \setminus [0, -\infty)$, for example by choosing f(z) to be the unique element of $[\arg(z)] \cap (-\pi, \pi)$.

The argument multifunction is closely related to the logarithm. There is a continuous branch of [Log(z)] on a set U if and only if there is continuous branch of [arg(z)] on U. Indeed if f(z) is a continuous branch of [arg(z)] on U we may define a continuous branch of [Log(z)] by g(z) = log|z| + if(z), and conversely given g(z) we may define $f(z) = \Im(g(z))$. More interesting example: $f(z) = [(z^2 - 1)^{1/2}]$. If we see it as composition of $z^2 - 1$ with \sqrt{z} : The branch cut of the principal branch of \sqrt{z} is $(-\infty, 0]$ so

we need a branch cut

$$\{z: z^2 - 1 \in (-\infty, 0]\} = [-1, 1] \cup i\mathbb{R}$$

More interesting example: $f(z) = [(z^2 - 1)^{1/2}]$. If we see it as composition of $z^2 - 1$ with \sqrt{z} : The branch cut of the principal branch of \sqrt{z} is $(-\infty, 0]$ so we need a branch cut

$$\{z: z^2 - 1 \in (-\infty, 0]\} = [-1, 1] \cup i\mathbb{R}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Away from this branch cut we get a continuous and in fact holomorphic branch f_1 of f.

More interesting example: $f(z) = [(z^2 - 1)^{1/2}]$. If we see it as composition of $z^2 - 1$ with \sqrt{z} : The branch cut of the principal branch of \sqrt{z} is $(-\infty, 0]$ so we need a branch cut

$$\{z: z^2 - 1 \in (-\infty, 0]\} = [-1, 1] \cup i\mathbb{R}$$

Away from this branch cut we get a continuous and in fact holomorphic branch f_1 of f.

If we rewrite $f(z) = [\sqrt{z-1}\sqrt{z+1}]$, then we can take as branch cut

 $(-\infty, 1] \cup (-\infty, -1] = (-\infty, 1]$ and a branch $f_2(z)$.

if $z = 1 + re^{i\theta_1} = -1 + se^{i\theta_2}$ where $\theta_1, \theta_2 \in (-\pi, \pi]$ then $f_2(z) = \sqrt{rs} \cdot e^{i(\theta_1 + \theta_2)/2}$.

if $z = 1 + re^{i\theta_1} = -1 + se^{i\theta_2}$ where $\theta_1, \theta_2 \in (-\pi, \pi]$ then $f_2(z) = \sqrt{rs} \cdot e^{i(\theta_1 + \theta_2)/2}$. When z approaches $(-\infty, -1)$ from 'above' $\theta_1, \theta_2 \to -\pi$ so $f_2(z) \to -\sqrt{rs}$. When z approaches $(-\infty, -1)$ from 'below' $\theta_1, \theta_2 \to \pi$ so $f_2(z) \to -\sqrt{rs}$. So there is no discontinuity on $(-\infty, -1)$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

if $z = 1 + re^{i\theta_1} = -1 + se^{i\theta_2}$ where $\theta_1, \theta_2 \in (-\pi, \pi]$ then $f_2(z) = \sqrt{rs} \cdot e^{i(\theta_1 + \theta_2)/2}$.

When *z* approaches $(-\infty, -1)$ from 'above' $\theta_1, \theta_2 \to -\pi$ so $f_2(z) \to -\sqrt{rs}$. When *z* approaches $(-\infty, -1)$ from 'below' $\theta_1, \theta_2 \to \pi$ so $f_2(z) \to -\sqrt{rs}$. So there is no discontinuity on $(-\infty, -1)$.

When z approaches (-1, 1) from 'above' $\theta_1 \to -\pi$, $\theta_2 \to 0$ so $f_2(z) \to -i\sqrt{rs}$. When z approaches (-1, 1) from 'below' $\theta_1 \to \pi, \theta_2 \to 0$ so $f_2(z) \to i\sqrt{rs}$. So there is a discontinuity on (-1, 1).

if $z = 1 + re^{i\theta_1} = -1 + se^{i\theta_2}$ where $\theta_1, \theta_2 \in (-\pi, \pi]$ then $f_2(z) = \sqrt{rs} \cdot e^{i(\theta_1 + \theta_2)/2}$.

When *z* approaches $(-\infty, -1)$ from 'above' $\theta_1, \theta_2 \to -\pi$ so $f_2(z) \to -\sqrt{rs}$. When *z* approaches $(-\infty, -1)$ from 'below' $\theta_1, \theta_2 \to \pi$ so $f_2(z) \to -\sqrt{rs}$. So there is no discontinuity on $(-\infty, -1)$.

When z approaches (-1, 1) from 'above' $\theta_1 \to -\pi$, $\theta_2 \to 0$ so $f_2(z) \to -i\sqrt{rs}$. When z approaches (-1, 1) from 'below' $\theta_1 \to \pi, \theta_2 \to 0$ so $f_2(z) \to i\sqrt{rs}$. So there is a discontinuity on (-1, 1).

So in fact we can take just [-1, 1] as branch cut!

Riemann surfaces

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ 三 ○ ○ ○ ○

Riemann surfaces make it possible to replace 'multifunctions' by actual functions.

Riemann surfaces

Riemann surfaces make it possible to replace 'multifunctions' by actual functions.

Consider $[z^{1/2}]$. We can 'join' the two branches of $[z^{1/2}]$ to obtain a function from a Riemann surface to \mathbb{C} .

We have two branches of $[\sqrt{z^2 - 1}] = [\sqrt{z - 1}\sqrt{z + 1}]$ for the branch cut [-1, 1].

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We have two branches of $[\sqrt{z^2 - 1}] = [\sqrt{z - 1}\sqrt{z + 1}]$ for the branch cut [-1, 1].

▲□▶▲□▶▲□▶▲□▶ □ のQ@

if $z = 1 + re^{i\theta_1} = -1 + se^{i\theta_2}$ where $\theta_1, \theta_2 \in (-\pi, \pi]$ $f_2(z) = \sqrt{rs} \cdot e^{i(\theta_1 + \theta_2)/2}$, and $-f_2(z)$. We have two branches of $[\sqrt{z^2 - 1}] = [\sqrt{z - 1}\sqrt{z + 1}]$ for the branch cut [-1, 1].

if
$$z = 1 + re^{i\theta_1} = -1 + se^{i\theta_2}$$
 where $\theta_1, \theta_2 \in (-\pi, \pi)$
 $f_2(z) = \sqrt{rs} \cdot e^{i(\theta_1 + \theta_2)/2}$, and $-f_2(z)$.
as we approach $[-1, 1]$ from 'above'
 $f_2(z) \rightarrow -i\sqrt{rs}, -f_2(z) \rightarrow i\sqrt{rs}$
and as we approach from 'below'
 $f_2(z) \rightarrow i\sqrt{rs}, -f_2(z) \rightarrow -i\sqrt{rs}$.

▲□▶▲□▶▲□▶▲□▶ = のへで

We may define $\boldsymbol{\Sigma}$ as

$$\Sigma = \{(z, w) \in \mathbb{C}^2 : w^2 = z^2 - 1\}.$$

•

We may define Σ as

$$\Sigma = \{(z, w) \in \mathbb{C}^2 : w^2 = z^2 - 1\}.$$

 $\Sigma_+ = \{(z, f_2(z)) : z \notin [-1, 1]\}$ and $\Sigma_- = \{(z, -f_2(z)) : z \notin [-1, 1]\}$, then $\Sigma_+ \cup \Sigma_-$ covers all of Σ apart from the pairs (z, w) where $z \in [-1, 1]$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We may define Σ as

$$\Sigma = \{(z, w) \in \mathbb{C}^2 : w^2 = z^2 - 1\}.$$

 $\Sigma_+ = \{(z, f_2(z)) : z \notin [-1, 1]\}$ and $\Sigma_- = \{(z, -f_2(z)) : z \notin [-1, 1]\}$, then $\Sigma_+ \cup \Sigma_-$ covers all of Σ apart from the pairs (z, w) where $z \in [-1, 1]$.

For such *z* we have $w = \pm i\sqrt{1-z^2}$, and Σ is obtained by 'gluing' together the two copies Σ_+ and Σ_- of the cut plane $\mathbb{C}\setminus[-1,1]$ along the cut locus [-1,1].

We may define Σ as

$$\Sigma = \{(z, w) \in \mathbb{C}^2 : w^2 = z^2 - 1\}.$$

 $\Sigma_+ = \{(z, f_2(z)) : z \notin [-1, 1]\}$ and $\Sigma_- = \{(z, -f_2(z)) : z \notin [-1, 1]\}$, then $\Sigma_+ \cup \Sigma_-$ covers all of Σ apart from the pairs (z, w) where $z \in [-1, 1]$.

For such *z* we have $w = \pm i\sqrt{1-z^2}$, and Σ is obtained by 'gluing' together the two copies Σ_+ and Σ_- of the cut plane $\mathbb{C}\setminus[-1, 1]$ along the cut locus [-1, 1].

So we have a well defined 'square root' function $f : \Sigma \to \mathbb{C}$ given by $(z, w) \mapsto w$.

▲□▶▲□▶▲≡▶▲≡▶ ④♀⊙

if $F : [a, b] \to \mathbb{C}$, F(t) = G(t) + iH(t), we say that F is *integrable* if G, H are integrable and define

$$\int_{a}^{b} F(t)dt = \int_{a}^{b} G(t)dt + i \int_{a}^{b} H(t)dt$$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 < つ < ○</p>

if $F : [a, b] \to \mathbb{C}$, F(t) = G(t) + iH(t), we say that F is *integrable* if G, H are integrable and define

$$\int_{a}^{b} F(t)dt = \int_{a}^{b} G(t)dt + i \int_{a}^{b} H(t)dt$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

PROPERTIES:

1.
$$\int_{a}^{b} (\alpha \cdot F_{1} + \beta \cdot F_{2}) dt = \alpha \cdot \int_{a}^{b} F_{1} dt + \beta \cdot \int_{a}^{b} F_{2} dt.$$

2. $\left| \int_{a}^{b} F(t) dt \right| \leq \int_{a}^{b} |F(t)| dt.$

if $F : [a, b] \to \mathbb{C}$, F(t) = G(t) + iH(t), we say that F is *integrable* if G, H are integrable and define

$$\int_{a}^{b} F(t) dt = \int_{a}^{b} G(t) dt + i \int_{a}^{b} H(t) dt$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

PROPERTIES:

1.
$$\int_{a}^{b} (\alpha \cdot F_{1} + \beta \cdot F_{2}) dt = \alpha \cdot \int_{a}^{b} F_{1} dt + \beta \cdot \int_{a}^{b} F_{2} dt.$$

2. $\left| \int_{a}^{b} F(t) dt \right| \leq \int_{a}^{b} |F(t)| dt.$

Proof of 2. Set $\int_a^b F(t)dt = re^{i\theta}$. Then by 1, $\int_a^b e^{-i\theta}F(t)dt = r \in \mathbb{R}$.

if $F : [a, b] \to \mathbb{C}$, F(t) = G(t) + iH(t), we say that F is *integrable* if G, H are integrable and define

$$\int_{a}^{b} F(t) dt = \int_{a}^{b} G(t) dt + i \int_{a}^{b} H(t) dt$$

PROPERTIES:

1.
$$\int_{a}^{b} (\alpha \cdot F_{1} + \beta \cdot F_{2}) dt = \alpha \cdot \int_{a}^{b} F_{1} dt + \beta \cdot \int_{a}^{b} F_{2} dt.$$

2. $\left| \int_{a}^{b} F(t) dt \right| \leq \int_{a}^{b} |F(t)| dt.$

Proof of 2. Set $\int_{a}^{b} F(t)dt = re^{i\theta}$. Then by 1, $\int_{a}^{b} e^{-i\theta}F(t)dt = r \in \mathbb{R}$. so $\int_{a}^{b} e^{-i\theta}F(t)dt = \int_{a}^{b} Re(e^{-i\theta}F(t))dt$

・ロト・四ト・日本・日本・日本
Complex integration

if $F : [a, b] \to \mathbb{C}$, F(t) = G(t) + iH(t), we say that F is *integrable* if G, H are integrable and define

$$\int_{a}^{b} F(t)dt = \int_{a}^{b} G(t)dt + i \int_{a}^{b} H(t)dt$$

PROPERTIES:

1.
$$\int_{a}^{b} (\alpha \cdot F_{1} + \beta \cdot F_{2}) dt = \alpha \cdot \int_{a}^{b} F_{1} dt + \beta \cdot \int_{a}^{b} F_{2} dt.$$

2. $\left| \int_{a}^{b} F(t) dt \right| \leq \int_{a}^{b} |F(t)| dt.$

Proof of 2. Set $\int_{a}^{b} F(t)dt = re^{i\theta}$. Then by 1, $\int_{a}^{b} e^{-i\theta}F(t)dt = r \in \mathbb{R}$. so $\int_{a}^{b} e^{-i\theta}F(t)dt = \int_{a}^{b} Re(e^{-i\theta}F(t))dt$ $\left|\int_{a}^{b}F(t)dt\right| = \left|\int_{a}^{b} Re(e^{-i\theta}F(t))dt\right| \le \int_{a}^{b} |F(t)|dt$ since $|Re(z)| \le |z|$.

Paths

・ロト・「「「・」」、「「・」」、「「」、「」、「」、

Paths

Definition

A *path* is a continuous function $\gamma : [a, b] \to \mathbb{C}$. A path is *closed* if $\gamma(a) = \gamma(b)$. If γ is a path, we will write γ^* for its image,

$$\gamma^* = \{ z \in \mathbb{C} : z = \gamma(t), \text{ some } t \in [a, b] \}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● のへで

Paths

Definition

A *path* is a continuous function $\gamma : [a, b] \to \mathbb{C}$. A path is *closed* if $\gamma(a) = \gamma(b)$. If γ is a path, we will write γ^* for its image,

$$\gamma^* = \{ z \in \mathbb{C} : z = \gamma(t), \text{ some } t \in [a, b] \}.$$

Definition

A path $\gamma : [a, b] \to \mathbb{C}$ is *differentiable* if its real and imaginary parts are differentiable. Equivalently, γ is differentiable at $t_0 \in [a, b]$ if

$$\lim_{t\to t_0}\frac{\gamma(t)-\gamma(t_0)}{t-t_0}$$

exists. Notation: $\gamma'(t_0)$. (If t = a or b then we take the one-sided limit.) A path is C^1 if it is differentiable and its derivative $\gamma'(t)$ is continuous.

.

1. Line segment: $t \mapsto a + t(b - a) = (1 - t)a + tb, \ t \in [0, 1]$,

2. circle: $z(t) = z_0 + re^{2\pi i t}$, $t \in [0, 1]$ a closed path.

- 1. Line segment: $t \mapsto a + t(b a) = (1 t)a + tb, \ t \in [0, 1]$,
- 2. circle: $z(t) = z_0 + re^{2\pi i t}$, $t \in [0, 1]$ a closed path.

NON EXAMPLES: Peano curves, spirals.

$$\alpha : I \longrightarrow$$

$$\mathcal{F}(t) = t^3 e^{2\pi i y_t}, t t [o, 1]$$

- 1. Line segment: $t \mapsto a + t(b a) = (1 t)a + tb, t \in [0, 1]$,
- 2. circle: $z(t) = z_0 + re^{2\pi i t}$, $t \in [0, 1]$ a closed path.

NON EXAMPLES:

Peano curves, spirals.

Remarks: If γ is a C^1 path and $\gamma'(t_0) \neq 0$ then γ has a tangent at t_0 : $L(t) = \gamma(t_0) + (t - t_0)\gamma'(t_0)$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

- 1. Line segment: $t \mapsto a + t(b a) = (1 t)a + tb, t \in [0, 1]$,
- 2. circle: $z(t) = z_0 + re^{2\pi i t}$, $t \in [0, 1]$ a closed path.

NON EXAMPLES:

Peano curves, spirals.

Remarks: If γ is a C^1 path and $\gamma'(t_0) \neq 0$ then γ has a tangent at t_0 : $L(t) = \gamma(t_0) + (t - t_0)\gamma'(t_0)$.

However a C^1 path might not have a tangent at every point, eg $\gamma \colon [-1, 1] \to \mathbb{C}$

Let $\gamma : [c, d] \to \mathbb{C}$ be a C^1 -path. If $\phi : [a, b] \to [c, d]$ is continuously differentiable with $\phi(a) = c$ and $\phi(b) = d$, then we say that $\tilde{\gamma} = \gamma \circ \phi$, is a reparametrization of γ .

Let $\gamma : [c, d] \to \mathbb{C}$ be a C^1 -path. If $\phi : [a, b] \to [c, d]$ is continuously differentiable with $\phi(a) = c$ and $\phi(b) = d$, then we say that $\tilde{\gamma} = \gamma \circ \phi$, is a reparametrization of γ .

Lemma

Let $\gamma : [c, d] \to \mathbb{C}$ and $s : [a, b] \to [c, d]$ and suppose that s is differentiable at t_0 and γ is differentiable at $s_0 = s(t_0)$. Then $\gamma \circ s$ is differentiable at t_0 with derivative

$$(\gamma \circ \boldsymbol{s})'(\boldsymbol{t}_0) = \boldsymbol{s}'(\boldsymbol{t}_0).\gamma'(\boldsymbol{s}(\boldsymbol{t}_0)).$$

Let $\gamma : [c, d] \to \mathbb{C}$ be a C^1 -path. If $\phi : [a, b] \to [c, d]$ is continuously differentiable with $\phi(a) = c$ and $\phi(b) = d$, then we say that $\tilde{\gamma} = \gamma \circ \phi$, is a reparametrization of γ .

Lemma

Let $\gamma : [c, d] \to \mathbb{C}$ and $s : [a, b] \to [c, d]$ and suppose that s is differentiable at t_0 and γ is differentiable at $s_0 = s(t_0)$. Then $\gamma \circ s$ is differentiable at t_0 with derivative

$$(\gamma \circ \boldsymbol{s})'(t_0) = \boldsymbol{s}'(t_0).\gamma'(\boldsymbol{s}(t_0)).$$

Proof. $\gamma(x) = \gamma(s_0) + \gamma'(s_0)(x - s_0) + (x - s_0)\epsilon(x), \ \epsilon(x) \to 0 \text{ as } x \to s_0$

Let $\gamma : [c, d] \to \mathbb{C}$ be a C^1 -path. If $\phi : [a, b] \to [c, d]$ is continuously differentiable with $\phi(a) = c$ and $\phi(b) = d$, then we say that $\tilde{\gamma} = \gamma \circ \phi$, is a reparametrization of γ .

Lemma

Let $\gamma : [c, d] \to \mathbb{C}$ and $s : [a, b] \to [c, d]$ and suppose that s is differentiable at t_0 and γ is differentiable at $s_0 = s(t_0)$. Then $\gamma \circ s$ is differentiable at t_0 with derivative

$$(\gamma \circ \boldsymbol{s})'(t_0) = \boldsymbol{s}'(t_0).\gamma'(\boldsymbol{s}(t_0)).$$

Proof. $\gamma(x) = \gamma(s_0) + \gamma'(s_0)(x - s_0) + (x - s_0)\epsilon(x), \quad \epsilon(x) \to 0 \text{ as } x \to s_0$ $\frac{\gamma(s(t)) - \gamma(s_0)}{t - t_0} = \frac{s(t) - s(t_0)}{t - t_0} (\gamma'(s(t_0)) + \epsilon(s(t))).$

Let $\gamma : [c, d] \to \mathbb{C}$ be a C^1 -path. If $\phi : [a, b] \to [c, d]$ is continuously differentiable with $\phi(a) = c$ and $\phi(b) = d$,then we say that $\tilde{\gamma} = \gamma \circ \phi$, is a reparametrization of γ .

Lemma

Let $\gamma : [c, d] \to \mathbb{C}$ and $s : [a, b] \to [c, d]$ and suppose that s is differentiable at t_0 and γ is differentiable at $s_0 = s(t_0)$. Then $\gamma \circ s$ is differentiable at t_0 with derivative

$$(\gamma \circ \boldsymbol{s})'(\boldsymbol{t}_0) = \boldsymbol{s}'(\boldsymbol{t}_0).\gamma'(\boldsymbol{s}(\boldsymbol{t}_0)).$$

Proof. $\gamma(x) = \gamma(s_0) + \gamma'(s_0)(x - s_0) + (x - s_0)\epsilon(x), \ \epsilon(x) \to 0 \text{ as } x \to s_0$

$$\frac{\gamma(\boldsymbol{s}(t))-\gamma(\boldsymbol{s}_0)}{t-t_0} = \frac{\boldsymbol{s}(t)-\boldsymbol{s}(t_0)}{t-t_0} \big(\gamma'(\boldsymbol{s}(t_0)) + \boldsymbol{\epsilon}(\boldsymbol{s}(t))\big).$$
$$(\gamma \circ \boldsymbol{s})'(t_0) = \boldsymbol{s}'(t_0)\gamma'(\boldsymbol{s}(t_0)).$$

 $\gamma_1: [a, b] \to \mathbb{C}$ and $\gamma_2: [c, d] \to \mathbb{C}$ are equivalent if there is a continuously differentiable bijective function $s: [a, b] \to [c, d]$ such that s'(t) > 0 for all $t \in [a, b]$ and $\gamma_1 = \gamma_2 \circ s$. Equivalence classes: *oriented curves* in the complex plane. Notation: $[\gamma]$.

s'(t) > 0: the path is traversed in the same direction for each of the parametrizations γ_1 and γ_2 . Opposite path γ^- .

 $\gamma_1: [a, b] \to \mathbb{C}$ and $\gamma_2: [c, d] \to \mathbb{C}$ are equivalent if there is a continuously differentiable bijective function $s: [a, b] \to [c, d]$ such that s'(t) > 0 for all $t \in [a, b]$ and $\gamma_1 = \gamma_2 \circ s$. Equivalence classes: *oriented curves* in the complex plane. Notation: $[\gamma]$.

s'(t) > 0: the path is traversed in the same direction for each of the parametrizations γ_1 and γ_2 . Opposite path γ^- .

Definition

If $\gamma : [a, b] \to \mathbb{C}$ is a C^1 path then we define the length of γ to be

$$\ell(\gamma) = \int_a^b |\gamma'(t)| dt.$$

Using the chain rule one sees that the length of a parametrized path is also constant on equivalence classes of paths.

We will say a path $\gamma : [a, b] \to \mathbb{C}$ is piecewise C^1 if it is continuous on [a, b] and the interval [a, b] can be divided into subintervals on each of which γ is C^1 .

So there are $a = a_0 < a_1 < \ldots < a_m = b$ such that $\gamma_{|[a_i, a_{i+1}]}$ is C^1 .

Note: the left-hand and right-hand derivatives of γ at a_i

 $(1 \le i \le m - 1)$ may not be equal.

We will say a path $\gamma : [a, b] \to \mathbb{C}$ is piecewise C^1 if it is continuous on [a, b] and the interval [a, b] can be divided into subintervals on each of which γ is C^1 .

So there are $a = a_0 < a_1 < \ldots < a_m = b$ such that $\gamma_{|[a_i, a_{i+1}]}$ is C^1 .

Note: the left-hand and right-hand derivatives of γ at a_i $(1 \le i \le m - 1)$ may not be equal.

As we have see in metric spaces two paths $\gamma_1 : [a, b] \to \mathbb{C}$ and $\gamma_2 : [c, d] \to \mathbb{C}$ with $\gamma_1(b) = \gamma_2(c)$ can be *concatenated* to give a path $\gamma_1 \star \gamma_2$. If $\gamma, \gamma_1, \gamma_2$ are piecewise C^1 then so are γ^- and $\gamma_1 \star \gamma_2$.

We will say a path $\gamma : [a, b] \to \mathbb{C}$ is piecewise C^1 if it is continuous on [a, b] and the interval [a, b] can be divided into subintervals on each of which γ is C^1 .

So there are $a = a_0 < a_1 < \ldots < a_m = b$ such that $\gamma_{|[a_i, a_{i+1}]}$ is C^1 .

Note: the left-hand and right-hand derivatives of γ at a_i $(1 \le i \le m - 1)$ may not be equal.

As we have see in metric spaces two paths $\gamma_1 : [a, b] \to \mathbb{C}$ and $\gamma_2 : [c, d] \to \mathbb{C}$ with $\gamma_1(b) = \gamma_2(c)$ can be *concatenated* to give a path $\gamma_1 \star \gamma_2$. If $\gamma, \gamma_1, \gamma_2$ are piecewise C^1 then so are γ^- and $\gamma_1 \star \gamma_2$.

A piecewise C^1 path is precisely a finite concatenation of C^1 paths.

We may define equivalence classes, reparametrisations, length as before for *piecewise* C^1 paths. Example: If $a, b, c \in \mathbb{C}$, we define the triangle:

 $T_{a,b,c} = \gamma_{a,b} \star \gamma_{b,c} \star \gamma_{c,a}$ where $\gamma_{x,y}$ is the line segment joining x, y.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: If $a, b, c \in \mathbb{C}$, we define the triangle:

 $T_{a,b,c} = \gamma_{a,b} \star \gamma_{b,c} \star \gamma_{c,a}$ where $\gamma_{x,y}$ is the line segment joining x, y.

Recall the definition of Riemann integrable functions. We have the following:

Lemma

Let [a, b] be a closed interval and $S \subset [a, b]$ a finite set. If f is a bounded continuous function (taking real or complex values) on $[a, b] \setminus S$ then it is Riemann integrable on [a, b].

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

Example: If $a, b, c \in \mathbb{C}$, we define the triangle:

 $T_{a,b,c} = \gamma_{a,b} \star \gamma_{b,c} \star \gamma_{c,a}$ where $\gamma_{x,y}$ is the line segment joining x, y.

Recall the definition of Riemann integrable functions. We have the following:

Lemma

Let [a, b] be a closed interval and $S \subset [a, b]$ a finite set. If f is a bounded continuous function (taking real or complex values) on $[a, b] \setminus S$ then it is Riemann integrable on [a, b]. Proof.

Let $a = x_0 < x_1 < x_2 < \ldots < x_k = b$ be any partition of [a, b] which includes the elements of *S*.

On each open interval (x_i, x_{i+1}) the function *f* is bounded and continuous, and hence integrable.

Example: If $a, b, c \in \mathbb{C}$, we define the triangle:

 $T_{a,b,c} = \gamma_{a,b} \star \gamma_{b,c} \star \gamma_{c,a}$ where $\gamma_{x,y}$ is the line segment joining x, y.

Recall the definition of Riemann integrable functions. We have the following:

Lemma

Let [a, b] be a closed interval and $S \subset [a, b]$ a finite set. If f is a bounded continuous function (taking real or complex values) on $[a, b] \setminus S$ then it is Riemann integrable on [a, b].

Proof.

Let $a = x_0 < x_1 < x_2 < \ldots < x_k = b$ be any partition of [a, b] which includes the elements of *S*.

On each open interval (x_i, x_{i+1}) the function *f* is bounded and continuous, and hence integrable.

By the definition of Riemann integrable functions f is integrable on [a, b].

Integral along a path

Definition

If $\gamma : [a, b] \to \mathbb{C}$ is a piecewise- C^1 path and $f : \mathbb{C} \to \mathbb{C}$, then we define the integral of f along γ to be

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Integral along a path

Definition

If $\gamma : [a, b] \to \mathbb{C}$ is a piecewise- C^1 path and $f : \mathbb{C} \to \mathbb{C}$, then we define the integral of f along γ to be

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

We note that if γ is a concatenation of the C^1 paths $\gamma_1, ..., \gamma_n$ then $\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + ... + \int_{\gamma_n} f(z) dz$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Integral along a path

Definition

If $\gamma : [a, b] \to \mathbb{C}$ is a piecewise- C^1 path and $f : \mathbb{C} \to \mathbb{C}$, then we define the integral of f along γ to be

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

We note that if γ is a concatenation of the C^1 paths $\gamma_1, ..., \gamma_n$ then $\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + ... + \int_{\gamma_n} f(z) dz$.

Lemma

If $\gamma : [a, b] \to \mathbb{C}$ be a piecewise C^1 path and $\tilde{\gamma} : [c, d] \to \mathbb{C}$ is an equivalent path, then for any continuous function $f : \mathbb{C} \to \mathbb{C}$ we have

$$\int_{\gamma} f(z) dz = \int_{\tilde{\gamma}} f(z) dz.$$

So the integral only depends on the oriented curve $[\gamma]$.

Since $\tilde{\gamma} \sim \gamma$ there is $s: [c, d] \rightarrow [a, b]$ with s(c) = a, s(d) = band s'(t) > 0, $\tilde{\gamma} = \gamma \circ s$. Suppose first that γ is C^1 . Then by the chain rule we have

$$\int_{\tilde{\gamma}} f(z) dz = \int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)'(t) dt$$

Since $\tilde{\gamma} \sim \gamma$ there is $s: [c, d] \rightarrow [a, b]$ with s(c) = a, s(d) = band $s'(t) > 0, \tilde{\gamma} = \gamma \circ s$. Suppose first that γ is C^1 . Then by the chain rule we have

$$\int_{\tilde{\gamma}} f(z) dz = \int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)'(t) dt$$

 $= \int_{c}^{d} f(\gamma(s(t))\gamma'(s(t))s'(t))dt$

Since $\tilde{\gamma} \sim \gamma$ there is $s \colon [c, d] \rightarrow [a, b]$ with s(c) = a, s(d) = band $s'(t) > 0, \tilde{\gamma} = \gamma \circ s$. Suppose first that γ is C^1 . Then by the chain rule we have

$$\int_{\tilde{\gamma}} f(z) dz = \int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)'(t) dt$$

= $\int_{c}^{d} f(\gamma(s(t))\gamma'(s(t))s'(t) dt$ substitution $S = S(t)$
= $\int_{a}^{b} f(\gamma(s))\gamma'(s) ds$ $d_{S} = S'(t) dt$

Since $\tilde{\gamma} \sim \gamma$ there is $s \colon [c, d] \rightarrow [a, b]$ with s(c) = a, s(d) = band s'(t) > 0, $\tilde{\gamma} = \gamma \circ s$. Suppose first that γ is C^1 . Then by the chain rule we have

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

$$\int_{\tilde{\gamma}} f(z) dz = \int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)'(t) dt$$

= $\int_{c}^{d} f(\gamma(s(t))\gamma'(s(t))s'(t) dt$
= $\int_{a}^{b} f(\gamma(s))\gamma'(s) ds$
= $\int_{\gamma} f(z) dz$.

Since $\tilde{\gamma} \sim \gamma$ there is $s \colon [c, d] \rightarrow [a, b]$ with s(c) = a, s(d) = band s'(t) > 0, $\tilde{\gamma} = \gamma \circ s$. Suppose first that γ is C^1 . Then by the chain rule we have

$$\begin{aligned} \int_{\tilde{\gamma}} f(z) dz &= \int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)'(t) dt \\ &= \int_{c}^{d} f(\gamma(s(t))\gamma'(s(t))s'(t) dt \\ &= \int_{a}^{b} f(\gamma(s))\gamma'(s) ds \\ &= \int_{\gamma} f(z) dz. \end{aligned}$$
If $a = x_{0} < x_{1} < \ldots < x_{n} = b$ such that γ is C^{1} on $[x_{i}, x_{i+1}]$ we

have a corresponding decomposition of [c, d] given by the points $s^{-1}(x_0) < \ldots < s^{-1}(x_n)$, and $\int_{\tilde{\gamma}} f(z) dz = \int_c^d f(\gamma(s(t))\gamma'(s(t))s'(t)dt$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Since $\tilde{\gamma} \sim \gamma$ there is $s \colon [c, d] \rightarrow [a, b]$ with s(c) = a, s(d) = band s'(t) > 0, $\tilde{\gamma} = \gamma \circ s$. Suppose first that γ is C^1 . Then by the chain rule we have

$$\begin{aligned} \int_{\tilde{\gamma}} f(z) dz &= \int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)'(t) dt \\ &= \int_{c}^{d} f(\gamma(s(t))\gamma'(s(t))s'(t) dt \\ &= \int_{a}^{b} f(\gamma(s))\gamma'(s) ds \\ &= \int_{\gamma} f(z) dz. \end{aligned}$$

If $a = x_{0} < x_{1} < \ldots < x_{n} = b$ such that γ is C^{1} on $[x_{i}, x_{i+1}]$ we

have a corresponding decomposition of [c, d] given by the points $s^{-1}(x_0) < \ldots < s^{-1}(x_n)$, and $\int_{\tilde{\gamma}} f(z) dz = \int_c^d f(\gamma(s(t))\gamma'(s(t))s'(t)dt)$ = $\sum_{i=0}^{n-1} \int_{s^{-1}(x_i)}^{s^{-1}(x_{i+1})} f(\gamma(s(t))\gamma'(s(t))s'(t)dt$

Since $\tilde{\gamma} \sim \gamma$ there is $s \colon [c, d] \rightarrow [a, b]$ with s(c) = a, s(d) = band s'(t) > 0, $\tilde{\gamma} = \gamma \circ s$. Suppose first that γ is C^1 . Then by the chain rule we have

$$\begin{aligned} \int_{\tilde{\gamma}} f(z) dz &= \int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)'(t) dt \\ &= \int_{c}^{d} f(\gamma(s(t))\gamma'(s(t))s'(t) dt \\ &= \int_{a}^{b} f(\gamma(s))\gamma'(s) ds \\ &= \int_{\gamma} f(z) dz. \end{aligned}$$

If $a = x_{0} < x_{1} < \ldots < x_{n} = b$ such that γ is C^{1} on $[x_{i}, x_{i+1}]$ we

have a corresponding decomposition of [c, d] given by the points $s^{-1}(x_0) < \ldots < s^{-1}(x_n)$, and $\int_{\tilde{\gamma}} f(z) dz = \int_c^d f(\gamma(s(t))\gamma'(s(t))s'(t)dt)$ $= \sum_{i=0}^{n-1} \int_{s^{-1}(x_i)}^{s^{-1}(x_{i+1})} f(\gamma(s(t))\gamma'(s(t))s'(t)dt)$ $= \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f(\gamma(x))\gamma'(x)dx$

Since $\tilde{\gamma} \sim \gamma$ there is $s \colon [c, d] \rightarrow [a, b]$ with s(c) = a, s(d) = band $s'(t) > 0, \tilde{\gamma} = \gamma \circ s$. Suppose first that γ is C^1 . Then by the chain rule we have

$$\begin{split} &\int_{\tilde{\gamma}} f(z) dz = \int_{c}^{d} f(\gamma(s(t)))(\gamma \circ s)'(t) dt \\ &= \int_{c}^{d} f(\gamma(s(t))\gamma'(s(t))s'(t) dt \\ &= \int_{a}^{b} f(\gamma(s))\gamma'(s) ds \\ &= \int_{\gamma} f(z) dz. \end{split}$$

If $a = x_{0} < x_{1} < \ldots < x_{n} = b$ such that γ is C^{1} on $[x_{i}, x_{i+1}]$ we

have a corresponding decomposition of [c, d] given by the points $s^{-1}(x_0) < \ldots < s^{-1}(x_n)$, and $\int_{\tilde{\gamma}} f(z) dz = \int_c^d f(\gamma(s(t))\gamma'(s(t))s'(t)dt$ $= \sum_{i=0}^{n-1} \int_{s^{-1}(x_i)}^{s^{-1}(x_{i+1})} f(\gamma(s(t))\gamma'(s(t))s'(t)dt$ $= \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f(\gamma(x))\gamma'(x)dx$ $= \int_a^b f(\gamma(x))\gamma'(x)dx = \int_{\gamma} f(z)dz$ We define also the integral *with respect to arc-length* of a function $f: U \to \mathbb{C}$ such that $\gamma^* \subseteq U$ to be

$$\int_{\gamma} f(z) |dz| = \int_{a}^{b} f(\gamma(t)) |\gamma'(t)| dt.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We define also the integral *with respect to arc-length* of a function $f: U \to \mathbb{C}$ such that $\gamma^* \subseteq U$ to be

$$\int_{\gamma} f(z) |dz| = \int_{a}^{b} f(\gamma(t)) |\gamma'(t)| dt.$$

This integral is invariant with respect to C^1 reparametrizations $s \colon [c, d] \to [a, b]$ if we require $s'(t) \neq 0$ for all $t \in [c, d]$. Note that in this case

$$\int_{\gamma} f(z) |dz| = \int_{\gamma^-} f(z) |dz|$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで
Properties of the integral

Properties of the integral

Let $f, g: U \to \mathbb{C}$ be continuous functions on an open subset $U \subseteq \mathbb{C}$ and $\gamma, \eta: [a, b] \to \mathbb{C}$ be piecewise- C^1 paths whose images lie in U. Then we have the following:

1. (*Linearity*): For $\alpha, \beta \in \mathbb{C}$,

$$\int_{\gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz.$$

2. If γ^- denotes the opposite path to γ then

$$\int_{\gamma} f(z) dz = - \int_{\gamma^-} f(z) dz.$$

3. (*Additivity*): If $\gamma \star \eta$ is the concatenation of the paths γ, η in U, we have

$$\int_{\gamma\star\eta}f(z)dz=\int_{\gamma}f(z)dz+\int_{\eta}f(z)dz$$

4. (Estimation Lemma.) We have $e_{y,t} \to \ell_{y}$ $\left| \int_{\gamma} f(z) dz \right| \leq \sup_{z \in \gamma^{*}} |f(z)| \cdot \ell(\gamma).$

◆□▶▲@▶▲≣▶▲≣▶ ■ 少�?

$$\left|\int_{\gamma} f(z)dz\right| = \left|\int_{a}^{b} f(\gamma(t))\gamma'(t)dt\right|$$

・ロト・日本・ヨト・ヨー シックの

$$ig| \int_{\gamma} f(z) dz ig| = ig| \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt ig| \\ \leq \int_{a}^{b} |f(\gamma(t))| |\gamma'(t)| dt$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□▶

$$\left|\int_{\gamma} f(z)dz\right| = \left|\int_{a}^{b} f(\gamma(t))\gamma'(t)dt\right|$$
$$\leq \int_{a}^{b} \underbrace{|f(\gamma(t))||\gamma'(t)|dt}_{A_{1}}$$
$$\leq \underbrace{\sup_{z \in \gamma^{*}} |f(z)|}_{z \in \gamma^{*}} \frac{|\gamma'(t)|dt}{|\gamma'(t)|dt}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽۹00

$$\int_{\gamma} f(z) dz \Big| = \Big| \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \Big|$$
$$\leq \int_{a}^{b} |f(\gamma(t))| |\gamma'(t)| dt$$
$$\leq \sup_{z \in \gamma^{*}} |f(z)| \int_{a}^{b} |\gamma'(t)| dt$$
$$= \sup_{z \in \gamma^{*}} |f(z)| \cdot \ell(\gamma).$$

・ロト・「「「・」」、「「・」」、「「」、「」、「」、

Proposition

Let $f_n: U \to \mathbb{C}$ be a sequence of continuous functions. Suppose that $\gamma: [a, b] \to U$ is a path. If (f_n) converges uniformly to a function *f* on the image of γ then

$$\int_{\gamma} f_n(z) dz \rightarrow \int_{\gamma} f(z) dz$$

Proposition

Let $f_n: U \to \mathbb{C}$ be a sequence of continuous functions. Suppose that $\gamma: [a, b] \to U$ is a path. If (f_n) converges uniformly to a function *f* on the image of γ then

$$\int_{\gamma} f_n(z) dz \to \int_{\gamma} f(z) dz.$$

Proof. We have

$$\left| \int_{\gamma} f(z) dz - \int_{\gamma} f_n(z) dz \right| = \left| \int_{\gamma} (f(z) - f_n(z)) dz \right|$$

$$\leq \sup_{z \in \gamma^*} \{ |f(z) - f_n(z)| \} . \ell(\gamma),$$

▲□▶▲□▶▲□▶▲□▶ = のへで

by the estimation lemma.

Proposition

Let $f_n: U \to \mathbb{C}$ be a sequence of continuous functions. Suppose that $\gamma: [a, b] \to U$ is a path. If (f_n) converges uniformly to a function *f* on the image of γ then

$$\int_{\gamma} f_n(z) dz
ightarrow \int_{\gamma} f(z) dz.$$

Proof. We have

$$igg| \int_{\gamma} f(z) dz - \int_{\gamma} f_n(z) dz igg| = igg| \int_{\gamma} (f(z) - f_n(z)) dz igg| \ \leq \sup_{z \in \gamma^*} \{ |f(z) - f_n(z)| \} . \ell(\gamma),$$

by the estimation lemma.

 $\sup\{|f(z) - f_n(z)| : z \in \gamma^*\} \to 0 \text{ as } n \to \infty \text{ which implies the result.}$

 ∞ $\sum a_n z^n$ n=1

converges on B(0, R). Then convergence is uniform on B(0, r) for r < R. So if γ is a piecewise C^1 curve in B(0, r) we have

$$\sum_{n=1}^{\infty} a_n z^n$$

converges on B(0, R). Then convergence is uniform on B(0, r) for r < R. So if γ is a piecewise C^1 curve in B(0, r) we have

$$\int_{\gamma} \sum_{n=1}^{N} a_n z^n dz \to \int_{\gamma} \sum_{n=1}^{\infty} a_n z^n dz$$

SO

$$\sum_{n=1}^{\infty} a_n z^n$$

converges on B(0, R). Then convergence is uniform on B(0, r) for r < R. So if γ is a piecewise C^1 curve in B(0, r) we have

$$\int_{\gamma} \sum_{n=1}^{N} a_n z^n dz \to \int_{\gamma} \sum_{n=1}^{\infty} a_n z^n dz$$

SO

$$\sum_{n=1}^{N} \int_{\gamma} a_n z^n dz \to \int_{\gamma} \sum_{n=1}^{\infty} a_n z^n dz$$

in other words we can interchange \sum, \int :

$$\sum_{n=1}^{\infty} a_n z^n$$

converges on B(0, R). Then convergence is uniform on B(0, r) for r < R. So if γ is a piecewise C^1 curve in B(0, r) we have

$$\int_{\gamma} \sum_{n=1}^{N} a_n z^n dz \to \int_{\gamma} \sum_{n=1}^{\infty} a_n z^n dz$$

SO

$$\sum_{n=1}^{N} \int_{\gamma} a_n z^n dz \to \int_{\gamma} \sum_{n=1}^{\infty} a_n z^n dz$$

in other words we can interchange \sum, \int :

$$\int_{\gamma} \sum_{n=1}^{\infty} a_n z^n dz = \sum_{n=1}^{\infty} \int_{\gamma} a_n z^n dz$$

Definition

Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \to \mathbb{C}$ be a continuous function. If there exists a differentiable function $F: U \to \mathbb{C}$ with F'(z) = f(z) then we say F is a primitive for f on U.

Definition

Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \to \mathbb{C}$ be a continuous function. If there exists a differentiable function $F: U \to \mathbb{C}$ with F'(z) = f(z) then we say F is a primitive for f on U.

Theorem

(Fundamental theorem of Calculus): Let $U \subseteq \mathbb{C}$ be a open and let $f: U \to \mathbb{C}$ be a continuous function. If $F: U \to \mathbb{C}$ is a primitive for f and $\gamma: [a, b] \to U$ is a piecewise C^1 path in U then we have

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a)).$$

In particular the integral of such a function f around any closed path is zero.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

First suppose that γ is C^1 . Then we have

$$\int_{\gamma} f(z) dz = \int_{\gamma} F'(z) dz = \int_{a}^{b} F'(\gamma(t)) \gamma'(t) dt$$

First suppose that γ is C^1 . Then we have

$$\int_{\gamma} f(z) dz = \int_{\gamma} F'(z) dz = \int_{a}^{b} F'(\gamma(t)) \gamma'(t) dt$$

$$=\int_{a}^{b}\frac{d}{dt}(F\circ\gamma)(t)dt=F(\gamma(b))-F(\gamma(a))$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

First suppose that γ is C^1 . Then we have

$$\int_{\gamma} f(z) dz = \int_{\gamma} F'(z) dz = \int_{a}^{b} F'(\gamma(t)) \gamma'(t) dt$$

$$=\int_{a}^{b}\frac{d}{dt}(F\circ\gamma)(t)dt=F(\gamma(b))-F(\gamma(a))$$

If γ is only piecewise C^1 , then take a partition $a = a_0 < a_1 < \ldots < a_k = b$ such that γ is C^1 on $[a_i, a_{i+1}]$ for each $i \in \{0, 1, \ldots, k-1\}$. Then we obtain a telescoping sum:

$$\int_{\gamma} f(z) = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \sum_{i=0}^{k-1} \int_{a_i}^{a_{i+1}} f(\gamma(t))\gamma'(t)dt$$
$$= \sum_{i=0}^{k-1} (F(\gamma(a_{i+1})) - F(\gamma(a_i))) = F(\gamma(b)) - F(\gamma(a))$$

Finally, γ is closed iff $\gamma(a) = \gamma(b)$ so the integral of *f* along a closed path is zero.

Corollary

Let U be a domain and let $f: U \to \mathbb{C}$ be a function with f'(z) = 0 for all $z \in U$. Then f is constant.

Corollary

Let U be a domain and let $f: U \to \mathbb{C}$ be a function with f'(z) = 0 for all $z \in U$. Then f is constant.

Proof.

Pick $z_0 \in U$. Since *U* is path-connected, if $w \in U$, we may find a piecewise C^1 -path $\gamma : [0, 1] \to U$ such that $\gamma(a) = z_0$ and $\gamma(b) = w$. Then by the previous Theorem

$$f(w)-f(z_0)=\int_{\gamma}f'(z)dz=0,$$

so that *f* is constant.

Corollary

Let U be a domain and let $f: U \to \mathbb{C}$ be a function with f'(z) = 0 for all $z \in U$. Then f is constant.

Proof.

Pick $z_0 \in U$. Since *U* is path-connected, if $w \in U$, we may find a piecewise C^1 -path $\gamma : [0, 1] \to U$ such that $\gamma(a) = z_0$ and $\gamma(b) = w$. Then by the previous Theorem

$$f(w)-f(z_0)=\int_{\gamma}f'(z)dz=0,$$

so that f is constant.

Theorem

If U is a domain and $f: U \to \mathbb{C}$ is a continuous function such that for any closed path in U we have $\int_{\gamma} f(z) dz = 0$, then f has a primitive.

Fix z_0 in U, and for any $z \in U$ set $F(z) = \int_{\gamma} f(z) dz$. where $\gamma : [a, b] \to U$ with $\gamma(a) = z_0$ and $\gamma(b) = z$.

Fix z_0 in U, and for any $z \in U$ set $F(z) = \int_{\gamma} f(z) dz$. where $\gamma : [a, b] \to U$ with $\gamma(a) = z_0$ and $\gamma(b) = z$. F(z) is independent of the choice of γ : Suppose γ_1, γ_2 are two paths joining z_0, z . The path $\gamma = \gamma_1 \star \gamma_2^-$ is closed so

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ● の < ⊙

Fix z_0 in U, and for any $z \in U$ set $F(z) = \int_{\gamma} f(z) dz$. where $\gamma : [a, b] \to U$ with $\gamma(a) = z_0$ and $\gamma(b) = z$. F(z) is independent of the choice of γ : Suppose γ_1, γ_2 are two paths joining z_0, z . The path $\gamma = \gamma_1 \star \gamma_2^-$ is closed so

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < □ ♪ < □ ♪ < □ ♪

$$0=\int_{\gamma}f(z)dz=\int_{\gamma_1}f(z)dz+\int_{\gamma_2^-}f(z)dz=\int_{\gamma_1}f(z)dz-\int_{\gamma_2}f(z)dz.$$

Fix z_0 in U, and for any $z \in U$ set $F(z) = \int_{\gamma} f(z) dz$. where $\gamma : [a, b] \to U$ with $\gamma(a) = z_0$ and $\gamma(b) = z$. F(z) is independent of the choice of γ : Suppose γ_1, γ_2 are two paths joining z_0, z . The path $\gamma = \gamma_1 \star \gamma_2^-$ is closed so

$$0=\int_{\gamma}f(z)dz=\int_{\gamma_1}f(z)dz+\int_{\gamma_2^-}f(z)dz=\int_{\gamma_1}f(z)dz-\int_{\gamma_2}f(z)dz.$$

Claim: *F* is differentiable and F'(z) = f(z). Fix $w \in U$ and $\epsilon > 0$ such that $B(w, \epsilon) \subseteq U$ and choose a path $\gamma : [a, b] \to U$ from z_0 to w.

Fix z_0 in U, and for any $z \in U$ set $F(z) = \int_{\gamma} f(z) dz$. where $\gamma : [a, b] \to U$ with $\gamma(a) = z_0$ and $\gamma(b) = z$. F(z) is independent of the choice of γ : Suppose γ_1, γ_2 are two paths joining z_0, z . The path $\gamma = \gamma_1 \star \gamma_2^-$ is closed so

$$0=\int_{\gamma}f(z)dz=\int_{\gamma_1}f(z)dz+\int_{\gamma_2^-}f(z)dz=\int_{\gamma_1}f(z)dz-\int_{\gamma_2}f(z)dz.$$

Claim: *F* is differentiable and F'(z) = f(z). Fix $w \in U$ and $\epsilon > 0$ such that $B(w, \epsilon) \subseteq U$ and choose a path $\gamma: [a, b] \to U$ from z_0 to w. If $z_1 \in B(w, \epsilon) \subseteq U$, then the concatenation of γ with the straight-line path $s: [0, 1] \to U$ given by $s(t) = w + t(z_1 - w)$ from w to z_1 is a path γ_1 from z_0 to z_1 . It follows that

$$F(z_1) - F(w) = \int_{\gamma_1} f(z) dz - \int_{\gamma} f(z) dz$$

$$F(z_1) - F(w) = \int_{\gamma_1} f(z) dz - \int_{\gamma} f(z) dz$$
$$= \left(\int_{\gamma} f(z) dz + \int_{s} f(z) dz \right) - \int_{\gamma} f(z) dz$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④ ▲ ◎

$$F(z_1) - F(w) = \int_{\gamma_1} f(z)dz - \int_{\gamma} f(z)dz$$
$$= \left(\int_{\gamma} f(z)dz + \int_{s} f(z)dz\right) - \int_{\gamma} f(z)dz$$
$$= \int_{s} f(z)dz.$$

・ロト・日本・山下・山下・山下・山下・山下・山下・山下

$$F(z_1) - F(w) = \int_{\gamma_1} f(z)dz - \int_{\gamma} f(z)dz$$
$$= \left(\int_{\gamma} f(z)dz + \int_{S} f(z)dz\right) - \int_{\gamma} f(z)dz$$
$$= \int_{S} f(z)dz.$$

$$\left|\frac{F(z_1) - F(w)}{z_1 - w}\right| = \left|\frac{1}{z_1 - w} \left(\int_0^1 f(w + t(z_1 - w))(z_1 - w)dt\right)\right|$$

▲□▶▲□▶▲≡▶▲≡▶ ④�?

$$F(z_1) - F(w) = \int_{\gamma_1} f(z)dz - \int_{\gamma} f(z)dz$$
$$= (\int_{\gamma} f(z)dz + \int_{s} f(z)dz) - \int_{\gamma} f(z)dz$$
$$= \int_{s} f(z)dz.$$
so for $z_1 \neq w$
$$dz = (z_1 - w)dz$$
$$dz = (z_1 - w)dz$$

・ロト・日本・モン・モン・ロックへの

$$F(z_1) - F(w) = \int_{\gamma_1} f(z)dz - \int_{\gamma} f(z)dz$$
$$= \left(\int_{\gamma} f(z)dz + \int_{S} f(z)dz\right) - \int_{\gamma} f(z)dz$$
$$= \int_{S} f(z)dz.$$

$$\left|\frac{F(z_1) - F(w)}{z_1 - w}\right| = \left|\frac{1}{z_1 - w} \left(\int_0^1 f(w + t(z_1 - w))(z_1 - w)dt\right)\right|$$
$$\frac{F(z_1) - F(w)}{z_1 - w} - f(w)\right| = \left|\int_0^1 (f(w + t(z_1 - w)) - f(w))dt\right|$$

▲□▶▲□▶▲目▶▲目▶ ▲□▶

$$F(z_1) - F(w) = \int_{\gamma_1} f(z)dz - \int_{\gamma} f(z)dz$$
$$= \left(\int_{\gamma} f(z)dz + \int_{S} f(z)dz\right) - \int_{\gamma} f(z)dz$$
$$= \int_{S} f(z)dz.$$

$$\begin{aligned} \left| \frac{F(z_1) - F(w)}{z_1 - w} \right| &= \left| \frac{1}{z_1 - w} \left(\int_0^1 f(w + t(z_1 - w))(z_1 - w) dt \right) \right| \\ \left| \frac{F(z_1) - F(w)}{z_1 - w} - f(w) \right| &= \left| \int_0^1 (f(w + t(z_1 - w)) - f(w)) dt \right| \\ &\leq \sup_{t \in [0, 1]} |f(w + t(z_1 - w)) - f(w)| \end{aligned}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽۹00

$$F(z_1) - F(w) = \int_{\gamma_1} f(z)dz - \int_{\gamma} f(z)dz$$
$$= \left(\int_{\gamma} f(z)dz + \int_{S} f(z)dz\right) - \int_{\gamma} f(z)dz$$
$$= \int_{S} f(z)dz.$$

$$\left|\frac{F(z_1) - F(w)}{z_1 - w}\right| = \left|\frac{1}{z_1 - w}\left(\int_0^1 f(w + t(z_1 - w))(z_1 - w)dt\right)\right|$$
$$\left|\frac{F(z_1) - F(w)}{z_1 - w} - f(w)\right| = \left|\int_0^1 (f(w + t(z_1 - w)) - f(w))dt\right|$$
$$\leq \sup_{t \in [0,1]} |f(w + t(z_1 - w)) - f(w)|$$
$$\to 0 \text{ as } z_1 \to w$$

Winding numbers

Holomorphic functions don't always have primitives.
Winding numbers

Holomorphic functions don't always have primitives.

Example

Let $f: \mathbb{C}^{\times} \to \mathbb{C}^{\times}$, f(z) = 1/z. Then f does not have a primitive on \mathbb{C}^{\times} .

Winding numbers

Holomorphic functions don't always have primitives.

Example

Let $f: \mathbb{C}^{\times} \to \mathbb{C}^{\times}$, f(z) = 1/z. Then *f* does not have a primitive on \mathbb{C}^{\times} .

If $\gamma: [0, 1] \to \mathbb{C}$ is the path $\gamma(t) = \exp(2\pi i t)$ (a circle)

$$\int_{\gamma} f(z) dz = \int_0^1 f(\gamma(t)) \gamma'(t) dt = \int_0^1 \frac{1}{\exp(2\pi i t)} \cdot (2\pi i \exp(2\pi i t)) dt = 2\pi i.$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

But this integral would be zero if f(z) had a primitive.

Winding numbers

Holomorphic functions don't always have primitives.

Example

Let $f: \mathbb{C}^{\times} \to \mathbb{C}^{\times}$, f(z) = 1/z. Then *f* does not have a primitive on \mathbb{C}^{\times} .

If $\gamma: [0, 1] \to \mathbb{C}$ is the path $\gamma(t) = \exp(2\pi i t)$ (a circle)

$$\int_{\gamma} f(z) dz = \int_0^1 f(\gamma(t)) \gamma'(t) dt = \int_0^1 \frac{1}{\exp(2\pi i t)} \cdot (2\pi i \exp(2\pi i t)) dt = 2\pi i.$$

But this integral would be zero if f(z) had a primitive.

Remark: 1/z does have a primitive on any domain where we can chose a branch of [Log(z)]: If we have $e^{L(z)} = z$ on *D* by the chain rule

$$\exp(L(z)) \cdot L'(z) = 1 \Rightarrow L'(z) = 1/z.$$

Let $\gamma : [0, 1] \to \mathbb{C}$ closed path which does not pass through 0. We will give a rigorous definition of the number of times γ "goes around the origin".

Let $\gamma : [0, 1] \to \mathbb{C}$ closed path which does not pass through 0. We will give a rigorous definition of the number of times γ "goes around the origin".

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The problem is arg z is not continuous on \mathbb{C}^{\times} !

So
$$(a_{n})^{+}$$
 use $ar_{j}(z(1)) - ar_{j}(z(0))$

Let $\gamma : [0, 1] \to \mathbb{C}$ closed path which does not pass through 0. We will give a rigorous definition of the number of times γ "goes around the origin".

The problem is arg z is not continuous on \mathbb{C}^{\times} !

Proposition

Let $\gamma : [0, 1] \to \mathbb{C} \setminus \{0\}$ be a path. Then there is continuous function $a : [0, 1] \to \mathbb{R}$ such that

 $\gamma(t) = |\gamma(t)| e^{2\pi i a(t)}.$

Moreover, if a and b are two such functions, then there exists $n \in \mathbb{Z}$ such that a(t) = b(t) + n for all $t \in [0, 1]$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proof. By replacing $\gamma(t)$ with $\gamma(t)/|\gamma(t)|$ we may assume that $|\gamma(t)| = 1$ for all *t*.

By replacing $\gamma(t)$ with $\gamma(t)/|\gamma(t)|$ we may assume that $|\gamma(t)| = 1$ for all *t*.

 γ is uniformly continuous, so $\exists \delta > 0$ such that $|\gamma(s) - \gamma(t)| < 1$ for any s, t with $|s - t| < \delta$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● のへで

By replacing $\gamma(t)$ with $\gamma(t)/|\gamma(t)|$ we may assume that $|\gamma(t)| = 1$ for all *t*.

 γ is uniformly continuous, so $\exists \delta > 0$ such that $|\gamma(s) - \gamma(t)| < 1$ for any s, t with $|s - t| < \delta$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Choose $n \in \mathbb{N}$, $n > 1/\delta$. Then on each subinterval [i/n, (i+1)/n] we have $|\gamma(s) - \gamma(t)| < 1$.

By replacing $\gamma(t)$ with $\gamma(t)/|\gamma(t)|$ we may assume that $|\gamma(t)| = 1$ for all *t*.

 γ is uniformly continuous, so $\exists \delta > 0$ such that $|\gamma(s) - \gamma(t)| < 1$ for any s, t with $|s - t| < \delta$.

Choose $n \in \mathbb{N}$, $n > 1/\delta$. Then on each subinterval [i/n, (i+1)/n] we have $|\gamma(s) - \gamma(t)| < 1$.

On any half-plane in \mathbb{C} we may define a holomorphic branch of [Log(z)].

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

By replacing $\gamma(t)$ with $\gamma(t)/|\gamma(t)|$ we may assume that $|\gamma(t)| = 1$ for all *t*.

 γ is uniformly continuous, so $\exists \delta > 0$ such that $|\gamma(s) - \gamma(t)| < 1$ for any s, t with $|s - t| < \delta$.

Choose $n \in \mathbb{N}$, $n > 1/\delta$. Then on each subinterval [i/n, (i+1)/n] we have $|\gamma(s) - \gamma(t)| < 1$.

On any half-plane in \mathbb{C} we may define a holomorphic branch of [Log(z)].

if $|z_1| = |z_2| = 1$ and $|z_1 - z_2| < 1$, then the angle between z_1 and z_2 is less than $\pi/2$. It follows there exists continuous $a_i : [j/n, (j+1)/n] \to \mathbb{R}$ such that $\gamma(t) = e^{2\pi i a_j(t)}$

By replacing $\gamma(t)$ with $\gamma(t)/|\gamma(t)|$ we may assume that $|\gamma(t)| = 1$ for all *t*.

 γ is uniformly continuous, so $\exists \delta > 0$ such that $|\gamma(s) - \gamma(t)| < 1$ for any s, t with $|s - t| < \delta$.

Choose $n \in \mathbb{N}$, $n > 1/\delta$. Then on each subinterval [i/n, (i+1)/n] we have $|\gamma(s) - \gamma(t)| < 1$.

On any half-plane in \mathbb{C} we may define a holomorphic branch of [Log(z)].

if $|z_1| = |z_2| = 1$ and $|z_1 - z_2| < 1$, then the angle between z_1 and z_2 is less than $\pi/2$. It follows there exists continuous $a_i : [j/n, (j+1)/n] \to \mathbb{R}$ such that $\gamma(t) = e^{2\pi i a_j(t)}$ since $e^{2\pi i a_j(j/n)} = e^{2\pi i a_{j-1}(j/n)}$, $a_{j-1}(j/n)$ and $a_i(j/n)$ differ by an integer. Thus we can successively adjust the a_j for j > 1 by an integer to obtain a continuous $a: [0, 1] \to \mathbb{C}$ such that $\gamma(t) = e^{2\pi i a(t)}$.

By replacing $\gamma(t)$ with $\gamma(t)/|\gamma(t)|$ we may assume that $|\gamma(t)| = 1$ for all *t*.

 γ is uniformly continuous, so $\exists \delta > 0$ such that $|\gamma(s) - \gamma(t)| < 1$ for any s, t with $|s - t| < \delta$.

Choose $n \in \mathbb{N}$, $n > 1/\delta$. Then on each subinterval [i/n, (i+1)/n] we have $|\gamma(s) - \gamma(t)| < 1$.

On any half-plane in \mathbb{C} we may define a holomorphic branch of [Log(z)].

if $|z_1| = |z_2| = 1$ and $|z_1 - z_2| < 1$, then the angle between z_1 and z_2 is less than $\pi/2$. It follows there exists continuous $a_i: [j/n, (j+1)/n] \to \mathbb{R}$ such that $\gamma(t) = e^{2\pi i a_j(t)}$ since $e^{2\pi i a_j(j/n)} = e^{2\pi i a_{j-1}(j/n)}$, $a_{j-1}(j/n)$ and $a_i(j/n)$ differ by an integer. Thus we can successively adjust the a_j for j > 1 by an integer to obtain a continuous $a: [0, 1] \to \mathbb{C}$ such that $\gamma(t) = e^{2\pi i a(t)}$. Uniqueness: $e^{2\pi i (a(t) - b(t))} = 1$, hence $a(t) - b(t) \in \mathbb{Z}$, but [0, 1]is connected so a(t) - b(t) is constant.

If $\gamma : [0, 1] \to \mathbb{C} \setminus \{0\}$ is a closed path and $\gamma(t) = |\gamma(t)| e^{2\pi i a(t)}$ as in the previous lemma, then $a(1) - a(0) \in \mathbb{Z}$. This integer is called the winding number $I(\gamma, 0)$ of γ around 0. It is uniquely determined by the path γ because the function ais unique up to an integer.

If $\gamma : [0, 1] \to \mathbb{C} \setminus \{0\}$ is a closed path and $\gamma(t) = |\gamma(t)| e^{2\pi i a(t)}$ as in the previous lemma, then $a(1) - a(0) \in \mathbb{Z}$. This integer is called the winding number $I(\gamma, 0)$ of γ around 0.

It is uniquely determined by the path γ because the function a is unique up to an integer.

If z_0 is not in the image of γ , we may define the winding number $I(\gamma, z_0)$ of γ about z_0 similarly:

Let $t: \mathbb{C} \to \mathbb{C}$ be given by $t(z) = z - z_0$, we define $l(\gamma, z_0) = l(t \circ \gamma, 0)$.

If $\gamma : [0, 1] \to \mathbb{C} \setminus \{0\}$ is a closed path and $\gamma(t) = |\gamma(t)| e^{2\pi i a(t)}$ as in the previous lemma, then $a(1) - a(0) \in \mathbb{Z}$. This integer is called the winding number $I(\gamma, 0)$ of γ around 0.

It is uniquely determined by the path γ because the function a is unique up to an integer.

If z_0 is not in the image of γ , we may define the winding number $I(\gamma, z_0)$ of γ about z_0 similarly:

Let $t: \mathbb{C} \to \mathbb{C}$ be given by $t(z) = z - z_0$, we define $l(\gamma, z_0) = l(t \circ \gamma, 0)$.

Remarks: 1. The definition of the winding number only requires the closed path γ to be continuous, not piecewise C^1 .

If $\gamma : [0, 1] \to \mathbb{C} \setminus \{0\}$ is a closed path and $\gamma(t) = |\gamma(t)| e^{2\pi i a(t)}$ as in the previous lemma, then $a(1) - a(0) \in \mathbb{Z}$. This integer is called the winding number $I(\gamma, 0)$ of γ around 0.

It is uniquely determined by the path γ because the function a is unique up to an integer.

If z_0 is not in the image of γ , we may define the winding number $I(\gamma, z_0)$ of γ about z_0 similarly:

Let $t: \mathbb{C} \to \mathbb{C}$ be given by $t(z) = z - z_0$, we define $l(\gamma, z_0) = l(t \circ \gamma, 0)$.

Remarks: 1. The definition of the winding number only requires the closed path γ to be continuous, not piecewise C^1 .

2. if $\gamma: [0, 1] \to U$ where $0 \notin U$ and there exists a holomorphic branch $L: U \to \mathbb{C}$ of [Log(z)] on U, then $I(\gamma, 0) = 0$. Indeed in this case we may define $a(t) = \Im(L(\gamma(t)))$, and since $\gamma(0) = \gamma(1)$ it follows a(1) - a(0) = 0.

Lemma

Let γ be a piecewise C^1 closed path and $z_0 \in \mathbb{C}$ a point not in the image of γ . Then the winding number $I(\gamma, z_0)$ of γ around z_0 is given by

$$I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Lemma

Let γ be a piecewise C^1 closed path and $z_0 \in \mathbb{C}$ a point not in the image of γ . Then the winding number $I(\gamma, z_0)$ of γ around z_0 is given by

$$I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}$$

Proof.

If $\gamma: [0, 1] \to \mathbb{C}$ we may write $\gamma(t) = z_0 + r(t)e^{2\pi i a(t)}$. Then

$$\int_{\gamma} \frac{dz}{z - z_0} = \int_0^1 \frac{1}{r(t)e^{2\pi i a(t)}} \cdot \left(r'(t) + 2\pi i r(t)a'(t)\right) e^{2\pi i a(t)} dt$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ の�?

Lemma

Let γ be a piecewise C^1 closed path and $z_0 \in \mathbb{C}$ a point not in the image of γ . Then the winding number $I(\gamma, z_0)$ of γ around z_0 is given by

$$I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}$$

Proof.

If $\gamma: [0, 1] \to \mathbb{C}$ we may write $\gamma(t) = z_0 + r(t)e^{2\pi i a(t)}$. Then

$$\int_{\gamma} \frac{dz}{z - z_0} = \int_0^1 \frac{1}{r(t)e^{2\pi i a(t)}} \cdot \left(r'(t) + 2\pi i r(t)a'(t)\right) e^{2\pi i a(t)} dt$$

$$=\int_0^1 r'(t)/r(t) + 2\pi i a'(t) dt = [\log(r(t)) + 2\pi i a(t)]_0^1$$

Lemma

Let γ be a piecewise C^1 closed path and $z_0 \in \mathbb{C}$ a point not in the image of γ . Then the winding number $I(\gamma, z_0)$ of γ around z_0 is given by

$$I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}$$

Proof.

If $\gamma: [0, 1] \to \mathbb{C}$ we may write $\gamma(t) = z_0 + r(t)e^{2\pi i a(t)}$. Then

$$\int_{\gamma} \frac{dz}{z - z_0} = \int_0^1 \frac{1}{r(t)e^{2\pi i a(t)}} \cdot \left(r'(t) + 2\pi i r(t)a'(t)\right) e^{2\pi i a(t)} dt$$

$$= \int_0^1 r'(t)/r(t) + 2\pi i a'(t) dt = [\log(r(t)) + 2\pi i a(t)]_0^1$$

= $2\pi i (a(1) - a(0))$, since $r(1) = r(0) = |\gamma(0) - z_0|$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽९०

Definition

If $f: U \to \mathbb{C}$ is a function on an open subset U of \mathbb{C} , then we say that f is analytic on U if for every $z_0 \in \mathbb{C}$ there is an r > 0 with $B(z_0, r) \subseteq U$ such that there is a power series $\sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence at least r and

 $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ An analytic function is holomorphic, as any power series is (infinitely) complex differentiable.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

If $f: U \to \mathbb{C}$ is a function on an open subset U of \mathbb{C} , then we say that f is analytic on U if for every $z_0 \in \mathbb{C}$ there is an r > 0 with $B(z_0, r) \subseteq U$ such that there is a power series $\sum_{k=0}^{\infty} a_k(z - z_0)^k$ with radius of convergence at least r and $f(z) = \sum_{k=0}^{\infty} a_k(z - z_0)^k$ An analytic function is holomorphic, as

any power series is (infinitely) complex differentiable.

$$I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}.$$

We see this as a function of z_0 .

Definition

If $f: U \to \mathbb{C}$ is a function on an open subset U of \mathbb{C} , then we say that f is analytic on U if for every $z_0 \in \mathbb{C}$ there is an r > 0 with $B(z_0, r) \subseteq U$ such that there is a power series $\sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence at least r and

 $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ An analytic function is holomorphic, as any power series is (infinitely) complex differentiable.

Proposition

Let U be an open set in \mathbb{C} and let $\gamma : [0, 1] \rightarrow U$ be a closed path. If f(z) is a continuous function on γ^* then the function

$$I_f(\gamma, w) = rac{1}{2\pi i} \int_{\gamma} rac{f(z)}{z - w} dz,$$

is analytic in w.

In particular, if f(z) = 1 this shows that the function $w \mapsto I(\gamma, w)$ is a continuous function on $\mathbb{C} \setminus \gamma^*$, hence constant on the connected components of $\mathbb{C} \setminus \gamma^*$. Proof We will show that for each $z_0 \notin \gamma^*$ we can find a disk $B(z_0, \epsilon)$ within which $I_f(\gamma, w)$ is given by a power series in $(w - z_0)$. Translating if necessary we may assume $z_0 = 0$.

$$\frac{f(z)}{z-w} = \frac{f(z)}{z}(1-w/z)^{-1} = \sum_{n=0}^{\infty} \frac{f(z)}{z}(w/z)^n = \sum_{n=0}^{\infty} \frac{f(z) \cdot w^n}{z^{n+1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ の�?

$$\frac{f(z)}{z-w} = \frac{f(z)}{z}(1-w/z)^{-1} = \sum_{n=0}^{\infty} \frac{f(z)}{z}(w/z)^n = \sum_{n=0}^{\infty} \frac{f(z) \cdot w^n}{z^{n+1}}$$

For this expansion to work we pick *r* so that $B(0, 2r) \cap \gamma^* = \emptyset$. We will show that the function is analytic for $w \in B(0, r)$.

$$\frac{f(z)}{z-w} = \frac{f(z)}{z}(1-w/z)^{-1} = \sum_{n=0}^{\infty} \frac{f(z)}{z}(w/z)^n = \sum_{n=0}^{\infty} \frac{f(z) \cdot w^n}{z^{n+1}}$$

For this expansion to work we pick r so that $B(0, 2r) \cap \gamma^* = \emptyset$. We will show that the function is analytic for $w \in B(0, r)$. We claim that the last series, seen as a function of z, converges uniformly on γ^* .

Recall Weierstrass M-test: $\sum_{n} f_{n}(z) = m_{n} i f_{n}(z) = M_{n}$ and $\sum_{n} M_{n} < \infty$

▲□▶▲@▶▲≣▶▲≣▶ ≣ め�?

$$\frac{f(z)}{z-w} = \frac{f(z)}{z}(1-w/z)^{-1} = \sum_{n=0}^{\infty} \frac{f(z)}{z}(w/z)^n = \sum_{n=0}^{\infty} \frac{f(z) \cdot w^n}{z^{n+1}}$$

For this expansion to work we pick *r* so that $B(0, 2r) \cap \gamma^* = \emptyset$. We will show that the function is analytic for $w \in B(0, r)$.

We claim that the last series, seen as a function of z, converges uniformly on γ^* .

Since γ^* is compact, $M = \sup\{|f(z)| : z \in \gamma^*\}$ is finite. We apply Weierstrass *M*-test:

$$|f(z) \cdot W^n/z^{n+1}| = |f(z)||z|^{-1}|W/z|^n < \frac{M}{2r}(1/2)^n, \quad \forall z \in \gamma^*.$$

Uniform convergence implies that for all $w \in B(0, r)$ we have

$$\sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}} dz \right) w^n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{z-w} = I_f(\gamma, w).$$

hence $I_f(\gamma, w)$ is given by a power series in B(0, r).

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Uniform convergence implies that for all $w \in B(0, r)$ we have

$$\sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}} dz \right) w^n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{z-w} = I_f(\gamma, w).$$

hence $I_f(\gamma, w)$ is given by a power series in B(0, r). If f = 1, then since $I_1(\gamma, z) = I(\gamma, z)$ is integer-valued, it follows it must be constant on any connected component of $\mathbb{C} \setminus \gamma^*$.

Uniform convergence implies that for all $w \in B(0, r)$ we have

$$\sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}} dz \right) w^n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{z-w} = I_f(\gamma, w).$$

hence $I_f(\gamma, w)$ is given by a power series in B(0, r). If f = 1, then since $I_1(\gamma, z) = I(\gamma, z)$ is integer-valued, it follows it must be constant on any connected component of $\mathbb{C} \setminus \gamma^*$.

Remark By the power series expression we can calculate the derivatives of $g(w) = I_f(\gamma, w)$ at z_0 :

$$g^{(n)}(z_0) = rac{n!}{2\pi i} \int_{\gamma} rac{f(z)dz}{(z-z_0)^{n+1}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ の�?

If γ is a closed path then γ^* is compact and hence bounded. Thus there is an R > 0 such that the connected set $\mathbb{C} \setminus B(0, R) \cap \gamma^* = \emptyset$. It follows that $\mathbb{C} \setminus \gamma^*$ has exactly one unbounded connected component.

If γ is a closed path then γ^* is compact and hence bounded. Thus there is an R > 0 such that the connected set $\mathbb{C} \setminus B(0, R) \cap \gamma^* = \emptyset$. It follows that $\mathbb{C} \setminus \gamma^*$ has exactly one unbounded connected component.

Since

$$\Big|\int_{\gamma} \frac{d\zeta}{\zeta-z}\Big| \leq \ell(\gamma) . \sup_{\zeta\in\gamma^*} |\mathbf{1}/(\zeta-z)| \to 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ の�?

as $z \to \infty$ it follows that $I(\gamma, z) = 0$ on the unbounded component of $\mathbb{C} \setminus \gamma^*$.

If γ is a closed path then γ^* is compact and hence bounded. Thus there is an R > 0 such that the connected set $\mathbb{C} \setminus B(0, R) \cap \gamma^* = \emptyset$. It follows that $\mathbb{C} \setminus \gamma^*$ has exactly one unbounded connected component.

Since

$$\Big|\int_{\gamma} \frac{d\zeta}{\zeta-z}\Big| \leq \ell(\gamma) . \sup_{\zeta\in\gamma^*} |\mathbf{1}/(\zeta-z)| \to \mathbf{0}$$

as $z \to \infty$ it follows that $I(\gamma, z) = 0$ on the unbounded component of $\mathbb{C} \setminus \gamma^*$.

Definition

Let $\gamma: [0, 1] \to \mathbb{C}$ be a closed path. We say that a point *z* is in the inside of γ if $z \notin \gamma^*$ and $l(\gamma, z) \neq 0$. The previous remark shows that the inside of γ is a union of bounded connected components of $\mathbb{C} \setminus \gamma^*$. (We don't, however, know that the inside of γ is necessarily non-empty.)
Example

Suppose that $\gamma_1 : [-\pi, \pi] \to \mathbb{C}$ is given by $\gamma_1 = 1 + e^{it}$ and $\gamma_2 : [0, 2\pi] \to \mathbb{C}$ is given by $\gamma_2(t) = -1 + e^{-it}$. Then if $\gamma = \gamma_1 \star \gamma_2$, γ traverses a figure-of-eight and it is easy to check that the inside of γ is $B(1, 1) \cup B(-1, 1)$ where $I(\gamma, z) = 1$ for $z \in B(1, 1)$ while $I(\gamma, z) = -1$ for $z \in B(-1, 1)$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Example

Suppose that $\gamma_1 : [-\pi, \pi] \to \mathbb{C}$ is given by $\gamma_1 = 1 + e^{it}$ and $\gamma_2 : [0, 2\pi] \to \mathbb{C}$ is given by $\gamma_2(t) = -1 + e^{-it}$. Then if $\gamma = \gamma_1 \star \gamma_2$, γ traverses a figure-of-eight and it is easy to check that the inside of γ is $B(1, 1) \cup B(-1, 1)$ where $I(\gamma, z) = 1$ for $z \in B(1, 1)$ while $I(\gamma, z) = -1$ for $z \in B(-1, 1)$.

Remark

It is a theorem, known as the Jordan Curve Theorem, that if $\gamma: [0,1] \to \mathbb{C}$ is a simple closed curve, so that $\gamma(t) = \gamma(s)$ if and only if s = t or $s, t \in \{0,1\}$, then $\mathbb{C} \setminus \gamma^*$ is the union of precisely one bounded and one unbounded component, and on the bounded component $I(\gamma, z)$ is either 1 or -1. If $I(\gamma, z) = 1$ for z on the inside of γ we say γ is positively oriented and we say it is negatively oriented if $I(\gamma, z) = -1$ for z on the inside.

Cauchy's theorem states roughly that if $f: U \to \mathbb{C}$ is holomorphic and γ is a closed path in U whose interior lies entirely in U then

 $\int_{\infty} f(z) dz = 0.$

Cauchy's theorem states roughly that if $f: U \to \mathbb{C}$ is holomorphic and γ is a closed path in U whose interior lies entirely in U then

 $\int_{\gamma} f(z) dz = 0.$

This is the single most important theorem of the course. Almost all important facts about holomorphic functions follow from it. Sample applications:

1. If f is holomorphic then it is C^1 and in fact infinitely differentiable.

2. If $f : \mathbb{C} \to \mathbb{C}$ is holomorphic and bounded then it is constant.

3. The fundamental theorem of algebra

4. etc etc

Cauchy's theorem states roughly that if $f: U \to \mathbb{C}$ is holomorphic and γ is a closed path in U whose interior lies entirely in U then

 $\int_{\gamma} f(z) dz = 0.$

This is the single most important theorem of the course. Almost all important facts about holomorphic functions follow from it. Sample applications:

1. If *f* is holomorphic then it is C^1 and in fact infinitely differentiable.

- 2. If $f : \mathbb{C} \to \mathbb{C}$ is holomorphic and bounded then it is constant.
- 3. The fundamental theorem of algebra

4. etc etc

For most of our applications we will need a simpler case of the theorem for starlike domains. We defer the discussion of the general case to later lectures.

A triangle or triangular path *T* is a path of the form $\gamma_1 \star \gamma_2 \star \gamma_3$ where $\gamma_1(t) = a + t(b - a)$, $\gamma_2(t) = b + t(c - b)$ and $\gamma_3(t) = c + t(a - c)$ where $t \in [0, 1]$ and $a, b, c \in \mathbb{C}$. (Note that if $\{a, b, c\}$ are collinear, then *T* is a degenerate triangle.) That is, *T* traverses the boundary of the triangle with vertices $a, b, c \in \mathbb{C}$. The solid triangle *T* bounded by *T* is the region

$$\mathcal{T} = \{t_1 a + t_2 b + t_3 c : t_i \in [0, 1], \sum_{i=1}^{3} t_i = 1\},\$$

with the points in the interior of \mathcal{T} corresponding to the points with $t_i > 0$ for each $i \in \{1, 2, 3\}$. We will denote by [a, b] the line segment $\{a + t(b - a) : t \in [0, 1]\}$, the side of \mathcal{T} joining vertex ato vertex b. When we need to specify the vertices a, b, c of a triangle \mathcal{T} , we will write $T_{a,b,c}$.

(Cauchy's theorem for a triangle): Suppose that $U \subseteq \mathbb{C}$ is an open subset and let $T \subseteq U$ be a triangle whose interior is entirely contained in U. Then if $f: U \to \mathbb{C}$ is holomorphic we have

$$\int_T f(z) dz = 0$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

(Cauchy's theorem for a triangle): Suppose that $U \subseteq \mathbb{C}$ is an open subset and let $T \subseteq U$ be a triangle whose interior is entirely contained in U. Then if $f: U \to \mathbb{C}$ is holomorphic we have

$$\int_T f(z) dz = 0$$

Idea of proof. 1. $f(z) = f(z_0) + f'(z_0)(z - z_0) + (z - z_0)\psi(z)$. So if γ is 'small' close to z_0 $\int_{\gamma} f(z)dz = \int_{\gamma} (z - z_0)\psi(z)dz$ which by the estimation lemma and since $\psi(z) \to 0$, is much smaller than length(γ).

(Cauchy's theorem for a triangle): Suppose that $U \subseteq \mathbb{C}$ is an open subset and let $T \subseteq U$ be a triangle whose interior is entirely contained in U. Then if $f: U \to \mathbb{C}$ is holomorphic we have

 $\int_{T} f(z)dz = 0$ Idea of proof. 1. $f(z) = f(z_0) + f'(z_0)(z - z_0) + (z - z_0)\psi(z)$. So if γ is 'small' close to z_0 $\int_{\gamma} f(z) dz = \int_{\gamma} (z - z_0) \psi(z) dz$ which by the estimation lemma and since $\psi(z) \to 0$, is much smaller than length(γ).

e so Salzidz=0!

$$Saz+b = \frac{az^2}{2}+bz$$

(Cauchy's theorem for a triangle): Suppose that $U \subseteq \mathbb{C}$ is an open subset and let $T \subseteq U$ be a triangle whose interior is entirely contained in U. Then if $f: U \to \mathbb{C}$ is holomorphic we have

$$\int_T f(z) dz = 0$$

Idea of proof. 1. $f(z) = f(z_0) + f'(z_0)(z - z_0) + (z - z_0)\psi(z)$. So if γ is 'small' close to z_0

 $\int_{\gamma} f(z) dz = \int_{\gamma} (z - z_0) \psi(z) dz$ which by the estimation lemma and since $\psi(z) \to 0$, is much smaller than length(γ).

2. Assuming that $I = |\int_T f(z)dz| \neq 0$ we will subdivide *T* into 4 smaller triangles and represent the integral as sum of the integrals on the smaller triangles. One of the integrals of the smaller triangles will be at least I/4. We will keep subdividing till we get a very small triangle where by part 1 the integral will be smaller than expected, contradiction.

Suppose $I = |\int_T f(z)dz| > 0$. We build a sequence of smaller and smaller triangles T^n , as follows: Let $T^0 = T$, and suppose that we have constructed T^i for $0 \le i < k$. Then take the triangle T^{k-1} and join the midpoints of the edges to form four smaller triangles, which we will denote S_i $(1 \le i \le 4)$. Then $I_k = \int_{T^{k-1}} f(z)dz = \sum_{i=1}^4 \int_{S_i} f(z)dz$, since the integrals around the interior edges cancel.

・□ ▶ ・□ ▶ ・ ■ ▶ ・ ■ ● ● ● ● ● ●

Suppose $I = |\int_T f(z)dz| > 0$. We build a sequence of smaller and smaller triangles T^n , as follows: Let $T^0 = T$, and suppose that we have constructed T^i for $0 \le i < k$. Then take the triangle T^{k-1} and join the midpoints of the edges to form four smaller triangles, which we will denote S_i $(1 \le i \le 4)$. Then $I_k = \int_{T^{k-1}} f(z)dz = \sum_{i=1}^4 \int_{S_i} f(z)dz$, since the integrals around the interior edges cancel.

Figure: Subdivision of a triangle

 $I_k = |\int_{T^{k-1}} f(z)dz| \le \sum_{i=1}^4 |\int_{S_i} f(z)dz|$, so that for some *i* we must have $|\int_{S_i} f(z)dz| \ge I_{k-1}/4$. Set T^k to be this triangle S_i . Then by induction we see that $\ell(T^k) = 2^{-k}\ell(T)$ while $I_k \ge 4^{-k}I$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ の�?

 $I_k = |\int_{T^{k-1}} f(z)dz| \le \sum_{i=1}^4 |\int_{S_i} f(z)dz|$, so that for some *i* we must have $|\int_{S_i} f(z)dz| \ge I_{k-1}/4$. Set T^k to be this triangle S_i . Then by induction we see that $\ell(T^k) = 2^{-k}\ell(T)$ while $I_k \ge 4^{-k}I$.

Let \mathcal{T}^k be the solid triangle with boundary \mathcal{T}^k . The sets \mathcal{T}^k are nested and their diameter tends to 0, so there is a unique point z_0 , lying in all of them.

▲□▶▲□▶▲□▶▲□▶ □ のへで

 $I_k = |\int_{T^{k-1}} f(z)dz| \le \sum_{i=1}^4 |\int_{S_i} f(z)dz|$, so that for some *i* we must have $|\int_{S_i} f(z)dz| \ge I_{k-1}/4$. Set T^k to be this triangle S_i . Then by induction we see that $\ell(T^k) = 2^{-k}\ell(T)$ while $I_k \ge 4^{-k}I$.

Let \mathcal{T}^k be the solid triangle with boundary \mathcal{T}^k . The sets \mathcal{T}^k are nested and their diameter tends to 0, so there is a unique point z_0 , lying in all of them.

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + (z - z_0)\psi(z),$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽९९~

where $\psi(z) \rightarrow 0 = \psi(z_0)$ as $z \rightarrow z_0$.

$$\int_{T^k} f(z) dz = \int_{T^k} (z - z_0) \psi(z) dz$$

and if z is on T^k , we have $|z - z_0| \leq \text{diam}(\mathcal{T}^k) = 2^{-k} \text{diam}(\mathcal{T})$.

$$\int_{T^k} f(z) dz = \int_{T^k} (z - z_0) \psi(z) dz$$

$$\int_{T^k} f(z) dz = \int_{T^k} (z - z_0) \psi(z) dz$$

$$I_{k} = \left| \int_{T^{k}} (z - z_{0}) \psi(z) dz \right| \leq \eta_{k} \cdot \operatorname{diam}(T^{k}) \ell(T^{k})$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

$$\int_{T^k} f(z) dz = \int_{T^k} (z - z_0) \psi(z) dz$$

$$\begin{split} I_k &= \big| \int_{T^k} (z - z_0) \psi(z) dz \big| \leq \eta_k \cdot \operatorname{diam}(T^k) \ell(T^k) \\ &= 4^{-k} \eta_k \operatorname{diam}(T) \cdot \ell(T). \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

$$\int_{T^k} f(z) dz = \int_{T^k} (z - z_0) \psi(z) dz$$

$$I_{k} = \left| \int_{T^{k}} (z - z_{0}) \psi(z) dz \right| \leq \eta_{k} \cdot \operatorname{diam}(T^{k}) \ell(T^{k})$$
$$= 4^{-k} \eta_{k} \cdot \operatorname{diam}(T) \cdot \ell(T).$$

So $4^k I_k \to 0$ as $k \to \infty$. On the other hand, by construction $I_k \ge I/4^k \Rightarrow 4^k I_k \ge I > 0$, contradiction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ の�?

Let *X* be a subset in \mathbb{C} . We say that *X* is *convex* if for each $z, w \in U$ the line segment between *z* and *w* is contained in *X*. We say that *X* is star-like if there is a point $z_0 \in X$ such that for every $w \in X$ the line segment $[z_0, w]$ joining z_0 and *w* lies in *X*. We will say that *X* is star-like with respect to z_0 in this case. Thus a convex subset is thus starlike with respect to every point it contains.

Let *X* be a subset in \mathbb{C} . We say that *X* is *convex* if for each $z, w \in U$ the line segment between *z* and *w* is contained in *X*. We say that *X* is star-like if there is a point $z_0 \in X$ such that for every $w \in X$ the line segment $[z_0, w]$ joining z_0 and *w* lies in *X*. We will say that *X* is star-like with respect to z_0 in this case. Thus a convex subset is thus starlike with respect to every point it contains.

Example. A disk (open or closed) is convex, as is a solid triangle or rectangle. On the other hand the union of the *xy*-axes is starlike with respect to 0 but not convex.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Let *X* be a subset in \mathbb{C} . We say that *X* is *convex* if for each $z, w \in U$ the line segment between *z* and *w* is contained in *X*. We say that *X* is star-like if there is a point $z_0 \in X$ such that for every $w \in X$ the line segment $[z_0, w]$ joining z_0 and *w* lies in *X*. We will say that *X* is star-like with respect to z_0 in this case. Thus a convex subset is thus starlike with respect to every point it contains.

Example. A disk (open or closed) is convex, as is a solid triangle or rectangle. On the other hand the union of the *xy*-axes is starlike with respect to 0 but not convex.

Theorem

(Cauchy's theorem for a star-like domain): Let U be a star-like domain. Then if $f: U \to \mathbb{C}$ is holomorphic and $\gamma: [a, b] \to U$ is a closed path in U we have

$$\int_{\gamma} f(z) dz = 0.$$

$$F(z) = \int_{\gamma_z} f(\zeta) d\zeta$$

$$F(z) = \int_{\gamma_z} f(\zeta) d\zeta$$

is a primitive for *f* on *U*. Let $\epsilon > 0$ s.t. $B(z, \epsilon) \subseteq U$. If $w \in B(z, \epsilon)$ the triangle *T* with vertices z_0, z, w lies entirely in *U* so by Cauchy's thm for triangles $\int_T f(\zeta) d\zeta = 0$.

$$F(z) = \int_{\gamma_z} f(\zeta) d\zeta$$

is a primitive for f on U. Let $\epsilon > 0$ s.t. $B(z, \epsilon) \subseteq U$. If $w \in B(z, \epsilon)$ the triangle T with vertices z_0, z, w lies entirely in U so by Cauchy's thm for triangles $\int_T f(\zeta) d\zeta = 0$. so if $\eta(t) = w + t(z - w)$, $t \in [0, 1]$ we have

$$F(z) = \int_{\gamma_z} f(\zeta) d\zeta$$

is a primitive for f on U. Let $\epsilon > 0$ s.t. $B(z, \epsilon) \subseteq U$. If $w \in B(z, \epsilon)$ the triangle T with vertices z_0, z, w lies entirely in U so by Cauchy's thm for triangles $\int_T f(\zeta) d\zeta = 0$. so if $\eta(t) = w + t(z - w)$, $t \in [0, 1]$ we have

$$\left|\frac{F(z)-F(w)}{z-w}-f(z)
ight|=\left|\int_{\eta}rac{f(\zeta)}{z-w}d\zeta-f(z)
ight|$$

$$F(z) = \int_{\gamma_z} f(\zeta) d\zeta$$

is a primitive for f on U. Let $\epsilon > 0$ s.t. $B(z, \epsilon) \subseteq U$. If $w \in B(z, \epsilon)$ the triangle T with vertices z_0, z, w lies entirely in U so by Cauchy's thm for triangles $\int_T f(\zeta) d\zeta = 0$. so if $\eta(t) = w + t(z - w)$, $t \in [0, 1]$ we have

$$\left|\frac{F(z)-F(w)}{z-w}-f(z)\right|=\left|\int_{\eta}\frac{f(\zeta)}{z-w}d\zeta-f(z)\right|$$

$$= \left| \int_{0}^{1} f(w + t(z - w)) dt - f(z) \right| = \left| \int_{0}^{1} (f(w + t(z - w)) - f(z) dt \right|$$

dJ = (z - w) dt

$$F(z) = \int_{\gamma_z} f(\zeta) d\zeta$$

is a primitive for f on U. Let $\epsilon > 0$ s.t. $B(z, \epsilon) \subseteq U$. If $w \in B(z, \epsilon)$ the triangle T with vertices z_0, z, w lies entirely in U so by Cauchy's thm for triangles $\int_T f(\zeta) d\zeta = 0$. so if $\eta(t) = w + t(z - w)$, $t \in [0, 1]$ we have

$$\left|\frac{F(z)-F(w)}{z-w}-f(z)\right|=\left|\int_{\eta}\frac{f(\zeta)}{z-w}d\zeta-f(z)\right|$$

$$= \left| \int_{0}^{1} f(w + t(z - w)) dt - f(z) \right| = \left| \int_{0}^{1} (f(w + t(z - w)) - f(z) dt \right|$$

$$\leq \sup_{t\in[0,1]} |f(w+t(z-w))-f(z)|
ightarrow 0 ext{ as } w
ightarrow z.$$

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ → つへぐ

Definition

We say that a domain $D \subseteq \mathbb{C}$ is primitive if any holomorphic function $f: D \to \mathbb{C}$ has a primitive in D.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Definition

We say that a domain $D \subseteq \mathbb{C}$ is primitive if any holomorphic function $f: D \to \mathbb{C}$ has a primitive in D.

For example we have shown that all star-like domains are primitive.

Definition

We say that a domain $D \subseteq \mathbb{C}$ is primitive if any holomorphic function $f: D \to \mathbb{C}$ has a primitive in D.

For example we have shown that all star-like domains are primitive.

Lemma

Suppose that D_1 and D_2 are primitive domains and $D_1 \cap D_2$ is connected. Then $D_1 \cup D_2$ is primitive.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Definition

We say that a domain $D \subseteq \mathbb{C}$ is primitive if any holomorphic function $f: D \to \mathbb{C}$ has a primitive in D.

For example we have shown that all star-like domains are primitive.

Lemma

Suppose that D_1 and D_2 are primitive domains and $D_1 \cap D_2$ is connected. Then $D_1 \cup D_2$ is primitive.

Example

The union of two open intersecting half-discs D_1 , D_2 of a disc B(0, r) is primitive.

Definition

We say that a domain $D \subseteq \mathbb{C}$ is primitive if any holomorphic function $f: D \to \mathbb{C}$ has a primitive in D.

For example we have shown that all star-like domains are primitive.

Lemma

Suppose that D_1 and D_2 are primitive domains and $D_1 \cap D_2$ is connected. Then $D_1 \cup D_2$ is primitive.

Example

The union of two open intersecting half-discs D_1 , D_2 of a disc B(0, r) is primitive.

Indeed each D_1 , D_2 are convex, so they are primitive. $D_1 \cap D_2$ is connected so by the lemma $D_1 \cup D_2$ is primitive.
▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽♀⊙

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Then $f_{|D_1}$, $f_{|D_2}$ have primitives F_1 , F_2 say.

Then $f_{|D_1}$, $f_{|D_2}$ have primitives F_1 , F_2 say.

Since $F_1 - F_2$ has zero derivative on $D_1 \cap D_2$, and as $D_1 \cap D_2$ is connected it follows $F_1 - F_2 = c$ on $D_1 \cap D_2$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● のへで

Then $f_{|D_1}$, $f_{|D_2}$ have primitives F_1 , F_2 say.

Since $F_1 - F_2$ has zero derivative on $D_1 \cap D_2$, and as $D_1 \cap D_2$ is connected it follows $F_1 - F_2 = c$ on $D_1 \cap D_2$.

If $F: D_1 \cup D_2 \to \mathbb{C}$ is a defined to be F_1 on D_1 and $F_2 + c$ on D_2 then F is a primitive for f on $D_1 \cup D_2$.

Theorem

(Cauchy's Integral Formula.) Suppose that $f: U \to \mathbb{C}$ is a holomorphic function on an open set U which contains the disc $\overline{B}(a, r)$. Then for all $w \in B(a, r)$ we have

$$f(w)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z-w}dz,$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

where γ is the path $t \mapsto a + re^{2\pi i t}$.

Theorem

(Cauchy's Integral Formula.) Suppose that $f: U \to \mathbb{C}$ is a holomorphic function on an open set U which contains the disc $\overline{B}(a, r)$. Then for all $w \in B(a, r)$ we have

$$f(w)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z-w}dz,$$

where γ is the path $t \mapsto a + re^{2\pi i t}$.

Proof. The proof has two steps. In the first step we show that we can replace the integral over γ with an integral over an arbitrarily small circle $\gamma(w, \epsilon)$ centered at w. In the second step we show, using the estimation lemma and winding numbers, that this integral is equal to f(w).

Theorem

(Cauchy's Integral Formula.) Suppose that $f: U \to \mathbb{C}$ is a holomorphic function on an open set U which contains the disc $\overline{B}(a, r)$. Then for all $w \in B(a, r)$ we have

$$f(w)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z-w}dz,$$

where γ is the path $t \mapsto a + re^{2\pi i t}$.

Proof. The proof has two steps. In the first step we show that we can replace the integral over γ with an integral over an arbitrarily small circle $\gamma(w, \epsilon)$ centered at w. In the second step we show, using the estimation lemma and winding numbers, that this integral is equal to f(w).

Consider a circle $\gamma(w, \epsilon)$ centered at *w* and contained in B(a, r). Pick two anti-diametric points on $\gamma(w, \epsilon)$ and join them by straight segments to points on γ .

We use the contours Γ_1 and Γ_2 each consisting of 2 semicircles and two segments and we note that the contributions of line segments cancel out to give:

We use the contours Γ_1 and Γ_2 each consisting of 2 semicircles and two segments and we note that the contributions of line segments cancel out to give:

$$\int_{\Gamma_1} \frac{f(z)}{z-w} dz + \int_{\Gamma_2} \frac{f(z)}{z-w} dz = \int_{\gamma(a,r)} \frac{f(z)}{z-w} dz - \int_{\gamma(w,\epsilon)} \frac{f(z)}{z-w} dz.$$

$$\int_{\Gamma_1} \frac{f(z)}{z-w} dz + \int_{\Gamma_2} \frac{f(z)}{z-w} dz = \int_{\gamma(a,r)} \frac{f(z)}{z-w} dz - \int_{\gamma(w,\epsilon)} \frac{f(z)}{z-w} dz.$$

$$\int_{\Gamma_1} \frac{f(z)}{z-w} dz + \int_{\Gamma_2} \frac{f(z)}{z-w} dz = \int_{\gamma(a,r)} \frac{f(z)}{z-w} dz - \int_{\gamma(w,\epsilon)} \frac{f(z)}{z-w} dz.$$

so
$$\frac{1}{2\pi i}\int_{\gamma(a,r)}\frac{f(z)}{z-w}dz=\frac{1}{2\pi i}\int_{\gamma(w,\epsilon)}\frac{f(z)}{z-w}dz.$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ 三 ○ ○ ○ ○

$$\int_{\Gamma_1} \frac{f(z)}{z-w} dz + \int_{\Gamma_2} \frac{f(z)}{z-w} dz = \int_{\gamma(a,r)} \frac{f(z)}{z-w} dz - \int_{\gamma(w,\epsilon)} \frac{f(z)}{z-w} dz.$$

so
$$\frac{1}{2\pi i}\int_{\gamma(a,r)}\frac{f(z)}{z-w}dz=\frac{1}{2\pi i}\int_{\gamma(w,\epsilon)}\frac{f(z)}{z-w}dz.$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ 三 ○ ○ ○ ○

$$\int_{\Gamma_1} \frac{f(z)}{z-w} dz + \int_{\Gamma_2} \frac{f(z)}{z-w} dz = \int_{\gamma(a,r)} \frac{f(z)}{z-w} dz - \int_{\gamma(w,\epsilon)} \frac{f(z)}{z-w} dz.$$

so
$$\frac{1}{2\pi i} \int_{\gamma(a,r)} \frac{f(z)}{z-w} dz = \begin{bmatrix} \frac{1}{2\pi i} \int_{\gamma(w,\epsilon)} \frac{f(z)}{z-w} dz. \end{bmatrix}$$

$$\frac{1}{2\pi i}\int_{\gamma(w,\epsilon)}\frac{f(z)}{z-w}dz=\frac{1}{2\pi i}\int_{\gamma(w,\epsilon)}\frac{f(z)-f(w)}{z-w}dz+\frac{f(w)}{2\pi i}\int_{\gamma(w,\epsilon)}\frac{dz}{z-w}dz$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\int_{\Gamma_1} \frac{f(z)}{z-w} dz + \int_{\Gamma_2} \frac{f(z)}{z-w} dz = \int_{\gamma(a,r)} \frac{f(z)}{z-w} dz - \int_{\gamma(w,\epsilon)} \frac{f(z)}{z-w} dz.$$

so
$$\frac{1}{2\pi i}\int_{\gamma(a,r)}\frac{f(z)}{z-w}dz=\frac{1}{2\pi i}\int_{\gamma(w,\epsilon)}\frac{f(z)}{z-w}dz.$$

$$\frac{1}{2\pi i} \int_{\gamma(w,\epsilon)} \frac{f(z)}{z-w} dz = \frac{1}{2\pi i} \int_{\gamma(w,\epsilon)} \frac{f(z)-f(w)}{z-w} dz + \frac{f(w)}{2\pi i} \int_{\gamma(w,\epsilon)} \frac{dz}{z-w}$$
$$= \frac{1}{2\pi i} \int_{\gamma(w,\epsilon)} \frac{f(z)-f(w)}{z-w} dz + f(w)I(\gamma(w,\epsilon),w)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへぐ

$$\int_{\Gamma_1} \frac{f(z)}{z-w} dz + \int_{\Gamma_2} \frac{f(z)}{z-w} dz = \int_{\gamma(a,r)} \frac{f(z)}{z-w} dz - \int_{\gamma(w,\epsilon)} \frac{f(z)}{z-w} dz.$$

so
$$\frac{1}{2\pi i}\int_{\gamma(a,r)}\frac{f(z)}{z-w}dz=\frac{1}{2\pi i}\int_{\gamma(w,\epsilon)}\frac{f(z)}{z-w}dz.$$

$$\frac{1}{2\pi i} \int_{\gamma(w,\epsilon)} \frac{f(z)}{z-w} dz = \frac{1}{2\pi i} \int_{\gamma(w,\epsilon)} \frac{f(z)-f(w)}{z-w} dz + \frac{f(w)}{2\pi i} \int_{\gamma(w,\epsilon)} \frac{dz}{z-w}$$
$$= \frac{1}{2\pi i} \int_{\gamma(w,\epsilon)} \frac{f(z)-f(w)}{z-w} dz + f(w)I(\gamma(w,\epsilon),w)$$
$$= \frac{1}{2\pi i} \int_{\gamma(w,\epsilon)} \frac{f(z)-f(w)}{z-w} dz + f(w)$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ 三 ○ ○ ○ ○

Since *f* is complex differentiable at z = w, the term (f(z) - f(w))/(z - w) is bounded as $\epsilon \to 0$, so that by the estimation lemma its integral over $\gamma(w, \epsilon)$ tends to zero.

Since *f* is complex differentiable at z = w, the term (f(z) - f(w))/(z - w) is bounded as $\epsilon \to 0$, so that by the estimation lemma its integral over $\gamma(w, \epsilon)$ tends to zero.

However

$$\frac{1}{2\pi i}\int_{\gamma(w,\epsilon)}\frac{f(z)-f(w)}{z-w}dz+f(w)=\frac{1}{2\pi i}\int_{\gamma(a,r)}\frac{f(z)}{z-w}dz$$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < つ < ○</p>

which does not depend on ϵ .

Since *f* is complex differentiable at z = w, the term (f(z) - f(w))/(z - w) is bounded as $\epsilon \to 0$, so that by the estimation lemma its integral over $\gamma(w, \epsilon)$ tends to zero.

However

$$\frac{1}{2\pi i} \int_{\gamma(w,\epsilon)} \frac{f(z) - f(w)}{z - w} dz + f(w) = \frac{1}{2\pi i} \int_{\gamma(a,r)} \frac{f(z)}{z - w} dz$$

which does not depend on ϵ .

It follows that

$$\frac{1}{2\pi i}\int_{\gamma(w,\epsilon)}\frac{f(z)-f(w)}{z-w}dz=0$$

and

$$f(w)=\frac{1}{2\pi i}\int_{\gamma(a,r)}\frac{f(z)}{z-w}dz.$$

Corollary

If $f: U \to \mathbb{C}$ is holomorphic on an open set U, then for any $z_0 \in U$, the f(z) is equal to its Taylor series at z_0 and the Taylor series converges on any open disk centred at z_0 lying in U. Moreover the derivatives of f at z_0 are given by

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma(a,r)} \frac{f(z)}{(z-z_0)^{n+1}} dz.$$
 (1)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < □ ♪ < □ ♪ < □ ♪

For any $a \in \mathbb{C}$, $r \in \mathbb{R}_{>0}$ with $z_0 \in B(a, r)$.

Corollary

If $f: U \to \mathbb{C}$ is holomorphic on an open set U, then for any $z_0 \in U$, the f(z) is equal to its Taylor series at z_0 and the Taylor series converges on any open disk centred at z_0 lying in U. Moreover the derivatives of f at z_0 are given by

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma(a,r)} \frac{f(z)}{(z-z_0)^{n+1}} dz.$$
 (1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ の�?

For any $a \in \mathbb{C}$, $r \in \mathbb{R}_{>0}$ with $z_0 \in B(a, r)$.

Proof.

We showed when we studied winding numbers that

$$I_f(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz,$$

is analytic in *z* and its derivatives are given by the formula above.

Definition

Recall that a function which is locally given by a power series is said to be *analytic*. We have thus shown that any holomorphic function is actually analytic.

▲□▶▲□▶▲□▶▲□▶ ■ のへで