
Branch cuts

Consider the square root ‘function’ z1/2. Can we make a choice

of z1/2 to obtain a continuous or even better holomorphic
function?

z = rei✓ with ✓ 2 [0, 2⇡). Then z1/2 = ±r1/2ei✓/2. So we may

define a square root function f by

f (z) = f (rei✓) = r1/2ei✓/2.

But f is not continuous on the whole plane:

For ✓ ! 0, rei✓, rei(2⇡�✓) ! r , but

f (rei✓) ! r1/2, f (rei(2⇡�✓)) = r1/2ei(⇡�✓/2) ! �r1/2.

Still f (z) is continuous on C\R
where R = {z 2 C : =(z) = 0,<(z) > 0}.

f (z) is holomorphic on C\R:

f (a + h)� f (a)
h

=
f (a + h)� f (a)

(f 2(a + h)� f 2(a))
=

1

f (a + h)� f (a)
! 1

2f (a)
as h ! 0.
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Multifunctions

The positive real axis is called a branch cut for the multi-valued
function z1/2.

If we set

g(z) = g(rei✓) = r1/2ei( ✓
2
+⇡) = �r1/2ei✓/2.

we obtain another branch of z1/2 on C\R.

Definition

A multi-valued function or multifunction on a subset U ✓ C is a

map f : U ! P(C) assigning to each point in U a subset of the

complex numbers. A branch of f on a subset V ✓ U is a

function g : V ! C such that g(z) 2 f (z), for all z 2 V . If g is

continuous (or holomorphic) on V we refer to it as a continuous,

(respectively holomorphic) branch of f .

Notation: [f (z)] so eg [Log(z)] = {w 2 C : ew = z}.
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Two types of discontinuity: ‘accidental’ depending on the

branch cut we used and ‘unavoidable’ called branch points.

So for the multifunction [z1/2] we obtain holomorphic branches

on C\R where R is the x-axis. The positive points on x-axis are

‘accidental’ discontinuities but 0 appears in all branch cuts, it is

a branch point.

This is because it is not possible to choose a continuous

branch of [z1/2] on any open set containing 0.
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To see this note that we can not continuously define z1/2 on a

circle centered at 0.

Let z = re2⇡it , t 2 [0, 1] and let’s say f : [0, 1] ! C is a

continuous choice of z1/2 on this circle.

Then f (0) = ±
p

r . Say f (0) =
p

r .

Let

s = sup{t 2 [0, 1] : f (t) =
p

re⇡it}

If s < 1 then by continuity f (s) =
p

re⇡is.

Again by continuity f (s0) =
p

re⇡is0 for s0 ‘close’ to s, s0 > s, a

contradiction.

So s = 1. But then f (0) =
p

r 6= f (1) =
p

re⇡i = �
p

r , however

re2⇡i·0 = re2⇡i·1
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Definition

Suppose that f : U ! P(C) is a multi-valued function defined on

an open subset U of C. We say that z0 2 U is not a branch

point of f if there is an open disk D ✓ U containing z0 such that

there is a holomorphic branch of f defined on D\{z0}. We say

z0 is a branch point otherwise.

When C\U is bounded, we say that f does not have a branch

point at 1 if there is a holomorphic branch of f defined on

C\B(0,R) ✓ U for some R > 0. Otherwise we say that 1 is a

branch point of f .
A branch cut for a multifunction f is a curve in the plane on

whose complement we can pick a holomorphic branch of f .
Thus a branch cut must contain all the branch points.

For example 0,1 are the branch points of [z1/2].

D



Definition

Suppose that f : U ! P(C) is a multi-valued function defined on

an open subset U of C. We say that z0 2 U is not a branch

point of f if there is an open disk D ✓ U containing z0 such that

there is a holomorphic branch of f defined on D\{z0}. We say

z0 is a branch point otherwise.

When C\U is bounded, we say that f does not have a branch

point at 1 if there is a holomorphic branch of f defined on

C\B(0,R) ✓ U for some R > 0. Otherwise we say that 1 is a

branch point of f .

A branch cut for a multifunction f is a curve in the plane on

whose complement we can pick a holomorphic branch of f .
Thus a branch cut must contain all the branch points.

For example 0,1 are the branch points of [z1/2].



Definition

Suppose that f : U ! P(C) is a multi-valued function defined on

an open subset U of C. We say that z0 2 U is not a branch

point of f if there is an open disk D ✓ U containing z0 such that

there is a holomorphic branch of f defined on D\{z0}. We say

z0 is a branch point otherwise.

When C\U is bounded, we say that f does not have a branch

point at 1 if there is a holomorphic branch of f defined on

C\B(0,R) ✓ U for some R > 0. Otherwise we say that 1 is a

branch point of f .
A branch cut for a multifunction f is a curve in the plane on

whose complement we can pick a holomorphic branch of f .
Thus a branch cut must contain all the branch points.

For example 0,1 are the branch points of [z1/2].



Definition

Suppose that f : U ! P(C) is a multi-valued function defined on

an open subset U of C. We say that z0 2 U is not a branch

point of f if there is an open disk D ✓ U containing z0 such that

there is a holomorphic branch of f defined on D\{z0}. We say

z0 is a branch point otherwise.

When C\U is bounded, we say that f does not have a branch

point at 1 if there is a holomorphic branch of f defined on

C\B(0,R) ✓ U for some R > 0. Otherwise we say that 1 is a

branch point of f .
A branch cut for a multifunction f is a curve in the plane on

whose complement we can pick a holomorphic branch of f .
Thus a branch cut must contain all the branch points.

For example 0,1 are the branch points of [z1/2].



More examples

The Logarithm

[Log(z)] = {log(|z|) + i(✓ + 2n⇡) : n 2 Z} where z = |z|ei✓.

We get a branch by making a choice for the argument:

L(z) = log(|z|) + i arg(z), where arg(z) 2 (�⇡,⇡]

this is called the principal branch of Log.

We may define other branches of the logarithm by

Ln(z) = L(z) + 2in⇡

The branch points of [Log(z)] are 0 and 1, as it is not possible

to make a continuous choice of logarithm on any circle S(0, r).
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We note that L(z) is also holomorphic. Indeed for small h 6= 0,

L(a + h) 6= L(a) and

L(a + h)� L(a)
h

=
L(a + h)� L(a)

exp(L(a + h))� exp(L(a))
,

We have

lim
h!0

exp(L(a + h))� exp(L(a))
L(a + h)� L(a)

= exp0(L(a)) = a

since when h ! 0, L(a + h)� L(a) ! 0 by the continuity of L.

So we have L0(a) = 1/a.

We note that the same argument applies to any continuous

branch of the logarithm.
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Complex powers

[z↵] where ↵ 2 C:

[z↵] := exp(↵ · [Log(z)]) = {exp(↵ · w) : w 2 C, ew = z}

any holomorphic branch of [Log(z)] gives a holomorphic

branch of [z↵].
If we pick L(z) we get the principal branch of [z↵].

Note (z1z2)
↵ 6= z↵

1
z↵

2
in general!
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Binomial theorem for complex powers

[(1 + z)↵] = {exp(↵ · w) : w 2 C, exp(w) = 1 + z}.

Using L(z) we obtain a branch

f (z) = exp(↵ · L(1 + z))

Let
�↵

k
�
= 1

k!↵.(↵� 1) . . . (↵� k + 1). Define

s(z) =
1X

k=0

✓
↵

k

◆
zk ,

By the ratio test, s(z) has radius of convergence equal to 1, so

that s(z) defines a holomorphic function in B(0, 1).
Differentiating term by term: (1 + z)s0(z) = ↵ · s(z).
Now f (z) is defined on all of B(0, 1). We claim that f (z) = s(z)
on B(0, 1).
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Binomial theorem for complex powers
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By the ratio test, s(z) has radius of convergence equal to 1, so

that s(z) defines a holomorphic function in B(0, 1).
Differentiating term by term: (1 + z)s0(z) = ↵ · s(z).
Now f (z) is defined on all of B(0, 1). We claim that f (z) = s(z)
on B(0, 1).



Let g(z) = s(z) exp(�↵ · L(1 + z))

then g(z) is holomorphic for every z 2 B(0, 1) and by the chain

rule

g0(z) = (s0(z)� ↵s(z)L0((1 + z)) exp(�↵ · L(1 + z)) = 0

since s0(z) = ↵·s(z)
1+z .

Also g(0) = 1 so, since B(0, 1) is connected g is constant and

s(z) = f (z).
We used here the following:

Fact.If for a holomorphic function g, g0(z) = 0 for all z in a

connected open set, then it is constant. We have already

proven this when the open set is C and we will prove it soon in

general.
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The Argument

[arg(z)] := {✓ 2 R : z = |z|ei✓} defined on C \ {0}. Clearly if

z = |z|ei✓ then arg(z) is equal to the set {✓ + 2n⇡ : n 2 Z}.

We claim that there is no continuous branch of [arg(z)] on

C \ {0}.

Indeed consider the circle S = {z : |z| = 1}. Suppose that f (z)
is a continuous branch of [arg(z)] defined on S. Let’s say that

f (1) = 2n⇡, n 2 Z.

Consider g : [0, 2⇡) ! R given by g(t) = 2n⇡ + t . We claim that

f (eit) = g(t) for all t 2 [0, 2⇡).

We note that f (ei0) = g(0) = 2n⇡. Since f is continuous there

is some � > 0 such that f (eit) = g(t) for all t 2 [0, �).
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For example pick � so that: |t � 0| < � ) |f (eit)� f (ei0)| < 1.

Consider now the set A = {t : f (eit) = g(t)} ✓ [0, 2⇡).

This is an open and closed subset of [0, 2⇡), so, since [0, 2⇡) is

connected, A = [0, 2⇡), which proves our claim.

But then limt!2⇡ f (eit) = 2(n + 1)⇡ 6= f (1), while limt!2⇡ eit = 1,

so f is not continuous.

On the other hand one sees easily that it is possible to define a

continuous branch f (z) of [arg(z)] on C \ [0,�1), for example

by choosing f (z) to be the unique element of [arg(z)]\ (�⇡,⇡).

The argument multifunction is closely related to the logarithm.

There is a continuous branch of [Log(z)] on a set U if and only

if there is continuous branch of [arg(z)] on U. Indeed if f (z) is

a continuous branch of [arg(z)] on U we may define a

continuous branch of [Log(z)] by g(z) = log|z|+ if (z), and

conversely given g(z) we may define f (z) = =(g(z)).
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More interesting example: f (z) = [(z2 � 1)1/2]. If we see it as

composition of z2 � 1 with
p

z:

The branch cut of the principal branch of
p

z is (�1, 0] so

we need a branch cut

{z : z2 � 1 2 (�1, 0]} = [�1, 1] [ iR

Away from this branch cut we get a continuous and in fact

holomorphic branch f1 of f .

If we rewrite f (z) = [
p

z � 1
p

z + 1], then we can take as

branch cut

(�1, 1] [ (�1,�1] = (�1, 1] and a branch f2(z).

o
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if z = 1 + rei✓1 = �1 + sei✓2 where ✓1, ✓2 2 (�⇡,⇡] then

f2(z) =
p

rs · ei(✓1+✓2)/2.

When z approaches (�1,�1) from ‘above’ ✓1, ✓2 ! �⇡ so

f2(z) ! �
p

rs. When z approaches (�1,�1) from ‘below’

✓1, ✓2 ! ⇡ so f2(z) ! �
p

rs. So there is no discontinuity on

(�1,�1).

When z approaches (�1, 1) from ‘above’ ✓1 ! �⇡, ✓2 ! 0 so

f2(z) ! �i
p

rs. When z approaches (�1, 1) from ‘below’

✓1 ! ⇡, ✓2 ! 0 so f2(z) ! i
p

rs. So there is a discontinuity on

(�1, 1).

So in fact we can take just [�1, 1] as branch cut!
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Riemann surfaces

Riemann surfaces make it possible to replace ‘multifunctions’

by actual functions.

Consider [z1/2]. We can ‘join’ the two branches of [z1/2] to

obtain a function from a Riemann surface to C.
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We may define ⌃ as

⌃ = {(z,w) 2 C2 : w2 = z2 � 1}.

⌃+ = {(z, f2(z)) : z /2 [�1, 1]} and

⌃� = {(z,�f2(z)) : z /2 [�1, 1]}, then ⌃+ [ ⌃� covers all of ⌃
apart from the pairs (z,w) where z 2 [�1, 1].

For such z we have w = ±i
p

1 � z2, and ⌃ is obtained by

‘gluing’ together the two copies ⌃+ and ⌃� of the cut plane

C\[�1, 1] along the cut locus [�1, 1].

So we have a well defined ‘square root’ function f : ⌃ ! C
given by (z,w) 7! w

.
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Complex integration

if F : [a, b] ! C, F (t) = G(t) + iH(t), we say that F is integrable

if G,H are integrable and define
Z

b

a

F (t)dt =

Z
b

a

G(t)dt + i

Z
b

a

H(t)dt

PROPERTIES:
1.

R
b

a
(↵ · F1 + � · F2)dt = ↵ ·

R
b

a
F1dt + � ·

R
b

a
F2dt .

2.
�� R b

a
F (t)dt

�� 
R

b

a
|F (t)|dt .

Proof of 2.
Set

R
b

a
F (t)dt = rei✓. Then by 1,

R
b

a
e�i✓F (t)dt = r 2 R.

so
R

b
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e�i✓F (t)dt =

R
b
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Re(e�i✓F (t))dt

�� R b

a
F (t)dt

�� =
�� R b

a
Re(e�i✓F (t))dt
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R

b

a
|F (t)|dt

since |Re(z)|  |z|.
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Paths

Definition
A path is a continuous function � : [a, b] ! C. A path is closed

if �(a) = �(b). If � is a path, we will write �⇤ for its image,

�⇤ = {z 2 C : z = �(t), some t 2 [a, b]}.

Definition
A path � : [a, b] ! C is differentiable if its real and imaginary
parts are differentiable. Equivalently, � is differentiable at
t0 2 [a, b] if

lim
t!t0

�(t)� �(t0)

t � t0

exists. Notation: �0(t0). (If t = a or b then we take the one-sided
limit.) A path is C1 if it is differentiable and its derivative �0(t) is
continuous.
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EXAMPLES:
1. Line segment: t 7! a + t(b � a) = (1 � t)a + tb, t 2 [0, 1] ,
2. circle: z(t) = z0 + re2⇡it , t 2 [0, 1] a closed path.

NON EXAMPLES:
Peano curves, spirals.
Remarks: If � is a C1 path and �0(t0) 6= 0 then � has a tangent
at t0: L(t) = �(t0) + (t � t0)�

0(t0)

.

However a C1 path might not have a tangent at every point, eg
� : [�1, 1] ! C

�(t) =

⇢
t2 �1  t  0
it2 0  t  1.

.
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Definition
Let � : [c, d ] ! C be a C1-path. If � : [a, b] ! [c, d ] is
continuously differentiable with �(a) = c and �(b) = d ,then we
say that �̃ = � � �, is a reparametrization of �.

Lemma
Let � : [c, d ] ! C and s : [a, b] ! [c, d ] and suppose that s is

differentiable at t0 and � is differentiable at s0 = s(t0). Then

� � s is differentiable at t0 with derivative

(� � s)0(t0) = s
0(t0).�

0(s(t0)).

Proof.
�(x) = �(s0)+�0(s0)(x �s0)+(x �s0)✏(x), ✏(x) ! 0 as x ! s0

�(s(t))��(s0)
t�t0

= s(t)�s(t0)
t�t0

�
�0(s(t0)) + ✏(s(t))

�
.

(� � s)0(t0) = s0(t0)�
0(s(t0)).

co
do

b

w



Definition
Let � : [c, d ] ! C be a C1-path. If � : [a, b] ! [c, d ] is
continuously differentiable with �(a) = c and �(b) = d ,then we
say that �̃ = � � �, is a reparametrization of �.

Lemma
Let � : [c, d ] ! C and s : [a, b] ! [c, d ] and suppose that s is

differentiable at t0 and � is differentiable at s0 = s(t0). Then

� � s is differentiable at t0 with derivative

(� � s)0(t0) = s
0(t0).�

0(s(t0)).

Proof.
�(x) = �(s0)+�0(s0)(x �s0)+(x �s0)✏(x), ✏(x) ! 0 as x ! s0

�(s(t))��(s0)
t�t0

= s(t)�s(t0)
t�t0

�
�0(s(t0)) + ✏(s(t))

�
.

(� � s)0(t0) = s0(t0)�
0(s(t0)).



Definition
Let � : [c, d ] ! C be a C1-path. If � : [a, b] ! [c, d ] is
continuously differentiable with �(a) = c and �(b) = d ,then we
say that �̃ = � � �, is a reparametrization of �.

Lemma
Let � : [c, d ] ! C and s : [a, b] ! [c, d ] and suppose that s is

differentiable at t0 and � is differentiable at s0 = s(t0). Then

� � s is differentiable at t0 with derivative

(� � s)0(t0) = s
0(t0).�

0(s(t0)).

Proof.
�(x) = �(s0)+�0(s0)(x �s0)+(x �s0)✏(x), ✏(x) ! 0 as x ! s0

�(s(t))��(s0)
t�t0

= s(t)�s(t0)
t�t0

�
�0(s(t0)) + ✏(s(t))

�
.

(� � s)0(t0) = s0(t0)�
0(s(t0)).



Definition
Let � : [c, d ] ! C be a C1-path. If � : [a, b] ! [c, d ] is
continuously differentiable with �(a) = c and �(b) = d ,then we
say that �̃ = � � �, is a reparametrization of �.

Lemma
Let � : [c, d ] ! C and s : [a, b] ! [c, d ] and suppose that s is

differentiable at t0 and � is differentiable at s0 = s(t0). Then

� � s is differentiable at t0 with derivative

(� � s)0(t0) = s
0(t0).�

0(s(t0)).

Proof.
�(x) = �(s0)+�0(s0)(x �s0)+(x �s0)✏(x), ✏(x) ! 0 as x ! s0

�(s(t))��(s0)
t�t0

= s(t)�s(t0)
t�t0

�
�0(s(t0)) + ✏(s(t))

�
.

(� � s)0(t0) = s0(t0)�
0(s(t0)).



Definition
Let � : [c, d ] ! C be a C1-path. If � : [a, b] ! [c, d ] is
continuously differentiable with �(a) = c and �(b) = d ,then we
say that �̃ = � � �, is a reparametrization of �.

Lemma
Let � : [c, d ] ! C and s : [a, b] ! [c, d ] and suppose that s is

differentiable at t0 and � is differentiable at s0 = s(t0). Then

� � s is differentiable at t0 with derivative

(� � s)0(t0) = s
0(t0).�

0(s(t0)).

Proof.
�(x) = �(s0)+�0(s0)(x �s0)+(x �s0)✏(x), ✏(x) ! 0 as x ! s0

�(s(t))��(s0)
t�t0

= s(t)�s(t0)
t�t0

�
�0(s(t0)) + ✏(s(t))

�
.

(� � s)0(t0) = s0(t0)�
0(s(t0)).



Definition
�1 : [a, b] ! C and �2 : [c, d ] ! C are equivalent if there is a
continuously differentiable bijective function s : [a, b] ! [c, d ]
such that s0(t) > 0 for all t 2 [a, b] and �1 = �2 � s.
Equivalence classes: oriented curves in the complex plane.
Notation: [�].
s0(t) > 0: the path is traversed in the same direction for each of
the parametrizations �1 and �2. Opposite path ��.

Definition
If � : [a, b] ! C is a C1 path then we define the length of � to be

`(�) =

Z
b

a

|�0(t)|dt .

Using the chain rule one sees that the length of a parametrized
path is also constant on equivalence classes of paths.
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Definition
We will say a path � : [a, b] ! C is piecewise C1 if it is
continuous on [a, b] and the interval [a, b] can be divided into
subintervals on each of which � is C1.
So there are a = a0 < a1 < . . . < am = b such that �|[ai ,ai+1] is
C1.
Note: the left-hand and right-hand derivatives of � at ai

(1  i  m � 1) may not be equal.

As we have see in metric spaces two paths �1 : [a, b] ! C and
�2 : [c, d ] ! C with �1(b) = �2(c) can be concatenated to give
a path �1 ? �2. If �, �1, �2 are piecewise C1 then so are �� and
�1 ? �2.
A piecewise C1 path is precisely a finite concatenation of C1

paths

.
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We may define equivalence classes, reparametrisations, length
as before for piecewise C1 paths.

Example: If a, b, c 2 C, we define the triangle:
Ta,b,c = �a,b ? �b,c ? �c,a where �x ,y is the line segment joining
x , y .
Recall the definition of Riemann integrable functions. We have
the following:

Lemma
Let [a, b] be a closed interval and S ⇢ [a, b] a finite set. If f is a

bounded continuous function (taking real or complex values) on

[a, b]\S then it is Riemann integrable on [a, b].

Proof.
Let a = x0 < x1 < x2 < . . . < xk = b be any partition of [a, b]
which includes the elements of S.
On each open interval (xi , xi+1) the function f is bounded and
continuous, and hence integrable.
By the definition of Riemann integrable functions f is integrable
on [a, b].
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Integral along a path
Definition
If � : [a, b] ! C is a piecewise-C1 path and f : C ! C, then we
define the integral of f along � to be

Z

�
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Z
b
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then
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So the integral only depends on the oriented curve [�].
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Proof.
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We define also the integral with respect to arc-length of a
function f : U ! C such that �⇤ ✓ U to be

Z

�
f (z)|dz| =

Z
b

a

f (�(t))|�0(t)|dt .

This integral is invariant with respect to C1 reparametrizations
s : [c, d ] ! [a, b] if we require s0(t) 6= 0 for all t 2 [c, d ]. Note
that in this case

Z

�
f (z)|dz| =

Z

��
f (z)|dz|.
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Properties of the integral

Let f , g : U ! C be continuous functions on an open subset
U ✓ C and �, ⌘ : [a, b] ! C be piecewise-C1 paths whose
images lie in U. Then we have the following:

1. (Linearity ): For ↵,� 2 C,
Z

�
(↵f (z) + �g(z))dz = ↵

Z

�
f (z)dz + �

Z

�
g(z)dz.

2. If �� denotes the opposite path to � then
Z

�
f (z)dz = �

Z

��
f (z)dz.

3. (Additivity ): If � ? ⌘ is the concatenation of the paths �, ⌘ in
U, we have

Z

�?⌘
f (z)dz =

Z

�
f (z)dz +

Z

⌘
f (z)dz.

4. (Estimation Lemma.) We have
��
Z

�
f (z)dz

��  sup
z2�⇤

|f (z)|.`(�).
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Proof of 4.
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f (z)dz

�� =
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Z b

a
f (�(t))�0(t)dt

��


Z b

a
|f (�(t))||�0(t)|dt

 sup
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|f (z)|
Z b

a
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|f (z)| · `(�).
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Proposition
Let fn : U ! C be a sequence of continuous functions. Suppose
that � : [a, b] ! U is a path. If (fn) converges uniformly to a
function f on the image of � then

Z

�
fn(z)dz !

Z

�
f (z)dz.

Proof. We have
����
Z

�
f (z)dz �

Z

�
fn(z)dz

���� =
����
Z

�
(f (z)� fn(z))dz

����

 sup
z2�⇤

{|f (z)� fn(z)|}.`(�),

by the estimation lemma.
sup{|f (z)� fn(z)| : z 2 �⇤} ! 0 as n ! 1 which implies the
result.
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Example. Let’s say
1X

n=1

anzn

converges on B(0,R). Then convergence is uniform on B(0, r)
for r < R. So if � is a piecewise C1 curve in B(0, r) we have

Z

�

NX

n=1

anzndz !
Z

�

1X

n=1

anzndz

so

NX

n=1

Z

�
anzndz !

Z

�

1X

n=1

anzndz

in other words we can interchange
P

,
R

:

Z

�

1X

n=1

anzndz =
1X

n=1

Z

�
anzndz
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Definition
Let U ✓ C be an open set and let f : U ! C be a continuous
function. If there exists a differentiable function F : U ! C with
F 0(z) = f (z) then we say F is a primitive for f on U.

Theorem
(Fundamental theorem of Calculus): Let U ✓ C be a open and
let f : U ! C be a continuous function. If F : U ! C is a
primitive for f and � : [a, b] ! U is a piecewise C1 path in U
then we have

Z

�
f (z)dz = F (�(b))� F (�(a)).

In particular the integral of such a function f around any closed
path is zero.
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Proof.
First suppose that � is C1. Then we have

Z

�
f (z)dz =

Z

�
F 0(z)dz =

Z b

a
F 0(�(t))�0(t)dt

=

Z b

a

d
dt

(F � �)(t)dt = F (�(b))� F (�(a))

If � is only piecewise C1, then take a partition
a = a0 < a1 < . . . < ak = b such that � is C1 on [ai , ai+1] for
each i 2 {0, 1, . . . , k � 1}. Then we obtain a telescoping sum:

Z

�
f (z) =

Z b

a
f (�(t))�0(t)dt =

k�1X

i=0

Z ai+1

ai

f (�(t))�0(t)dt

=
k�1X

i=0

(F (�(ai+1))� F (�(ai))) = F (�(b))� F (�(a))

Finally, � is closed iff �(a) = �(b) so the integral of f along a
closed path is zero.
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Corollary
Let U be a domain and let f : U ! C be a function with
f 0(z) = 0 for all z 2 U. Then f is constant.

Proof.
Pick z0 2 U. Since U is path-connected, if w 2 U, we may find
a piecewise C1-path � : [0, 1] ! U such that �(a) = z0 and
�(b) = w . Then by the previous Theorem

f (w)� f (z0) =

Z

�
f 0(z)dz = 0,

so that f is constant.

Theorem
If U is a domain and f : U ! C is a continuous function such
that for any closed path in U we have

R
� f (z)dz = 0, then f has

a primitive.
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Proof.
Fix z0 in U, and for any z 2 U set F (z) =

R
� f (z)dz.

where � : [a, b] ! U with �(a) = z0 and �(b) = z.

F (z) is independent of the choice of �:
Suppose �1, �2 are two paths joining z0, z.
The path � = �1 ? �

�
2 is closed so

0 =

Z

�
f (z)dz =

Z

�1

f (z)dz+
Z

��
2

f (z)dz =

Z

�1

f (z)dz�
Z

�2

f (z)dz.

Claim: F is differentiable and F 0(z) = f (z).
Fix w 2 U and ✏ > 0 such that B(w , ✏) ✓ U and choose a path
� : [a, b] ! U from z0 to w .
If z1 2 B(w , ✏) ✓ U, then the concatenation of � with the
straight-line path s : [0, 1] ! U given by
s(t) = w + t(z1 � w) from w to z1 is a path �1 from z0 to z1. It
follows that
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Winding numbers
Holomorphic functions don’t always have primitives.

Example
Let f : C⇥ ! C⇥, f (z) = 1/z. Then f does not have a primitive
on C⇥.
If � : [0, 1] ! C is the path �(t) = exp(2⇡it) (a circle)
Z

�
f (z)dz =

Z 1

0
f (�(t))�0(t)dt =

Z 1

0

1
exp(2⇡it)

·(2⇡i exp(2⇡it))dt = 2⇡i .

But this integral would be zero if f (z) had a primitive.

Remark: 1/z does have a primitive on any domain where we
can chose a branch of [Log(z)]:
If we have eL(z) = z on D by the chain rule

exp(L(z)) · L0(z) = 1 ) L0(z) = 1/z.
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Let � : [0, 1] ! C closed path which does not pass through 0.
We will give a rigorous definition of the number of times � “goes
around the origin”.

The problem is arg z is not continuous on C⇥!

Proposition
Let � : [0, 1] ! C\{0} be a path. Then there is continuous
function a : [0, 1] ! R such that

�(t) = |�(t)|e2⇡ia(t).

Moreover, if a and b are two such functions, then there exists
n 2 Z such that a(t) = b(t) + n for all t 2 [0, 1].
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Proof.
By replacing �(t) with �(t)/|�(t)| we may assume that
|�(t)| = 1 for all t .

� is uniformly continuous, so 9� > 0 such that |�(s)� �(t)| < 1
for any s, t with |s � t | < �.
Choose n 2 N, n > 1/�. Then on each subinterval
[i/n, (i + 1)/n] we have |�(s)� �(t)| < 1.
On any half-plane in C we may define a holomorphic branch of
[Log(z)].
if |z1| = |z2| = 1 and |z1 � z2| < 1, then the angle between z1
and z2 is less than ⇡/2. It follows there exists continuous
ai : [j/n, (j + 1)/n] ! R such that �(t) = e2⇡iaj (t)

since e2⇡iaj (j/n) = e2⇡iaj�1(j/n), aj�1(j/n) and ai(j/n) differ by an
integer. Thus we can successively adjust the aj for j > 1 by an
integer to obtain a continuous a : [0, 1] ! C such that
�(t) = e2⇡ia(t).
Uniqueness: e2⇡i(a(t)�b(t)) = 1, hence a(t)� b(t) 2 Z, but [0, 1]
is connected so a(t)� b(t) is constant.
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Definition
If � : [0, 1] ! C\{0} is a closed path and �(t) = |�(t)|e2⇡ia(t) as
in the previous lemma, then a(1)� a(0) 2 Z. This integer is
called the winding number I(�, 0) of � around 0.
It is uniquely determined by the path � because the function a
is unique up to an integer.

If z0 is not in the image of �, we may define the winding number
I(�, z0) of � about z0 similarly:
Let t : C ! C be given by t(z) = z � z0, we define
I(�, z0) = I(t � �, 0).

Remarks: 1. The definition of the winding number only requires
the closed path � to be continuous, not piecewise C1.
2. if � : [0, 1] ! U where 0 /2 U and there exists a holomorphic
branch L : U ! C of [Log(z)] on U, then I(�, 0) = 0. Indeed in
this case we may define a(t) = =(L(�(t))), and since
�(0) = �(1) it follows a(1)� a(0) = 0.
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The winding number for C1 paths can be expressed using
integrals:

Lemma
Let � be a piecewise C1 closed path and z0 2 C a point not in
the image of �. Then the winding number I(�, z0) of � around
z0 is given by

I(�, z0) =
1

2⇡i

Z

�

dz
z � z0

.

Proof.
If � : [0, 1] ! C we may write �(t) = z0 + r(t)e2⇡ia(t). Then

Z

�

dz
z � z0

=

Z 1

0

1
r(t)e2⇡ia(t) ·

�
r 0(t) + 2⇡ir(t)a0(t)

�
e2⇡ia(t)dt

=

Z 1

0
r 0(t)/r(t) + 2⇡ia0(t)dt = [log(r(t)) + 2⇡ia(t)]10

= 2⇡i(a(1)� a(0)), since r(1) = r(0) = |�(0)� z0|.
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Winding numbers and analytic functions

Definition
If f : U ! C is a function on an open subset U of C, then we say
that f is analytic on U if for every z0 2 C there is an r > 0 with
B(z0, r) ✓ U such that there is a power series

P1
k=0 ak (z � z0)

k

with radius of convergence at least r and
f (z) =

P1
k=0 ak (z � z0)

k An analytic function is holomorphic, as
any power series is (infinitely) complex differentiable.

Proposition
Let U be an open set in C and let � : [0, 1] ! U be a closed
path. If f (z) is a continuous function on �⇤ then the function

If (�,w) =
1

2⇡i

Z

�

f (z)
z � w

dz,

is analytic in w.
In particular, if f (z) = 1 this shows that the function w 7! I(�,w)
is a continuous function on C\�⇤, hence constant on the
connected components of C\�⇤.
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Proof We will show that for each z0 /2 �⇤ we can find a disk
B(z0, ✏) within which If (�,w) is given by a power series in
(w � z0). Translating if necessary we may assume z0 = 0.

The idea is that we can expand 1
z�w = 1

z (1 � w/z)�1 as power
series when |w/z| < 1, so

f (z)
z � w

=
f (z)

z
(1 � w/z)�1 =

1X

n=0

f (z)
z

(w/z)n =
1X

n=0

f (z) · wn

zn+1

For this expansion to work we pick r so that B(0, 2r) \ �⇤ = ;.
We will show that the function is analytic for w 2 B(0, r).
We claim that the last series, seen as a function of z,
converges uniformly on �⇤.
Since �⇤ is compact, M = sup{|f (z)| : z 2 �⇤} is finite. We
apply Weierstrass M-test:
|f (z) · wn/zn+1| = |f (z)||z|�1|w/z|n < M

2r (1/2)n, 8z 2 �⇤.
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Uniform convergence implies that for all w 2 B(0, r) we have

1X

n=0

✓
1

2⇡i

Z

�

f (z)
zn+1 dz

◆
wn =

1
2⇡i

Z

�

f (z)dz
z � w

= If (�,w).

hence If (�,w) is given by a power series in B(0, r).

If f = 1, then since I1(�, z) = I(�, z) is integer-valued, it follows
it must be constant on any connected component of C\�⇤

.

Remark By the power series expression we can calculate the
derivatives of g(w) = If (�,w) at z0:

g(n)(z0) =
n!

2⇡i

Z

�

f (z)dz
(z � z0)n+1 .
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If � is a closed path then �⇤ is compact and hence bounded.
Thus there is an R > 0 such that the connected set
C\B(0,R) \ �⇤ = ;. It follows that C\�⇤ has exactly one
unbounded connected component.

Since ��
Z

�

d⇣
⇣ � z

��  `(�). sup
⇣2�⇤

|1/(⇣ � z)| ! 0

as z ! 1 it follows that I(�, z) = 0 on the unbounded
component of C\�⇤.

Definition
Let � : [0, 1] ! C be a closed path. We say that a point z is in
the inside of � if z /2 �⇤ and I(�, z) 6= 0. The previous remark
shows that the inside of � is a union of bounded connected
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Example
Suppose that �1 : [�⇡,⇡] ! C is given by �1 = 1 + eit and
�2 : [0, 2⇡] ! C is given by �2(t) = �1 + e�it . Then if
� = �1 ? �2, � traverses a figure-of-eight and it is easy to check
that the inside of � is B(1, 1) [ B(�1, 1) where I(�, z) = 1 for
z 2 B(1, 1) while I(�, z) = �1 for z 2 B(�1, 1).

Remark
It is a theorem, known as the Jordan Curve Theorem, that if
� : [0, 1] ! C is a simple closed curve, so that �(t) = �(s) if and
only if s = t or s, t 2 {0, 1}, then C\�⇤ is the union of precisely
one bounded and one unbounded component, and on the
bounded component I(�, z) is either 1 or �1. If I(�, z) = 1 for z
on the inside of � we say � is positively oriented and we say it is
negatively oriented if I(�, z) = �1 for z on the inside.



Example
Suppose that �1 : [�⇡,⇡] ! C is given by �1 = 1 + eit and
�2 : [0, 2⇡] ! C is given by �2(t) = �1 + e�it . Then if
� = �1 ? �2, � traverses a figure-of-eight and it is easy to check
that the inside of � is B(1, 1) [ B(�1, 1) where I(�, z) = 1 for
z 2 B(1, 1) while I(�, z) = �1 for z 2 B(�1, 1).

Remark
It is a theorem, known as the Jordan Curve Theorem, that if
� : [0, 1] ! C is a simple closed curve, so that �(t) = �(s) if and
only if s = t or s, t 2 {0, 1}, then C\�⇤ is the union of precisely
one bounded and one unbounded component, and on the
bounded component I(�, z) is either 1 or �1. If I(�, z) = 1 for z
on the inside of � we say � is positively oriented and we say it is
negatively oriented if I(�, z) = �1 for z on the inside.



Cauchy’s theorem

Cauchy’s theorem states roughly that if f : U ! C is

holomorphic and � is a closed path in U whose interior lies

entirely in U then Z

�
f (z)dz = 0.

This is the single most important theorem of the course. Almost

all important facts about holomorphic functions follow from it.

Sample applications:

1. If f is holomorphic then it is C1 and in fact infinitely

differentiable.

2. If f : C ! C is holomorphic and bounded then it is constant.

3. The fundamental theorem of algebra

4. etc etc

For most of our applications we will need a simpler case of the

theorem for starlike domains. We defer the discussion of the

general case to later lectures.
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Definition

A triangle or triangular path T is a path of the form �1 ? �2 ? �3

where �1(t) = a + t(b � a), �2(t) = b + t(c � b) and

�3(t) = c + t(a� c) where t 2 [0, 1] and a, b, c 2 C. (Note that if

{a, b, c} are collinear, then T is a degenerate triangle.) That is,

T traverses the boundary of the triangle with vertices

a, b, c 2 C. The solid triangle T bounded by T is the region

T = {t1a + t2b + t3c : ti 2 [0, 1],
3X

i=1

ti = 1},

with the points in the interior of T corresponding to the points

with ti > 0 for each i 2 {1, 2, 3}. We will denote by [a, b] the line

segment {a + t(b � a) : t 2 [0, 1]}, the side of T joining vertex a
to vertex b. When we need to specify the vertices a, b, c of a

triangle T , we will write Ta,b,c .



Theorem

(Cauchy’s theorem for a triangle): Suppose that U ✓ C is an
open subset and let T ✓ U be a triangle whose interior is
entirely contained in U. Then if f : U ! C is holomorphic we
have Z

T
f (z)dz = 0

Idea of proof. 1. f (z) = f (z0) + f 0(z0)(z � z0) + (z � z0) (z).
So if � is ‘small’ close to z0R
� f (z)dz =

R
�(z � z0) (z)dz which by the estimation lemma

and since  (z) ! 0, is much smaller than length(�).

2. Assuming that I = |
R

T f (z)dz| 6= 0 we will subdivide T into 4

smaller triangles and represent the integral as sum of the

integrals on the smaller triangles. One of the integrals of the

smaller triangles will be at least I/4. We will keep subdividing

till we get a very small triangle where by part 1 the integral will

be smaller than expected, contradiction.
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Suppose I = |
R

T f (z)dz| > 0. We build a sequence of smaller

and smaller triangles T n, as follows: Let T 0 = T , and suppose

that we have constructed T i for 0  i < k . Then take the

triangle T k�1 and join the midpoints of the edges to form four

smaller triangles, which we will denote Si (1  i  4).

Then Ik =
R

T k�1 f (z)dz =
P

4

i=1

R
Si

f (z)dz, since the integrals

around the interior edges cancel.

Figure: Subdivision of a triangle
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Ik = |
R

T k�1 f (z)dz| 
P

4

i=1
|
R

Si
f (z)dz|, so that for some i we

must have |
R

Si
f (z)dz| � Ik�1/4. Set T k to be this triangle Si .

Then by induction we see that `(T k ) = 2�k`(T ) while Ik � 4�k I.

Let T k be the solid triangle with boundary T k . The sets T k are

nested and their diameter tends to 0, so there is a unique point

z0, lying in all of them.

f (z) = f (z0) + f 0(z0)(z � z0) + (z � z0) (z),

where  (z) ! 0 =  (z0) as z ! z0.
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Z

T k
f (z)dz =

Z

T k
(z � z0) (z)dz

and if z is on T k , we have |z � z0|  diam(T k ) = 2�kdiam(T ).

Let ⌘k = supz2T k | (z)|. By the estimation lemma:

Ik =
��
Z

T k
(z � z0) (z)dz

��  ⌘k · diam(T k )`(T k )

= 4
�k⌘k .diam(T ) · `(T ).

So 4k Ik ! 0 as k ! 1. On the other hand, by construction

Ik � I/4k ) 4k Ik � I > 0, contradiction.
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Definition

Let X be a subset in C. We say that X is convex if for each

z,w 2 U the line segment between z and w is contained in X .

We say that X is star-like if there is a point z0 2 X such that for

every w 2 X the line segment [z0,w ] joining z0 and w lies in X .

We will say that X is star-like with respect to z0 in this case.

Thus a convex subset is thus starlike with respect to every point

it contains.

Example. A disk (open or closed) is convex, as is a solid

triangle or rectangle. On the other hand the union of the

xy -axes is starlike with respect to 0 but not convex.

Theorem

(Cauchy’s theorem for a star-like domain): Let U be a star-like
domain. Then if f : U ! C is holomorphic and � : [a, b] ! U is a
closed path in U we have

Z

�
f (z)dz = 0.

Fff
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Proof. It suffices to show that f has a primitive in U.

Let z0 2 U such that for every z 2 U, �z = z0 + t(z � z0),
t 2 [0, 1] is contained in U. We claim that

F (z) =
Z

�z

f (⇣)d⇣

is a primitive for f on U. Let ✏ > 0 s.t. B(z, ✏) ✓ U. If w 2 B(z, ✏)
the triangle T with vertices z0, z,w lies entirely in U so by

Cauchy’s thm for triangles
R

T f (⇣)d⇣ = 0

.

so if ⌘(t) = w + t(z � w) , t 2 [0, 1] we have

��F (z)� F (w)

z � w
� f (z)

�� =
��
Z

⌘

f (⇣)
z � w

d⇣ � f (z)
��

=
��
Z

1

0

f (w + t(z�w))dt � f (z)
�� =

��
Z

1

0

(f (w + t(z�w))� f (z)dt
��

 sup
t2[0,1]

|f (w + t(z � w))� f (z)| ! 0 as w ! z.

u
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Cauchy’s Integral formula

Definition

We say that a domain D ✓ C is primitive if any holomorphic

function f : D ! C has a primitive in D.

For example we have shown that all star-like domains are

primitive.

Lemma

Suppose that D1 and D2 are primitive domains and D1 \ D2 is
connected. Then D1 [ D2 is primitive.

Example

The union of two open intersecting half-discs D1,D2 of a disc

B(0, r) is primitive.

Indeed each D1,D2 are convex, so they are primitive.D1 \ D2 is

connected so by the lemma D1 [ D2 is primitive.
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Proof.

Let f : D1 [ D2 ! C be a holomorphic function.

Then f|D1
, f|D2

have primitives F1,F2 say.

Since F1 � F2 has zero derivative on D1 \ D2, and as D1 \ D2 is

connected it follows F1 � F2 = c on D1 \ D2.

If F : D1 [ D2 ! C is a defined to be F1 on D1 and F2 + c on D2

then F is a primitive for f on D1 [ D2.
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Theorem

(Cauchy’s Integral Formula.) Suppose that f : U ! C is a
holomorphic function on an open set U which contains the disc
B̄(a, r). Then for all w 2 B(a, r) we have

f (w) =
1

2⇡i

Z

�

f (z)
z � w

dz,

where � is the path t 7! a + re2⇡it .

Proof. The proof has two steps. In the first step we show that

we can replace the integral over � with an integral over an

arbitrarily small circle �(w , ✏) centered at w . In the second step

we show, using the estimation lemma and winding numbers,

that this integral is equal to f (w).
Consider a circle �(w , ✏) centered at w and contained in

B(a, r). Pick two anti-diametric points on �(w , ✏) and join them

by straight segments to points on �.
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We use the contours �1 and �2 each consisting of 2 semicircles

and two segments and we note that the contributions of line

segments cancel out to give:

Figure: Contours for the proof of Theorem ??.
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Since f is complex differentiable at z = w , the term

(f (z)� f (w))/(z � w) is bounded as ✏ ! 0, so that by the

estimation lemma its integral over �(w , ✏) tends to zero.

However
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z � w
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dz

which does not depend on ✏.

It follows that

1
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Z

�(w ,✏)

f (z)� f (w)

z � w
dz = 0

and

f (w) =
1

2⇡i

Z

�(a,r)

f (z)
z � w

dz.
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Corollary

If f : U ! C is holomorphic on an open set U, then for any
z0 2 U, the f (z) is equal to its Taylor series at z0 and the Taylor
series converges on any open disk centred at z0 lying in U.
Moreover the derivatives of f at z0 are given by

f (n)(z0) =
n!

2⇡i

Z

�(a,r)

f (z)
(z � z0)n+1

dz. (1)

For any a 2 C, r 2 R>0 with z0 2 B(a, r).

Proof.

We showed when we studied winding numbers that

If (�, z0) =
1

2⇡i

Z

�

f (z)
z � z0

dz,

is analytic in z and its derivatives are given by the formula

above.
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Definition

Recall that a function which is locally given by a power series is

said to be analytic. We have thus shown that any holomorphic

function is actually analytic.


