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Branch cuts
Consider the square root ‘function’ z'/2. Can we make a choice

of z1/2 to obtain a continuous or even better holomorphic
function?

z = re' with 6 € [0, 27). Then z'/2 = £r1/2¢%/2, So we may
define a square root function f by
f(z) = f(re’®) = r'/2¢/%/2,
But f is not continuous on the whole plane:
Foro — 0, re'? relm=09) _ r put
f(reie) N I’1/2, f(rei(27r—9)) — r1/2pi(m=0/2) _y _1/2

Still f(z) is continuous on C\R
where R={zc C:3(z) =0,R(z) > 0}.
f(z) is holomorphic on C\R:
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Multifunctions

The positive real axis is called a branch cut for the multi-valued
function z'/2.

If we set
g(z) = g(re’p) _ 1/2gi(5+m) — _p1/2400/2

we obtain another branch of z'/2 on C\R.
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The positive real axis is called a branch cut for the multi-valued
function z'/2.

If we set
g(z) = g(reie) _ r1/2ei(g+7r) _ _r1/24i0/2

we obtain another branch of z'/2 on C\R.
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A multi-valued function or multifunction on a subset U C Cis a
map f: U — P(C) assigning to each point in U a subset of the
complex numbers. A branch of f on a subset V C Uis a
function g: V — C such that g(z) € f(z),forallz e V. If gis
continuous (or holomorphic) on V we refer to it as a continuous,
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The positive real axis is called a branch cut for the multi-valued
function z'/2.

If we set
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Definition

A multi-valued function or multifunction on a subset U C Cis a
map f: U — P(C) assigning to each point in U a subset of the
complex numbers. A branch of f on a subset V C Uis a
function g: V — C such that g(z) € f(z),forallz e V. If gis
continuous (or holomorphic) on V we refer to it as a continuous,
(respectively holomorphic) branch of .

Notation: [f(z)] so eg [Log(z)] = {w € C: " = z}.
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branch cut we used and ‘unavoidable’ called branch points.

So for the multifunction [z'/2] we obtain holomorphic branches

on C\ R where R is the x-axis. The positive points on x-axis are
‘accidental’ discontinuities but 0 appears in all branch cuts, it is

a branch point.

This is because it is not possible to choose a continuous
branch of [z'/2] on any open set containing 0.
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To see this note that we can not continuously define z'/2 on a
circle centered at O.

Let z = re®™!, t c [0,1] and let's say f : [0,1] — Cis a
continuous choice of z'/2 on this circle.

Then f(0) = ++/r. Say f(0) = /r.
Let
s =sup{t € [0,1]: f(t) = Vre™}

If s < 1 then by continuity f(s) = \/re™s.

Again by continuity f(s') = /re™ for s’ ‘close’to s, §' > s, a
contradiction.

So s = 1. But then f(0) = /r # f(1) = \/re™ = —\/r, however
reZﬂ'i-O _ reZﬂ'i-‘l



Definition

Suppose that f: U — P(C) is a multi-valued function defined on
an open subset U of C. We say that z; € U is not a branch
point of f if there is an open disk D C U containing zy such that
there is a holomorphic branch of f defined on D\{z,}. We say
Zq is a branch point otherwise.
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Definition

Suppose that f: U — P(C) is a multi-valued function defined on
an open subset U of C. We say that z; € U is not a branch
point of f if there is an open disk D C U containing zy such that
there is a holomorphic branch of f defined on D\{z,}. We say
Zq is a branch point otherwise.

When C\ U is bounded, we say that f does not have a branch
point at oo if there is a holomorphic branch of f defined on
C\B(0, R) C U for some R > 0. Otherwise we say that cc is a
branch point of f.

A branch cut for a multifunction f is a curve in the plane on
whose complement we can pick a holomorphic branch of f.
Thus a branch cut must contain all the branch points.

For example 0, co are the branch points of [z'/2].
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More examples

The Logarithm
[Log(2)] = {log(|z|) + i(6 + 2nx) : n € Z} where z = |z|e'.
We get a branch by making a choice for the argument:

L(z) = log(|z|) + iarg(z), where arg(z) € (—m, 7]

this is called the principal branch of Log.
We may define other branches of the logarithm by

Ln(z) = L(z) + 2inz

The branch points of [Log(z)]| are 0 and oo, as it is not possible
to make a continuous choice of logarithm on any circle S(0, r).
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We note that L(z) is also holomorphic. Indeed for small h # 0,
L(a+ h) # L(a) and

L(a+h)—La) L(a+h) — L(a)
h ~ exp(L(a+ h)) — exp(L(a))’

We have

i EXP(L(a+ h)) — exp(L(a))

@i h _La oP@)=a

since when h — 0, L(a+ h) — L(a) — 0 by the continuity of L.
So we have L'(a) = 1/a.

We note that the same argument applies to any continuous
branch of the logarithm.
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Complex powers

[z*] where a € C:

[z9] := exp(a - [Log(2)]) = {exp(a-w) : w e C,e" = Z}

any holomorphic branch of [Log(z)] gives a holomorphic
branch of [z¢].
If we pick L(z) we get the principal branch of [z¢].

Note (z122) # z{'z5' in general!
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Binomial theorem for complex powers

[(1+2)Y] = {exp(a-w):we C,exp(w) =1+ z}.

Using L(z) we obtain a branch
f(z) = exp(a - L(1 + 2))
Let (%) = fa.(a—1)...(a — k+1). Define
(@)=3 (%)

By the ratio test, s(z) has radius of convergence equal to 1, so
that s(z) defines a holomorph|c function in B(0, 1).
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Binomial theorem for complex powers

[(1+2)%] = {exp(a-w): we C,exp(w) =1+ z}.
Using L(z) we obtain a branch
f(z) = exp(a - L(1 + 2))
Let (3) = Ha.(a—1)...(a — k+1). Define

s(z) = i (i) z,

k=0

By the ratio test, s(z) has radius of convergence equal to 1, so
that s(z) defines a holomorphic function in B(0, 1).
Differentiating term by term: (1 + 2)s'(z) = a - s(2).
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Binomial theorem for complex powers

[(1+2)Y] = {exp(a-w):we C,exp(w) =1+ z}.

Using L(z) we obtain a branch
f(z) = exp(a - L(1 + 2))

Let (3) = Ha.(a—1)...(a — k+1). Define

s(z) = i (i) z,

k=0

By the ratio test, s(z) has radius of convergence equal to 1, so
that s(z) defines a holomorphic function in B(0, 1).
Differentiating term by term: (1 + 2)s'(z) = a - s(2).

Now f(z) is defined on all of B(0, 1). We claim that 7(z) = s(z)
on B(0,1).
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Let g(z) = s(z) exp(—a - L(1 + 2))

then g(z) is holomorphic for every z € B(0, 1) and by the chain
rule

g (z)=(s(2) —as(2)L'(1 + 2))exp(—a - L(1 +2)) =0

since §'(z) = O‘{i(j).

Also g(0) = 1 so, since B(0, 1) is connected g is constant and

s(z) = f(z).




Let g(z) = s(z) exp(—a - L(1 + 2))

then g(z) is holomorphic for every z € B(0, 1) and by the chain
rule

g (z) = (s(2) — as(z)L' (1 + z))exp(—a - L(1 +2)) =0
since §'(z) = O‘{i(j).
Also g(0) = 1 so, since B(0, 1) is connected g is constant and
s(z) = f(2).
We used here the following:
Fact.If for a holomorphic function g, g’(z) = 0 for all z in a
connected open set, then it is constant. We have already
proven this when the open set is C and we will prove it soon in
general.
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The Argument

[arg(2)] := {6 € R : z = |z|€"’} defined on C\ {0}. Clearly if
z = |z|€e"’ then arg(z) is equal to the set {# 4 2n7 : n € Z}.

We claim that there is no continuous branch of [arg(z)] on

C\ {0}.

Indeed consider the circle S = {z : |z| = 1}. Suppose that f(z)
is a continuous branch of [arg(z)] defined on S. Let’s say that
f(1) =2nm,n € Z.

Consider g : [0,27) — R given by g(t) = 2nm + t. We claim that
f(e') = g(t) for all t € [0, 27).

We note that f(e”) = g(0) = 2nr. Since f is continuous there
is some § > 0 such that f(e) = g(t) for all t € [0, ).
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For example pick ¢ so that: |t — 0| < § = |f(e") — f(€"0)| < 1.
Consider now the set A = {t: f(e') = g(t)} C [0, 2r).

This is an open and closed subset of [0, 27), so, since [0, 27) is
connected, A = [0, 27), which proves our claim.

But then lim;_,», f(€) = 2(n+ 1)r # (1), while lim;_,, €' =1,
so f is not continuous.

On the other hand one sees easily that it is possible to define a

continuous branch f(z) of [arg(z)] on C\ [0, —), for example
by choosing f(z) to be the unique element of [arg(z)] N (—m, 7).

The argument multifunction is closely related to the logarithm.
There is a continuous branch of [Log(z)] on a set U if and only
if there is continuous branch of [arg(z)] on U. Indeed if f(z) is
a continuous branch of [arg(z)] on U we may define a
continuous branch of [Log(z)] by g(z) = log|z| + if(z), and
conversely given g(z) we may define f(z) = 3(g(2)).



More interesting example: f(2) = [(z% — 1)1/?]. If we see it as
composition of z2 — 1 with /Z:

The branch cut of the principal branch of \/z is (—cc, 0] so
we need a branch cut

{z:22—1€(—00,0]} = [-1,1]UIR
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More interesting example: f(2) = [(z% — 1)1/?]. If we see it as
composition of z2 — 1 with /Z:

The branch cut of the principal branch of \/z is (—cc, 0] so
we need a branch cut

{z:72° -1 € (—00,0]} = [-1,1]UIR

Away from this branch cut we get a continuous and in fact
holomorphic branch f; of f.

If we rewrite f(z) = [z — 1v/z + 1], then we can take as
branch cut
(—o00, 1] U (=00, —1] = (=00, 1] and a branch f(z).



it z=1+ re’” = —1 + se'®2 where 64,0, € (—, x| then
f(z) = \/rs - el(01+02)/2




it z=1+ re’” = —1 + se'®2 where 64,0, € (—, x| then
f(z) = \/rs - el(01+02)/2

When z approaches (—oo, —1) from ‘above’ 61,6, — —x S0
f-(z) — —+/rs. When z approaches (—oo, —1) from ‘below’

61,02 — wso fh(z) — —+/rs. So there is no discontinuity on
(—o0,—1).
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if z=1+re% = -1+ se'%2 where 04,0, € (—m, ] then
f(z) = \/rs - el(01+02)/2

When z approaches (—oo, —1) from ‘above’ 61,6, — —x S0
f-(z) — —+/rs. When z approaches (—oo, —1) from ‘below’
61,02 — wso fh(z) — —+/rs. So there is no discontinuity on
(—o0,—1).

When z approaches (—1,1) from ‘above’ 6y — —m, 6> — 0 so
fo(z) — —iy/rs. When z approaches (—1, 1) from ‘below’

6y — m,0> — 0so fh(z) — i\/rs. So there is a discontinuity on

(—1,1).
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if z=1+re% = -1+ se'%2 where 04,0, € (—m, ] then

f(z) = \/rs - el(01+02)/2

When z approaches (—oo, —1) from ‘above’ 61,6, — —x S0
f-(z) — —+/rs. When z approaches (—oo, —1) from ‘below’
61,02 — wso fh(z) — —+/rs. So there is no discontinuity on
(—o0,—1).

When z approaches (—1,1) from ‘above’ 6y — —m, fo — 0 so
fo(z) — —iy/rs. When z approaches (—1, 1) from ‘below’

6y — m,0> — 0so fh(z) — i\/rs. So there is a discontinuity on
(_1 ) 1 )

So in fact we can take just [-1, 1] as branch cut!
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Riemann surfaces make it possible to replace ‘multifunctions’
by actual functions.



Riemann surfaces

Riemann surfaces make it possible to replace ‘multifunctions
by actual functions.

Consider [z'/2]. We can ‘join’ the two branches of [z'/?] to
obtain a function from a Riemann surface to C.




We have two branches of [V z2 — 1] = [z — 1v/z + 1] for the
branch cut [—1,1].



We have two branches of [V z2 — 1] = [z — 1v/z + 1] for the
branch cut [—1,1].

if z=1+re'™ = —1 + se'% where 04,0, € (—, 7]
fo(2) = \/rs- €01192)/2 and —f(2).



We have two branches of [V z2 — 1] = [z — 1v/z + 1] for the
branch cut [—1,1].

if z=1+re'¥" = —1 4+ se'%2 where 04,60, € (-, ]
fg(Z) = \/_ 1(91 +92)/2 and fg(Z

as we approach [—1,1] from above

f2( ) IS, —f2( ) —

and as we approach from below

f(z) — ivrs,—h(z) —

A
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We may define ¥ as
Yy ={(z,w) e C?: w?=2%—-1)}.

Y. ={(z.%(2)): 2 ¢ [-1,1]} and
Y ={(z,—fh(z)):z¢[-1,1]},then X, UX_ covers all of &
apart from the pairs (z, w) where z € [-1,1].

For such z we have w = +iv/1 — z2, and X is obtained by
‘gluing’ together the two copies ¥, and X _ of the cut plane
C\[-1, 1] along the cut locus [-1,1].

So we have a well defined ‘square root’ function 7 : ¥ — C
given by (z, w) — w.
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Complex integration

if F:[a,b] — C, F(t) = G(t) + iH(t), we say that F is integrable
if G, H are integrable and define

/ab F(t)dt = /ab G(t)dt + i/: H(t)dt

PROPERTIES:
1. [2(a-Fi+ 8- F)dt=a- [PFidt+5- [C Fat.

2. | [P F(t)dt| < [P |F(t)|at.

Proof of 2. | |

Set fab F(t)dt = re’’. Then by 1, f: e "F(t)dt =r c R.
so [P e F(t)dt = [P Re(e " F(t))alt

| [P F(t)dt| = | [2 Re(e " F(t))dt| < [2|F(t)|dt

since |Re(z)| < |z|.
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A path is a continuous function v: [a, b] — C. A path is closed
if v(a) = v(b). If v is a path, we will write ~* for its image,

v*={zcC:z=~(t), sometc|ab]}.



Paths

Definition
A path is a continuous function v: [a, b] — C. A path is closed
if v(a) = v(b). If v is a path, we will write ~* for its image,

v*={zcC:z=~(t), sometc|ab]}.

Definition

A path ~: [a, b] — C is differentiable if its real and imaginary
parts are differentiable. Equivalently, ~ is differentiable at

fo € [a, b] if

i () — 7(lo)

t—to t—1o
exists. Notation: v/(fp). (If t = a or b then we take the one-sided
limit.) A path is C' if it is differentiable and its derivative +/(t) is
continuous.



EXAMPLES:
1. Line segment: t — a+t(b—a)=(1—-ta+tb, t][0,1],
2. circle: z(t) = zy + re®™, t € [0, 1] a closed path.
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Peano curves, spirals.

Remarks: If v is a C! path and +/(1y) # 0 then ~ has a tangent
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EXAMPLES:
1. Line segment: t — a+t(b—a)=(1—-ta+tb, t][0,1],

2. circle: z(t) = zy + re®™, t € [0, 1] a closed path.

NON EXAMPLES:
Peano curves, spirals.

Remarks: If v is a C! path and +/(1y) # 0 then ~ has a tangent
at fo: L(t) = ~(fo) + (t — 0) (%)
However a C' path might not have a tangent at every point, eg

v: [-1,1] = C
[ 1<t<0 bwl
7(f)_{ize o<t<i.

0



Definition

Let v: [c,d] — C be a C'-path. If ¢: [a, b] — [c,d] is
continuously differentiable with ¢(a) = ¢ and ¢(b) = d,then we
say that 4 = v o ¢, is a reparametrization of ~.
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Definition

Let v: [c,d] — C be a C'-path. If ¢: [a, b] — [c,d] is
continuously differentiable with ¢(a) = ¢ and ¢(b) = d,then we
say that 4 = v o ¢, is a reparametrization of ~.

Lemma

Let~: [c,d] — C and s: [a, b] — [c, d] and suppose that s is
differentiable at ty and ~ is differentiable at sy = s(ty). Then
v o S is differentiable at ty with derivative

(v 08)(t) = §'(f)~'(s(to)).

Proof.
v(x) = v(Sp) +7'(S0) (X —Sg) + (X — Sg)e(x), €(x) — 0as x — Sy

Ustnlso) - SO=M0) (4/(s(1y)) + €(s(1))).

(70 8) (o) = s'(to)'(s(t))-



Definition

v1: [a,b] — C and v2: [c,d] — C are equivalent if there is a
continuously differentiable bijective function s: [a, b] — [c, d]
such that §’(t) > O0forall t € [a,b] and 4 = v o S.

Equivalence classes: oriented curves in the complex plane.
Notation: [v].

s'(t) > 0: the path is traversed in the same direction for each of
the parametrizations ¢ and ~». Opposite path v~.



Definition

v1: [a,b] — C and v2: [c,d] — C are equivalent if there is a
continuously differentiable bijective function s: [a, b] — [c, d]
such that §’(t) > O0forall t € [a,b] and 4 = v o S.

Equivalence classes: oriented curves in the complex plane.
Notation: [v].

s'(t) > 0: the path is traversed in the same direction for each of
the parametrizations ¢ and ~». Opposite path v~.

Definition
If v: [a,b] — Cis a C' path then we define the length of ~ to be

b
(0)= [ 1ot

Using the chain rule one sees that the length of a parametrized
path is also constant on equivalence classes of paths.
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We will say a path ~: [a, b] — C is piecewise C' if it is
continuous on [a, b] and the interval [a, b] can be divided into
subintervals on each of which ~ is C'.

Sothereare a=ag < ay <... < am= bsuchthat v, 4,, S
C'.

Note: the left-hand and right-hand derivatives of v at a;

(1 <7< m-—1) may not be equal.
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As we have see in metric spaces two paths v1: [a, b] — C and
v2: [c,d] — C with v1(b) = v2(c) can be concatenated to give
a path v4 * ys. If 7,74, 72 are piecewise C' then so are v~ and

71 x 2.



Definition

We will say a path v: [a, b] — C is piecewise C' if it is
continuous on [a, b] and the interval [a, b] can be divided into
subintervals on each of which ~ is C'.

Sothereare a=ag < ay <... < am= bsuchthat v, 4,, S
o

Note: the left-hand and right-hand derivatives of v at a;

(1 <7< m-—1) may not be equal.

As we have see in metric spaces two paths v1: [a, b] — C and
v2: [c,d] — C with v1(b) = v2(c) can be concatenated to give
a path v4 * ys. If 7,74, 72 are piecewise C' then so are v~ and
71 x 2.

A piecewise C' path is precisely a finite concatenation of C'
paths.



We may define equivalence classes, reparametrisations, length
as before for piecewise C' paths.
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We may define equivalence classes, reparametrisations, length
as before for piecewise C' paths.

Example: If a, b, c € C, we define the triangle:

Tab.c = Yab*Vbc*Vc,a Where 7y, is the line segment joining
X, Y.

Recall the definition of Riemann integrable functions. We have
the following:

Lemma

Let [a, b] be a closed interval and S C [a, b] a finite set. If f is a
bounded continuous function (taking real or complex values) on
[a, b]\ S then it is Riemann integrable on |a, b].
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Tab.c = Yab*Vbc*Vc,a Where 7y, is the line segment joining
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Recall the definition of Riemann integrable functions. We have
the following:

Lemma

Let [a, b] be a closed interval and S C [a, b] a finite set. If f is a
bounded continuous function (taking real or complex values) on
[a, b]\ S then it is Riemann integrable on |a, b].

Proof.

Leta= xp < Xy < Xo < ... < X¢x = b be any partition of [a, b]
which includes the elements of S.

On each open interval (x;, x;.1) the function f is bounded and
continuous, and hence integrable.



We may define equivalence classes, reparametrisations, length
as before for piecewise C' paths.

Example: If a, b, c € C, we define the triangle:

Tab.c = Yab*Vbc*Vc,a Where 7y, is the line segment joining
X, Y.

Recall the definition of Riemann integrable functions. We have
the following:

Lemma

Let [a, b] be a closed interval and S C [a, b] a finite set. If f is a
bounded continuous function (taking real or complex values) on
[a, b]\ S then it is Riemann integrable on |a, b].

Proof.

Leta= xp < Xy < Xo < ... < X¢x = b be any partition of [a, b]
which includes the elements of S.

On each open interval (x;, x;.1) the function f is bounded and
continuous, and hence integrable.

By the definition of Riemann integrable functions f is integrable
on [a, b].
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Integral along a path

Definition
If v: [a, b] — C is a piecewise-C' path and f: C — C, then we
define the integral of f along ~ to be

b
[ 1z = [0t

We note that if v is a concatenation of the C' paths 74, ..., v
then [ f(z)dz= [ f(z)dz+ ..+ [ f(z)dz.

Lemma

Ifv: [a,b] — C be a piecewise C' path and#: [c,d] — C is an
equivalent path, then for any continuous function f: C — C we

have
/f(z)dz:[f(z)dz.

So the integral only depends on the oriented curve [7].



Proof.

Since 4 ~ vy thereis s: [c,d] — [a, b] with s(¢) = a, s(d) = b
and s'(t) > 0, # = v o s. Suppose first that v is C'. Then by the
chain rule we have

[ (2)dz = [2 f(x(s(1)))(v o s) ()at
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Since 4 ~ vy thereis s: [c,d] — [a, b] with s(¢) = a, s(d) = b
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chain rule we have
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Proof.

Since 4 ~ vy thereis s: [c,d] — [a, b] with s(¢) = a, s(d) = b
and s'(t) > 0, # = v o s. Suppose first that v is C'. Then by the
chain rule we have
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points s71(xg) < ... < s71(x,), and
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Since 4 ~ vy thereis s: [c,d] — [a, b] with s(¢) = a, s(d) = b
and s'(t) > 0, # = v o s. Suppose first that v is C'. Then by the
chain rule we have
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Since 4 ~ vy thereis s: [c,d] — [a, b] with s(¢) = a, s(d) = b
and s'(t) > 0, # = v o s. Suppose first that v is C'. Then by the
chain rule we have
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Proof.

Since 4 ~ vy thereis s: [c,d] — [a, b] with s(¢) = a, s(d) = b
and s'(t) > 0, # = v o s. Suppose first that v is C'. Then by the
chain rule we have

f f(z)dz_f f(v(s(t)))(y o s)(t)dt

—ff (U)(Wf
_ff (s)ds

If a: xo < Xy < ...< Xp=bsuchthat vis C' on [x;, x;.1] we
have a corresponding decomposition of [c, d] given by the
points s71(xg) < ... < s71(x,), and

fo z)dz = [T H(y(s(t))Y (s(t))s/(t)alt
= /ofs1((,f')+1)f(7 s(t)y'(s(1))s' (1)t
= ,” fo’“ f( (x))7'(x)dx

—f f(y (x)ax = [ f(2)dz



We define also the integral with respect to arc-length of a
function f: U — C such that v* C U to be

/f \dz\_/f ()| dt.



We define also the integral with respect to arc-length of a
function f: U — C such that v* C U to be

/f \dz\_/f ()| dt.

This integral is invariant with respect to C' reparametrizations
s: [c,d] — [a, b] if we require s'(t) # 0 for all t € [c, d]. Note

that in this case
/f(z)|dz\ :/ f(z)|dz|.
Y v
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Properties of the integral
Let /,g: U — C be continuous functions on an open subset
U C Cand~,n: [a b] — C be piecewise-C' paths whose
images lie in U. Then we have the following:
1. (Linearity): For a, 5 € C,

[y( f(2) + fa(2) z—a/f dz+5/ 9(2)dz

2. If v~ denotes the opposite path to ~ then

/f(z)dz = — / f(z)dz.

3. (Additivity): If v x n is the concatenation of the paths ~, n in
U, we have

/ f(z)dz:/f(z)dz+/f(z)dz.
Y*n Y n
4. (Estimation Lemma.) We have Gagh oL )y
&
‘ f(Z)dZ’ < sup |f(2)].4(7).

v ZE’Y



Proof of 4.



Proof of 4.

b
[ @)dz] = [ty



Proof of 4.

b
}/f(z)dz\ _ \/ F((6)y ()t

/|f DIV (8)dt



Proof of 4.

b
}/f(z)dz\ _ \/ F((6)y ()t

/|f DIV (8)dt

< e \/w .

zey*



Proof of 4.

b
[ @)dz] = [ty

b
< [ [f(x(O)IY (D)t
a
b
< sup |f(2)| [ |¥(t)|at
zey* a r/



Proposition
Let f,: U — C be a sequence of continuous functions. Suppose

that v: [a, b] — U is a path. If (f,) converges uniformly to a
function f on the image of v then

/fn(z)dz—>/f(z)dz.



Proposition
Let f,: U — C be a sequence of continuous functions. Suppose

that v: [a, b] — U is a path. If (f,) converges uniformly to a
function f on the image of v then

/fn(z)dz—>/f(z)dz.

Proof. We have

/f(z)dz—/fn(z)dz

/ ((2) — f(2))dz
sup {|f(2) — fa(2)[}-£€(7),

zey*

IA

by the estimation lemma.



Proposition
Let f,: U — C be a sequence of continuous functions. Suppose

that v: [a, b] — U is a path. If (f,) converges uniformly to a
function f on the image of v then

/fn(z)dz—>/f(z)dz.

Proof. We have

/f(z)dz—/fn(z)dz

/(f(z) — fa(2))dz
< sup {|f(2) — fa(2)]}-£(~),

zey*

by the estimation lemma.
sup{|f(z) — fn(2)| : z € v*} — 0 as n — oo which implies the

result.



Let's say
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n=1

converges on B(0, R). Then convergence is uniform on B(0, r)
for r < R. So if ~ is a piecewise C' curve in B(0, r) we have



Let's say
> a2
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converges on B(0, R). Then convergence is uniform on B(0, r)
for r < R. So if ~ is a piecewise C' curve in B(0, r) we have

N 00
/Zanz”dz s / Zanz”dz
Y 7 n=1

n=1
SO



Let's say
> a2
n=1

converges on B(0, R). Then convergence is uniform on B(0, r)
for r < R. So if ~ is a piecewise C' curve in B(0, r) we have

N 00
/Zanz”dz s / Zanz”dz
Y 7 n=1

n=1
SO

M=
S~
Q0
ilb
N
1
—
\g
Qv
?\13
N

in other words we can interchange >, |:



Let's say
> a2
n=1

converges on B(0, R). Then convergence is uniform on B(0, r)
for r < R. So if ~ is a piecewise C' curve in B(0, r) we have

SO

N 00
Z/anz”dZA/Zanz”dz
n=1"7 7 n=1

in other words we can interchange >, |:

/Zanz”dz— Z/anz”dz
n=1



Definition

Let U C C be an open set and let f: U — C be a continuous
function. If there exists a differentiable function F: U — C with
F'(z) = f(z) then we say F is a primitive for f on U.



Definition

Let U C C be an open set and let f: U — C be a continuous
function. If there exists a differentiable function F: U — C with
F'(z) = f(z) then we say F is a primitive for f on U.

Theorem

(Fundamental theorem of Calculus): Let U C C be a open and
let f: U— C be a continuous function. If F: U — C is a
primitive for f and ~: [a, b] — U is a piecewise C' path in U
then we have

/ f(z)dz = F(1(b)) — F(+(a))

In particular the integral of such a function f around any closed
path is zero.



Proof.
First suppose that v is C'. Then we have

[y f(2)dz = [y F(2)dz /a Y F(B) (D)t



Proof.
First suppose that v is C'. Then we have

[y f(2)dz = [y F(2)dz /a Y F(B) (D)t

b
_ / C (F o)1)t = F(+(b)) ~ F((a)



Proof.
First suppose that v is C'. Then we have

[y f(2)dz = [y F(2)dz /a Y F(B) (D)t

b
_ / C (F o)1)t = F(+(b)) ~ F((a)

If v is only piecewise C', then take a partition
a=4ay < ay <...< ax=bsuchthat~is C' on [a;, aj1] for

each i€ {0,1,...,k—1}. Then we obtain a telescoping sum:
b k1 aj1
[ 1@ = [ tampod=3" [ @y
i a i=0 4
k—1

= > (F(v(ai+1)) — F(v(a))) = F(v(b)) — F(~(a))

|=

Finally, v is closed iff v(a) = ~(b) so the integral of f along a
closed path is zero.

o



Corollary

Let U be a domain and let f: U — C be a function with
f(z) =0 forall z € U. Then f is constant.



Corollary

Let U be a domain and let f: U — C be a function with
f(z) =0 forall z € U. Then f is constant.

Proof.

Pick zg € U. Since U is path-connected, if w € U, we may find
a piecewise C'-path ~: [0,1] — U such that y(a) = z, and
v(b) = w. Then by the previous Theorem

f(w) — f(z9) = / f(z)dz = 0,

so that f is constant.




Corollary

Let U be a domain and let f: U — C be a function with
f(z) =0 forall z € U. Then f is constant.

Proof.

Pick zg € U. Since U is path-connected, if w € U, we may find
a piecewise C'-path ~: [0,1] — U such that y(a) = z, and
v(b) = w. Then by the previous Theorem

f(w) — f(z9) = / f(z)dz = 0,

so that f is constant. []

Theorem

If U is a domain and f: U — C is a continuous function such
that for any closed path in U we have [ f(z)dz = 0, then f has
a primitive.



Proof.

Fix z in U, and for any z € U set F(z) = [ f(z)dz.
where ~: [a, b] — U with v(a) = zy and v(b) = z.



Proof.

Fix z in U, and for any z € U set F(z) = [ f(z)dz.
where ~: [a, b] — U with v(a) = zy and v(b) = z.
F(z) is independent of the choice of v:

Suppose v1,v2 are two paths joining zp, z.
The path v = v x~, is closed so



Proof.

Fix z in U, and for any z € U set F(z) = [ f(z)dz.
where ~: [a, b] — U with v(a) = zy and v(b) = z.

F(z) is independent of the choice of ~: Y,
Suppose v1,v2 are two paths joining zp, z. gz
The path v = v x~, is closed so z, 02

I
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Proof.

Fix z in U, and for any z € U set F(z) = [ f(z)dz.
where ~: [a, b] — U with v(a) = zy and v(b) = z.
F(z) is independent of the choice of v:

Suppose v1,v2 are two paths joining zp, z.
The path v = v x~, is closed so

0 :/f(z)dz:/ f(z)dz+/_ f(z)dz=/ f(z)dz—/ f(z)dz.

Claim: F is differentiable and F'(z) = f(z).
Fix w € U and € > 0 such that B(w, ¢) C U and choose a path

v: [a, b] — U from zy to w.
()
v
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Proof.

Fix z in U, and for any z € U set F(z) = [ f(z)dz.
where ~: [a, b] — U with v(a) = zy and v(b) = z.
F(z) is independent of the choice of ~:

Suppose v1,v2 are two paths joining zp, z.
The path v = v x~, is closed so

0:/f(z)dz:/ f(z)dz+/ f(z)dz=/ f(z)dz—/ f(z)dz.

2

Claim: F is differentiable and F'(z) = f(z).

Fix w € U and € > 0 such that B(w, ¢) C U and choose a path
v: [a,b] = U from zy to w.

If z; € B(w, ¢) C U, then the concatenation of v with the
straight-line path s: [0, 1] — U given by

S(t) = w+ t(zy — w) from w to z; is a path ;1 from zy to z;. It
follows that






F(z1) — F(w) = / f(z)dz — / f(2)dz
— (/ f(z)dz+/f(z)dz)—/f(z)dz
y y, = 0






so for zy = w

F(z1) = F(w)
Z1 — W

; 1_ — (/01 f(W+ t(Z1 — W))(Z1 — W)dt>>




so for zy # w \ Az -_@;W) A+

F(z1) — F(w) | - | 1 _ </1 f(w+ t(z — w))(z4 — W)dt>>
1= o ——

Z1 — W




1
. 1_ y” </0 f(w—+t(zy —w))(z1 — W)dt)

/01(f(w + t(zy — w)) — f(w))dt




1
=z 1_W </0 flw+t(zy —w))(z1 — W)dt)

— /01(f(w+ t(zy —w)) — f(w))dt

< sup [f(w+ 1tz —w)) — f(w)]
te[0,1]




1
=z 1_W </0 flw+t(zy —w))(z1 — W)dt)

— /01(f(w+ t(zy —w)) — f(w))dt

< sup [f(w+ 1tz —w)) — f(w)]
te[0,1]

—0aszy —>w



Winding numbers

Holomorphic functions don’t always have primitives.
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Holomorphic functions don’t always have primitives.

Example

Let f: C* — C*, f(z) = 1/z. Then f does not have a primitive
on C~.



Winding numbers

Holomorphic functions don’t always have primitives.

Example
Let f: C* — C*, f(z) = 1/z. Then f does not have a primitive
on C~.
If v: [0,1] — C is the path ~(t) = exp(2xit) (a circle)
.
_ [ # B (o : o
/ z)dz = / t)dt = /0 xp(2ril) (2miexp(2mit))dt = 2mi

But this integral would be zero if f/(z) had a primitive.



Winding numbers

Holomorphic functions don’t always have primitives.

Example
Let f: C* — C*, f(z) = 1/z. Then f does not have a primitive
on C~.
If v: [0,1] — C is the path ~(t) = exp(2xit) (a circle)
.
_ [ # B (o : o
/ z)dz = / t)dt = /0 xp(2ril) (2miexp(2mit))dt = 2mi

But this integral would be zero if f/(z) had a primitive.

Remark: 1/z does have a primitive on any domain where we
can chose a branch of [Log(z)]:
If we have e(?) = z on D by the chain rule

exp(L(2))-LU'(z2)=1=L(z)=1/z.



Let v: [0,1] — C closed path which does not pass through 0.
We will give a rigorous definition of the number of times ~ “goes
around the origin”.
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Let v: [0,1] — C closed path which does not pass through 0.
We will give a rigorous definition of the number of times ~ “goes
around the origin”.

The problem is arg z is not continuous on C*!

Proposition
Let~: [0,1] — C\{O} be a path. Then there is continuous
function a: [0, 1] — R such that

y(t) = [y(1)|e*m.

Moreover, if a and b are two such functions, then there exists
n € 7 such that a(t) = b(t) + n for all t € [0,1].



Proof.
By replacing ~(t) with v(t)/|~(t)| we may assume that
Iv(t)| = 1 for all t.



Proof.
By replacing ~(t) with v(t)/|~(t)| we may assume that
Iv(t)| = 1 for all t.
~ is uniformly continuous, so 3§ > 0 such that |y(s) — v(t)| < 1
for any s, t with |s — t| < 6.
o)
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Proof.
By replacing ~(t) with v(t)/|~(t)| we may assume that
Iv(t)| = 1 for all t.

~ is uniformly continuous, so 3§ > 0 such that |y(s) — v(t)| < 1
for any s, t with |s — t| < 6.

Choose n € N, n > 1/4. Then on each subinterval
[i/n,(i+1)/n] we have |v(s) —~(t)| < 1.



Proof.
By replacing ~(t) with v(t)/|~(t)| we may assume that
Iv(t)| = 1 for all t.

~ is uniformly continuous, so 3§ > 0 such that |y(s) — v(t)| < 1
for any s, t with |s — t| < 6.

Choose n € N, n > 1/4. Then on each subinterval
[i/n,(i+1)/n] we have |v(s) —~(t)| < 1.

On any half-plane in C we may define a holomorphic branch of
[Log(2)].

L(2)
—
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Proof.
By replacing ~(t) with v(t)/|~(t)| we may assume that
Iv(t)| = 1 for all t.

~ is uniformly continuous, so 3§ > 0 such that |y(s) — v(t)| < 1
for any s, t with |s — t| < 6.

Choose n € N, n > 1/4. Then on each subinterval
[i/n,(i+1)/n] we have |v(s) —~(t)| < 1.

On any half-plane in C we may define a holomorphic branch of
[Log(2)].

if |z1] = |zz] =1 and |z; — 22| < 1, then the angle between z;
and z» is less than /2. It follows there exists continuous

ai: [j/n,(j+1)/n] — R such that v(t) = e?™a(0)

24 2, (\
T« \

|2|=|
AN

| @)= 2ﬂi0~£ 3



Proof.
By replacing ~(t) with v(t)/|~(t)| we may assume that
Iv(t)| = 1 for all t.

~ is uniformly continuous, so 3§ > 0 such that |y(s) — v(t)| < 1
for any s, t with |s — t| < 6.

Choose n € N, n > 1/4. Then on each subinterval
[i/n,(i+1)/n] we have |v(s) —~(t)| < 1.

On any half-plane in C we may define a holomorphic branch of
[Log(2)].

if |z1] = |zz] =1 and |z; — 22| < 1, then the angle between z;
and z» is less than /2. It follows there exists continuous

ai: [j/n,(j+1)/n] — R such that v(t) = e?™a(0)

since e2™&U/N) = g2™id-1U/n) g, (j/n) and a;(j/n) differ by an
integer. Thus we can successively adjust the a; for j > 1 by an

integer to obtain a continuous a: [0, 1] — C such that
’y(l‘) _ eZwia(t)_



Proof.
By replacing ~(t) with v(t)/|~(t)| we may assume that
Iv(t)| = 1 for all t.

~ is uniformly continuous, so 3§ > 0 such that |y(s) — v(t)| < 1
for any s, t with |s — t| < 6.

Choose n € N, n > 1/4. Then on each subinterval

[i/n, (i +1)/n] we have |y(s) — ()] < 1.

On any half-plane in C we may define a holomorphic branch of
[Log(2)].

if |z1| = |zo| =1 and |zy — z»| < 1, then the angle between z;
and z» is less than /2. It follows there exists continuous

ai: [j/n,(j+1)/n] — R such that v(t) = e?™a(0)

since e2™&U/N) = g2™id-1U/n) g, (j/n) and a;(j/n) differ by an
integer. Thus we can successively adjust the a; for j > 1 by an
integer to obtain a continuous a: [0, 1] — C such that

v(t) = g2mia(t)

Uniqueness: e?™(a—b(1) — 1 hence a(t) — b(t) € Z, but [0, 1]
is connected so a(t) — b(t) is constant. ]



Definition

If v: [0,1] — C\{0} is a closed path and ~(t) = |y(t)|e*™") as
in the previous lemma, then a(1) — a(0) € Z. This integer is
called the winding number /(, 0) of v around 0.

It is uniquely determined by the path v because the function a
IS unique up to an integer.



Definition

If v: [0,1] — C\{0} is a closed path and ~(t) = |y(t)|e*a!) as
in the previous lemma, then a(1) — a(0) € Z. This integer is
called the winding number /(, 0) of v around 0.

It is uniquely determined by the path v because the function a
IS unique up to an integer.

If Zzg is not in the image of v, we may define the winding number
I(~y, Zp) of v about zy similarly:

Let t: C — C be given by t(z) = z — zy, we define

(v, 2p) = I(t o ~,0).
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Definition

If v: [0,1] — C\{0} is a closed path and ~(t) = |y(t)|e*a!) as
in the previous lemma, then a(1) — a(0) € Z. This integer is
called the winding number /(, 0) of v around 0.

It is uniquely determined by the path v because the function a
IS unique up to an integer.

If Zzg is not in the image of v, we may define the winding number
I(~y, Zp) of v about zy similarly:

Let t: C — C be given by t(z) = z — zy, we define

(v, 2p) = I(t o ~,0).

Remarks: 1. The definition of the winding number only requires
the closed path ~ to be continuous, not piecewise C'.



Definition

If v: [0,1] — C\{0} is a closed path and ~(t) = |y(t)|e*a!) as
in the previous lemma, then a(1) — a(0) € Z. This integer is
called the winding number /(, 0) of v around 0.

It is uniquely determined by the path v because the function a
IS unique up to an integer.

If Zzg is not in the image of v, we may define the winding number
I(~y, Zp) of v about zy similarly:

Let t: C — C be given by t(z) = z — zy, we define

(v, 2p) = I(t o ~,0).

Remarks: 1. The definition of the winding number only requires
the closed path ~ to be continuous, not piecewise C'.

2. ifv: [0,1] — U where 0 ¢ U and there exists a holomorphic
branch L: U — C of [Log(z)] on U, then I(~,0) = 0. Indeed in
this case we may define a(t) = 3(L(~(t))), and since

v(0) = ~(1) it follows a(1) — a(0) = 0.



The winding number for C' paths can be expressed using
Integrals:

Lemma

Let~ be a piecewise C' closed path and z, € C a point not in
the image of v. Then the winding number I(~, zy) of v around

Zy IS given by
1 az
/ = :
(/7720) o /7 Z— 2,




The winding number for C' paths can be expressed using
Integrals:

Lemma

Let~ be a piecewise C' closed path and z, € C a point not in
the image of v. Then the winding number I(~, zy) of v around

Zy IS given by
1 az
I(/77ZO) _ 27'('/.\/,72—20.

Proof. |
If v: [0,1] — C we may write (1) = zy + r(t)e*™a1, Then

dz 1 1 | ;
/Z—Zo :/0 r(t)e2ria(t) (r'(t) + 2rir(t)d (1)) eV alt
Y




The winding number for C' paths can be expressed using
Integrals:

Lemma

Let~ be a piecewise C' closed path and z, € C a point not in
the image of v. Then the winding number I(~, zy) of v around

Zy IS given by
1 az
I(/77ZO) _ 27'('/.\/,72—20.

Proof. |
If v: [0,1] — C we may write (1) = zy + r(t)e*™a1, Then

dz 1 1 | ;
/Z—Zo :/0 r(t)e2ria(t) (r'(t) + 2rir(t)d (1)) eV alt
Y

_ /0 | r'(t)/r(t) + 2mid (t)dt = [log(r(t)) + 2mia(t)]o



The winding number for C' paths can be expressed using
Integrals:

Lemma
Let~ be a piecewise C' closed path and z, € C a point not in
the image of v. Then the winding number I(~, zy) of v around

Zy IS given by
1 az
I(/77ZO) _ 27'('/.\/,72—20.

Proof. |
If v: [0,1] — C we may write (1) = zy + r(t)e*™a1, Then

dz 1 1 | ;
/Z—Zo :/0 r(t)e2ria(t) (r'(t) + 2rir(t)d (1)) eV alt
Y

= /1 r'(t)/r(t) + 2rid (t)dt = [log(r(t)) + 2mia(t)]}
= 277/(3(13)— a(0)), since r(1) = r(0) = |v(0) — Z|.



Winding numbers and analytic functions



Winding numbers and analytic functions
Definition
If f: U — Cis a function on an open subset U of C, then we say
that f is analytic on U if for every z; € C there is an r > 0 with
B(zy,r) C U such that there is a power series Y32, ax(z — 2o)*
with radius of convergence at least r and
f(z) = >0 ak(z — zp)¥ An analytic function is holomorphic, as
any power series is (infinitely) complex differentiable.



Winding numbers and analytic functions
Definition
If f: U — Cis a function on an open subset U of C, then we say
that f is analytic on U if for every z; € C there is an r > 0 with
B(zy,r) C U such that there is a power series Y32, ax(z — 2o)*
with radius of convergence at least r and
f(z) = S0 ak(z — zp)¥ An analytic function is holomorphic, as
any power series is (infinitely) complex differentiable.

Recald:

1 az
e
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Winding numbers and analytic functions
Definition
If f: U — Cis a function on an open subset U of C, then we say
that f is analytic on U if for every z; € C there is an r > 0 with
B(zy,r) C U such that there is a power series Y32, ax(z — 2o)*
with radius of convergence at least r and
f(z) = >0 ak(z — zp)¥ An analytic function is holomorphic, as
any power series is (infinitely) complex differentiable.

Proposition
Let U be an open setin C and let~: [0,1] — U be a closed
path. If f(z) is a continuous function on ~* then the function

horw) = 5o [ Sk d,

271 v Z—W

Is analytic in w.

In particular, if f(z) = 1 this shows that the function w — I(~, w)
is a continuous function on C\~*, hence constant on the
connected components of C\~*.



Proof We will show that for each z; ¢ +* we can find a disk
B(zp, €) within which /¢(~, w) is given by a power series in
(w — zp). Translating if necessary we may assume z; = 0.



Proof We will show that for each z; ¢ +* we can find a disk
B(zp, €) within which /¢(~, w) is given by a power series in

(w — zp). Translating if necessary we may assume z; = 0.

= 1(1 —w/z)~" as power

series when |w/z| < 1, so

= f(z) - w"
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Proof We will show that for each z, ¢ ~+* we can find a disk
B(zp, €) within which /¢(~, w) is given by a power series in

(w — zp). Translating if necessary we may assume z; = 0.

= 1(1 —w/z)~" as power

series when |w/z| < 1, so

f f > > f Can
P =3 Py =3 T

For this expansion to work we pick r so that B(0,2r) n~* = (.
We will show that the function is analytic for w € B(0, r).




Proof We will show that for each z, ¢ ~+* we can find a disk
B(zp, €) within which /¢(~, w) is given by a power series in

(w — zp). Translating if necessary we may assume z; = 0.

= 1(1 —w/z)~" as power

series when |w/z| < 1, so

= (1—-—w/z)” i (w/z)"

For this expansion to work we pick r so that B(0,2r) n~* = (.
We will show that the function is analytic for w € B(0, r).

We claim that the last series, seen as a function of z,
converges uniformly on ~*.

ﬁeaﬂ
Weierstrass M-test: < [.(& @ =il 4 {.@) <
a) SEM, <



Proof We will show that for each z; ¢ +* we can find a disk
B(zp, €) within which /¢(~, w) is given by a power series in

(w — zp). Translating if necessary we may assume z; = 0.

= 1(1 —w/z)~" as power

series when |w/z| < 1, so

f f > > f Can
P =3 Py =3 T

For this expansion to work we pick r so that B(0,2r) n~* = (.
We will show that the function is analytic for w € B(0, r).

We claim that the last series, seen as a function of z,
converges uniformly on ~*.

Since v* is compact, M = sup{|f(z2)| : z € v*} is finite. We
apply Weierstrass M-test:

(2) - w/2MT = [f(2)]|z] Y w/2I" < 51(1/2)", Vzen*.



Uniform convergence implies that for all w € B(0, r) we have

5 (o [ et [12%

n=0

hence l¢(, w) is given by a power series in B(0, r).
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Uniform convergence implies that for all w € B(0, r) we have

S (o e [ 2

n=0

hence l¢(, w) is given by a power series in B(0, r).
If f =1, then since /1(~, z) = I(v, 2) is integer-valued, it follows
it must be constant on any connected component of C\~*.

\
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Uniform convergence implies that for all w € B(0, r) we have

=/ 1 f(2) a1 f(z)dz
Z (2—7r// zn+1 dz) v 277// zZ—-w Iy, w).
n=0 Y Y

hence l¢(, w) is given by a power series in B(0, r).

If f =1, then since /1(~, z) = I(v, 2) is integer-valued, it follows
it must be constant on any connected component of C\~*.

Remark By the power series expression we can calculate the
derivatives of g(w) = (v, w) at zy:

9" (z) = n!/ f(z)dz

- 270 ), (z — zp)m+




If v is a closed path then ~* is compact and hence bounded.
Thus there is an R > 0 such that the connected set

C\B(0, R) n~v* = (. It follows that C\v* has exactly one
unbounded connected component.
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If v is a closed path then ~* is compact and hence bounded.
Thus there is an R > 0 such that the connected set

C\B(0, R) n~v* = (. It follows that C\v* has exactly one
unbounded connected component.

Since

[ 2l <t s 11/ - D) 0
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as z — oo it follows that /(v, z) = 0 on the unbounded
component of C\~*.



If v is a closed path then ~* is compact and hence bounded.
Thus there is an R > 0 such that the connected set

C\B(0, R) n~v* = (. It follows that C\v* has exactly one
unbounded connected component.

Since

d
[ 2l <o) swp 11/~ 2)] 0
(=2 ce*
as z — oo it follows that /(v, z) = 0 on the unbounded
component of C\~*.

Definition

Let v: [0,1] — C be a closed path. We say that a point z is in
the inside of v if z ¢ v* and /(~, z) # 0. The previous remark
shows that the inside of ~ is a union of bounded connected
components of C\~*. (We don’t, however, know that the inside
of ~ is necessarily non-empty.)



Example

Suppose that v : [-7, 7] — Cis given by v4 = 1 + €' and

vo: [0,27] — C is given by y5(t) = —1 + e~ . Then if

v = 1 x 2, 7y traverses a figure-of-eight and it is easy to check
that the inside of v is B(1,1) U B(—1,1) where /(v,z) = 1 for
z € B(1,1) while I(y,z) = —1 for z € B(—1,1).

0
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Example

Suppose that v : [-7, 7] — Cis given by v4 = 1 + €' and

vo: [0,27] — C is given by y5(t) = —1 + e~ . Then if

v = 1 x 2, 7y traverses a figure-of-eight and it is easy to check
that the inside of v is B(1,1) U B(—1,1) where /(v,z) = 1 for
z € B(1,1) while I(y,z) = —1 for z € B(—1,1).

Remark

It is a theorem, known as the Jordan Curve Theorem, that if
v:[0,1] — C is a simple closed curve, so that v(t) = ~v(s) if and
onlyifs=tors,te {0,1}, then C\~* is the union of precisely
one bounded and one unbounded component, and on the
bounded component (v, z) is either 1 or —1. If [(,z) =1 for z
on the inside of v we say -y is positively oriented and we say it is
negatively oriented if I(,z) = —1 for z on the inside.



Cauchy’s theorem



Cauchy’s theorem

Cauchy’s theorem states roughly that if f: U — C is
holomorphic and v is a closed path in U whose interior lies

entirely in U then
/ f(z)dz = 0.
Y



Cauchy’s theorem

Cauchy’s theorem states roughly that if f: U — C is
holomorphic and v is a closed path in U whose interior lies

entirely in U then
/ f(Z)dZ = 0.
y

This is the single most important theorem of the course. Almost
all important facts about holomorphic functions follow from it.
Sample applications:

1. If f is holomorphic then it is C' and in fact infinitely
differentiable.

2. If f : C — Cis holomorphic and bounded then it is constant.
3. The fundamental theorem of algebra

4. etc etc



Cauchy’s theorem

Cauchy’s theorem states roughly that if f: U — C is
holomorphic and v is a closed path in U whose interior lies

entirely in U then
/ f(Z)dZ = 0.
y

This is the single most important theorem of the course. Almost
all important facts about holomorphic functions follow from it.
Sample applications:

1. If f is holomorphic then it is C' and in fact infinitely
differentiable.

2. If f : C — Cis holomorphic and bounded then it is constant.
3. The fundamental theorem of algebra

4. etc etc

For most of our applications we will need a simpler case of the
theorem for starlike domains. We defer the discussion of the
general case to later lectures.



Definition

A triangle or triangular path T is a path of the form v x vo x v3
where v4(t) = a+ t(b — a), v2(t) = b+ t(c — b) and

v3(t) = c+t(a— c) where t € [0,1] and a, b, ¢ € C. (Note that if
{a, b, c} are collinear, then T is a degenerate triangle.) That is,
T traverses the boundary of the triangle with vertices

a,b,c € C. The solid triangle 7 bounded by T is the region

3
T:{t1a+t2b+t30: [ € [071]7Zti: 1}7
=1

with the points in the interior of 7 corresponding to the points
with t; > 0 for each i € {1,2,3}. We will denote by [a, b] the line
segment {a+ t(b—a) : t € [0, 1]}, the side of T joining vertex a
to vertex b. When we need to specify the vertices a, b, c of a
triangle T, we will write T, p ¢.



Theorem

(Cauchy’s theorem for a triangle): Suppose that U C C is an
open subset and let T C U be a triangle whose interior is
entirely contained in U. Then iff: U — C is holomorphic we

have
/ f(Z)dZ =0
-



Theorem

(Cauchy’s theorem for a triangle): Suppose that U C C is an
open subset and let T C U be a triangle whose interior is
entirely contained in U. Then iff: U — C is holomorphic we

have
/ f(Z)dZ =0
-

Idea of proof. 1. f(z) = f(zy) + f'(20)(z — 29) + (z — 20)¥(2).
So if v is ‘small’ close to z,

J, f(2)dz = | (z — z0)¥(2)dz which by the estimation lemma
and since ¢(z) — 0, is much smaller than length(~).
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(Cauchy’s theorem for a triangle): Suppose that U C C is an
open subset and let T C U be a triangle whose interior is
entirely contained in U. Then iff: U — C is holomorphic we
have




Theorem

(Cauchy’s theorem for a triangle): Suppose that U C C is an
open subset and let T C U be a triangle whose interior is
entirely contained in U. Then iff: U — C is holomorphic we

have
/ f(Z)dZ =0
-

Idea of proof. 1. f(z) = f(zy) + f'(20)(z — 29) + (z — 20)¥(2).
So if v is ‘small’ close to z,

J, f(2)dz = | (z — z0)¥(2)dz which by the estimation lemma
and since (z) — 0, is much smaller than length(~).

2. Assuming that | = | [+ f(z)dz| # 0 we will subdivide T into 4
smaller triangles and represent the integral as sum of the
integrals on the smaller triangles. One of the integrals of the
smaller triangles will be at least //4. We will keep subdividing
till we get a very small triangle where by part 1 the integral will
be smaller than expected, contradiction.



Suppose | = | [+ f(z)dz| > 0. We build a sequence of smaller
and smaller triangles T", as follows: Let T° = T, and suppose
that we have constructed T for 0 < i < k. Then take the
triangle T~ and join the midpoints of the edges to form four
smaller triangles, which we will denote S; (1 < i < 4).

Then I = [ f(2)dz = 3% i |, f(2)az, since the integrals
around the interior edges cancel.



Suppose | = | [+ f(z)dz| > 0. We build a sequence of smaller
and smaller triangles T", as follows: Let T° = T, and suppose
that we have constructed T for 0 < i < k. Then take the
triangle T~ and join the midpoints of the edges to form four
smaller triangles, which we will denote S; (1 < i < 4).

Then I = [ f(2)dz = 3% i |, f(2)az, since the integrals
around the interior edges cancel.

Figure: Subdivision of a triangle



Ik =| [7x-1 f(2)dz| < ST | Js, f(2)dz], so that for some i we
must have ‘fs,- (2)dz| > Ix_1/4. Set T* to be this triangle S;.
Then by induction we see that ¢(TX) = 2=%¢(T) while I, > 47X



Ik =| [7x-1 f(2)dz| < ST | Js, f(2)dz], so that for some i we
must have ‘fs,- (2)dz| > Ix_1/4. Set T* to be this triangle S;.
Then by induction we see that ¢(TX) = 2=%¢(T) while I, > 47X

Let 7* be the solid triangle with boundary TX. The sets 7% are
nested and their diameter tends to 0, so there is a unique point
Zp, lying in all of them.



Ik =| [7x-1 f(2)dz| < ST | Js, f(2)dz], so that for some i we
must have ‘fs,- (2)dz| > Ix_1/4. Set T* to be this triangle S;.
Then by induction we see that ¢(TX) = 2=%¢(T) while I, > 47X

Let 7* be the solid triangle with boundary TX. The sets 7% are
nested and their diameter tends to 0, so there is a unique point
Zp, lying in all of them.

f(z) = f(20) + '(20)(z — 20) + (2 — 20)¥(2),

where ¥(z) - 0 =1(zy) as z — 2.



/ f(z)dz:/ (z — 20)Y(2)dz
Tk Tk

and if zis on TX, we have |z — z| < diam(7%) = 2-*diam(T).



f(z)dz = / (z — 20)Y(2)dz
Tk Tk

and if zis on TX, we have |z — z| < diam(7%) = 2-*diam(T).
Let nx = sup,c7« [10(Z)|. By the estimation lemma:



f(z)dz = / (z — 20)Y(2)dz
Tk Tk

and if zis on TX, we have |z — z| < diam(7%) = 2-*diam(T).
Let nx = sup,c7« [10(Z)|. By the estimation lemma:

=1 | (2~ 20)(2)z] <y diam(T*)e(T)



f(z)dz = / (z — 20)Y(2)dz
Tk Tk

and if zis on TX, we have |z — z| < diam(7%) = 2-*diam(T).
Let nx = sup,c7« [10(Z)|. By the estimation lemma:

=1 | (2~ 20)(2)z] <y diam(T*)e(T)

= 47 %p diam(T) - 4(T).



f(z)dz = / (z — Zp)y(2)dz
Tk Tk

and if zis on TX, we have |z — z| < diam(7%) = 2-*diam(T).
Let nx = sup,c7« [10(Z)|. By the estimation lemma:

=1 | (2~ 20)(2)z] <y diam(T*)e(T)

= 47 %p diam(T) - 4(T).

So 4%l — 0 as k — co. On the other hand, by construction
Iy > 1/4% = 4%I, > | > 0, contradiction. ]



Definition

Let X be a subset in C. We say that X is convex if for each
z,w € U the line segment between z and w is contained in X.
We say that X is star-like if there is a point z; € X such that for
every w € X the line segment [zp, w]| joining z; and w lies in X.
We will say that X is star-like with respect to z; in this case.
Thus a convex subset is thus starlike with respect to every point

it contains.

)il



Definition

Let X be a subset in C. We say that X is convex if for each
z,w € U the line segment between z and w is contained in X.
We say that X is star-like if there is a point z; € X such that for
every w € X the line segment [zp, w]| joining z; and w lies in X.
We will say that X is star-like with respect to z; in this case.
Thus a convex subset is thus starlike with respect to every point
It contains.

Example. A disk (open or closed) is convex, as is a solid
triangle or rectangle. On the other hand the union of the
xy-axes is starlike with respect to 0 but not convex.

et Guvex |




Definition

Let X be a subset in C. We say that X is convex if for each
z,w € U the line segment between z and w is contained in X.
We say that X is star-like if there is a point z; € X such that for
every w € X the line segment [zp, w]| joining z; and w lies in X.
We will say that X is star-like with respect to z; in this case.
Thus a convex subset is thus starlike with respect to every point
It contains.

Example. A disk (open or closed) is convex, as is a solid
triangle or rectangle. On the other hand the union of the
xy-axes is starlike with respect to 0 but not convex.

Theorem

(Cauchy’s theorem for a star-like domain): Let U be a star-like
domain. Then if f: U — C is holomorphic and ~: [a,b] — U is a
closed path in U we have

/ f(z)dz =0.



Proof. It suffices to show that f has a primitive in U.
Let zy € U such that for every z € U, v, = zo + t(z — 2p),
t € [0,1] is contained in U. We claim that

F(z)= | H()d¢

Yz



Proof. It suffices to show that f has a primitive in U.
Let zy € U such that for every z € U, v, = zo + t(z — 2p),
t € [0,1] is contained in U. We claim that

F(z)= | H()d¢

Yz

is a primitive for fon U. Lete > 0s.t. B(z,e) C U. If w € B(z,¢)
the triangle T with vertices zy, z, w lies entirely in U so by
Cauchy’s thm for triangles [+ f(¢)d¢ = 0.

U
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Let zy € U such that for every z € U, v, = zo + t(z — 2p),
t € [0,1] is contained in U. We claim that
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Yz

is a primitive for fon U. Lete > 0s.t. B(z,e) C U. If w € B(z,¢)
the triangle T with vertices zy, z, w lies entirely in U so by
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soifn(t)=w—+t(z—w),te]0,1] we have
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Proof. It suffices to show that f has a primitive in U.
Let zy € U such that for every z € U, v, = zo + t(z — 2p),
t € [0,1] is contained in U. We claim that

F(z)= | H()d¢

Yz

is a primitive for fon U. Lete > 0s.t. B(z,e) C U. If w € B(z,¢)
the triangle T with vertices zy, z, w lies entirely in U so by
Cauchy’s thm for triangles [+ f(¢)d¢ = 0.
soifn(t)=w—+t(z—w),te]0,1] we have

{F(ZZ)_F(W) ‘_|/ f(¢) dC—f )’

T

Al

w
- F@)« F(-u)ﬁ“-gh.f - 0




Proof. It suffices to show that f has a primitive in U.
Let zy € U such that for every z € U, v, = zo + t(z — 2p),
t € [0,1] is contained in U. We claim that

F(z)= | H()d¢

Yz

is a primitive for fon U. Lete > 0s.t. B(z,¢) C U. lf w € B(z,¢)
the triangle T with vertices zy, z, w lies entirely in U so by
Cauchy’s thm for triangles [+ f(¢)d¢ = 0.
soifn(t)=w—+t(z—w),te]0,1] we have

{F(ZZ)_F(W) ‘_’/ f(¢) dC—f )’

1
:(/0 f(w+t(z—w))dt—f(z)y:\/o (Hw+ t(z - w)) — K(Z)ot]

Ay = 2 -w) dr



Proof. It suffices to show that f has a primitive in U.
Let zy € U such that for every z € U, v, = zo + t(z — 2p),
t € [0,1] is contained in U. We claim that

F(z)= | H()d¢

Yz

is a primitive for fon U. Lete > 0s.t. B(z,¢) C U. lf w € B(z,¢)
the triangle T with vertices zy, z, w lies entirely in U so by
Cauchy’s thm for triangles [+ f(¢)d¢ = 0.
soifn(t)=w—+t(z—w),te]0,1] we have

{F(ZZ)_F(W) ‘_’/ f(¢) dC—f )’

1
:(/0 f(w+t(z—W))c;u/t—f(z)y:\/0 (Hw+ t(z - w)) — K(Z)ot]

< sup |[f(w+t(z—w))—f(z)] > 0asw — z.
te[0,1]



Cauchy’s Integral formula



Cauchy’s Integral formula

Definition
We say that a domain D C C is primitive if any holomorphic
function f: D — C has a primitive in D.
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Suppose that Dy and D> are primitive domains and Dy N D» is
connected. Then Dy U Do is primitive.
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For example we have shown that all star-like domains are
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Lemma
Suppose that Dy and D> are primitive domains and Dy N D» is
connected. Then Dy U Do is primitive.

Example
The union of two open intersecting half-discs Dy, D- of a disc

B(0, r) is primitive. q



Cauchy’s Integral formula

Definition
We say that a domain D C C is primitive if any holomorphic
function f: D — C has a primitive in D.

For example we have shown that all star-like domains are
primitive.

Lemma
Suppose that Dy and D> are primitive domains and Dy N D» is
connected. Then Dy U Do is primitive.

Example

The union of two open intersecting half-discs Dy, D- of a disc
B(0, r) is primitive.

Indeed each Dy, D> are convex, so they are primitive.D; N D> is
connected so by the lemma Dy U D5 is primitive.



Proof.
Let f: Dy U Do — C be a holomorphic function.



Proof.
Let f: Dy U Do — C be a holomorphic function.

Then fp,, fip, have primitives F1, F> say.



Proof.
Let f: Dy U Do — C be a holomorphic function.

Then fp,, fp, have primitives F, F> say.

Since F; — F> has zero derivative on Dy N D>, and as Dy N D5 is
connected it follows F1 — Fo = con Dy N D-.

9



Proof.
Let f: Dy U Do — C be a holomorphic function.

Then fp,, fip, have primitives F1, F> say.

Since F; — F> has zero derivative on Dy N D>, and as Dy N D5 is
connected it follows F1 — Fo = con Dy N D-.

If F- Dy U D, — Cis a defined to be 1 on Dy and F> + ¢ on D>
then F is a primitive for f on Dy U Do. ]

9



Theorem

(Cauchy’s Integral Formula.) Suppose thatf: U — C is a

holomorphic function on an open set U which contains the disc
B(a, r). Then for all w € B(a, r) we have

fw) = Z:Ti L zf(—z?/vdz’

where ~ is the path t — a+ re®™ .




Theorem

(Cauchy’s Integral Formula.) Suppose thatf: U — C is a
holomorphic function on an open set U which contains the disc
B(a,r). Then for all w € B(a, r) we have

f(w) = 2:”,/ (2) dz,

Z— W

where ~ is the path t — a+ re®™ .

Proof. The proof has two steps. In the first step we show that
we can replace the integral over v with an integral over an
arbitrarily small circle v(w, ¢) centered at w. In the second step
we show, using the estimation lemma and winding numbers,
that this integral is equal to f(w).



Theorem

(Cauchy’s Integral Formula.) Suppose thatf: U — C is a
holomorphic function on an open set U which contains the disc
B(a,r). Then for all w € B(a, r) we have

f(w) = 2:”,/ (2) dz,

Z— W

where ~ is the path t — a+ re®™ .

Proof. The proof has two steps. In the first step we show that
we can replace the integral over v with an integral over an
arbitrarily small circle v(w, ¢) centered at w. In the second step
we show, using the estimation lemma and winding numbers,
that this integral is equal to f(w).

Consider a circle v(w, €) centered at w and contained in

B(a, r). Pick two anti-diametric points on v(w, €) and join them
by straight segments to points on ~.



We use the contours 1 and ', each consisting of 2 semicircles
and two segments and we note that the contributions of line
segments cancel out to give:



We use the contours 1 and ', each consisting of 2 semicircles
and two segments and we note that the contributions of line
segments cancel out to give:

0







/ (2) dz+ (2) az = / (2) az— / (2) az.
r gl gl

1 £ W rp 22— W (an =W (we) ¢ =W

each of 'y, o lies in a primitive domain in which f/(z — w) is
holomorphic
D’ Covvex = Primiti VR
[/ O DZ CouX =) P/‘fw"h'v(

D'n DL Covme c+ d

{

DD,

Prn's.‘ hee .




/i“”cw+ fw)wz/p f@)w—/ "2 g,
r Y K

1 £ W rp 22— W (an =W (we) ¢ =W

each of 'y, > lies in a primitive domain in which f/(z — w) is
holomorphic

SO 1 / (2) az 1 / (2) az.

27 ~(a,r) Z— W - 2—71'1 ~(W,e) Z— W
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:

1Z—W

each of 'y, > lies in a primitive domain in which f/(z — w) is
holomorphic

SO i / (2) az 1 / (2) az.

v(we) £ — W
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r Y K

1 £ W rp 22— W (an =W (we) ¢ =W

each of 'y, > lies in a primitive domain in which f/(z — w) is
holomorphic

27l




/i“”cw+ fw)wz/p f@)w—/ "2 g,
r Y K

1 £ W rp 22— W (an =W (we) ¢ =W

each of 'y, > lies in a primitive domain in which f/(z — w) is
holomorphic

i/ f(2) a7 — i/ f(z) — f(w) dz + f(W.) / dz
271 Joy(w,e) Z — W 21l Jyw,e)y Z— W 211 Jy(we) Z — W
1

f(z) — f(w)
w

dz 4+ f(w)l(~v(w,e€), w)



/i“”cw+ fw)wz/p f@)w—/ "2 g,
r Y K

1 £ W rp 22— W (an =W (we) ¢ =W

each of 'y, > lies in a primitive domain in which f/(z — w) is
holomorphic

SO i / (2) az 1 / (2) az.

v(we) £ — W

i/ f(2) a7 — i/ f(z) — f(w) dz + f(W.) / dz
271 Joy(w,e) Z — W 21l Jyw,e)y Z— W 211 Jy(we) Z — W
1

_ L[ AW g fwyi(w, ), w)
271 Jo(w,e) -

1 f(2) - f(w)

T 27 zZ—Ww dz +1(w)



Since f is complex differentiable at z = w, the term
(f(z) — f(w))/(z — w) is bounded as ¢ — 0, so that by the
estimation lemma its integral over ~(w;, ¢) tends to zero.



Since f is complex differentiable at z = w, the term

(f(z) — f(w))/(z — w) is bounded as ¢ — 0, so that by the
estimation lemma its integral over v(w;, ¢) tends to zero.

However
L,/ f(z)—f(W)derf(W):i./ f(2) .,
21l Jyw,e)y Z— W 211 Jy(ar) Z — W

which does not depend on e.



Since f is complex differentiable at z = w, the term
(f(z) — f(w))/(z — w) is bounded as ¢ — 0, so that by the
estimation lemma its integral over ~(w;, ¢) tends to zero.

However 29

v f(w) 1/ "(2) 4

~ 2ri

which does not depend on e.

It follows that

AR R
27 ~(W,e) Z— W

and

f(w) 1 / (2) dz.

~ 2qi v(ar £~ W



Corollary

Iff: U— C is holomorphic on an open set U, then for any

Zo € U, the 1(z) is equal to its Taylor series at zy and the Taylor
series converges on any open disk centred at zy lying in U.
Moreover the derivatives of f at zy are given by

() (7} — L!/ f(2)
f (ZO) 2mi v(a,r) (Z — ZQ)’H_1 az. (1)

Foranyac C,r e Ryo withzy € B(a, r).




Corollary

Iff: U— C is holomorphic on an open set U, then for any

Zo € U, the 1(z) is equal to its Taylor series at zy and the Taylor
series converges on any open disk centred at zy lying in U.
Moreover the derivatives of f at zy are given by

(M (7Y — L!/ f(2)
f (ZO) 2mi v(a,r) (Z — ZQ)’H_1 az. (1)

Foranyac C,r e Ryo withzy € B(a, r).

Proof.
We showed when we studied winding numbers that

o 20) = g [ S oedz

2nil )., Z — Z;

Is analytic in z and its derivatives are given by the formula
above. []



Definition
Recall that a function which is locally given by a power series is
said to be analytic. We have thus shown that any holomorphic

function is actually analytic.



