
The argument principle

Lemma

Suppose that f : U ! C is a meromorphic and has a zero of
order k or a pole of order k at z0 2 U. Then f 0(z)/f (z) has a
simple pole at z0 with residue k or �k respectively.

Proof.

If f (z) has a pole of order k we have f (z) = (z � z0)
�kg(z)

where g(z) is holomorphic near z0 and g(z0) 6= 0.

It follows that

f 0(z)/f (z) =
�k

z � z0

+ g0(z)/g(z),

Since g(z) 6= 0 near z0, g0(z)/g(z) is holomorphic near z0 so

the result follows. The case where f has a zero at z0 is

similar.
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Remark

Note that if U is an open set on which one can define a
holomorphic branch L of [Log(z)] then g(z) = L(f (z)) has
g0(z) = f 0(z)/f (z).

Thus integrating f 0(z)/f (z) along a path � will measure the
change in argument around the origin of the path f (�(t)).

We will show using the residue theorem how to relate this to the
number of zeros and poles of f inside �:
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Theorem

(Argument principle): Suppose that U is an open set and
f : U ! C is a meromorphic function on U. If B(a, r) ✓ U and N
is the number of zeros (counted with multiplicity) and P is the
number of poles (again counted with multiplicity) of f inside
B(a, r) and f has neither on @B(a, r) then

N � P =
1

2⇡i

Z

�

f 0(z)
f (z)

dz,

where �(t) = a + re2⇡it is a path with image @B(a, r). Moreover
this is the winding number of the path � = f � � about the origin.
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Proof.

Clearly I(�, z) is 1 if |z � a|  1 and is 0 otherwise.

Recall that by the residue theorem

1

2⇡i

Z

�
g(z)dz =

X

z02S

Resz0
(g) · I(�, z0),

where the sum ranges over the poles z0 of g inside �

.

By the previous lemma f 0(z)/f (z) has simple poles exactly at

the zeros and poles of f with residues the corresponding

orders. So the result follows (take g(z) = f 0(z)/f (z)).
For the last part, note that the winding number of �(t) = f (�(t))
about zero is just

Z

f��
dw/w =

Z
1

0

1

f (�(t))
f 0(�(t))�0(t)dt =

Z

�

f 0(z)
f (z)

dz.
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Remark

The argument principle also holds, with the same proof, to any
closed path � on which f is continuous and non-vanishing,
provided it has winding number +1 around its inside.

Theorem

(Rouché’s theorem): Suppose that f and g are holomorphic
functions on an open set U in C and B̄(a, r) ⇢ U. If
|f (z)| > |g(z)| for all z 2 @B(a, r) then f and f + g have the
same number of zeros in B(a, r) (counted with multiplicities).
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Proof.

Let �(t) = a + re2⇡it be a parametrization of the boundary circle

of B(a, r). Note that f (z) 6= 0 on � since |f (z)| > |g(z)|.

Consider h = (f + g)/f = 1 + g/f . By hypothesis

|h(z)� 1| = |g(z)/f (z)| < 1

for all z 2 �⇤.

So �(t) = h(�(t)) is contained in the half-plane {z : <(z) > 0}.

Picking a branch of Log defined on this half-plane:

Z

�

dz
z

= Log(h(�(1))� Log(h(�(0)) = 0

By the argument principle h = (f + g)/f has the same number

of zeros as poles. As the number of poles is the number of

zeros of f and the number of zeros is the number of zeros of

f + g the theorem follows.
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Remark

Rouché’s theorem can be useful in counting the number of
zeros of a function f – one tries to find an approximation to f
whose zeros are easier to count and then by Rouché’s theorem
obtain information about the zeros of f .
Just as for the argument principle above, Rouché’s theorem
also holds for closed paths which winding number 1 about their
inside.



Example

Show that all the roots of P(z) = z4 + 5z + 2 have modulus

less than 2.

On the circle |z| = 2, we have |z|4 = 16 > 5 · 2 + 2 � |5z + 2|,
so that if g(z) = 5z + 2 so by Rouche’s theorem P � g = z4

and P have the same number of roots in B(0, 2).
As 0 has multiplicity 4 for P � g, the four roots of P(z) all have

modulus less than 2.

We note further that if we take |z| = 1, then

|5z + 2| � 5 � 2 = 3 > |z4| = 1, hence P(z) and 5z + 2 have

the same number of roots in B(0, 1). It follows P(z) has one

root of modulus less than 1, and 3 of modulus between 1 and 2.
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Open Mapping Theorem

Theorem

(Open mapping theorem): Suppose that f : U ! C is

holomorphic and non-constant on a domain U. Then for any

open set V ⇢ U the set f (V ) is also open.

Proof. It is enough to show that for any w0 2 f (V ) there is a

� > 0 such that B(w0, �) ✓ f (V ).

Suppose that w0 2 f (V ), say f (z0) = w0. Then g(z) = f (z)�w0

has a zero at z0 which, since f is nonconstant, is isolated.

Thus we may find an r > 0 such that g(z) 6= 0 on

B̄(z0, r)\{z0} ⇢ U.

Since @B(z0, r) is compact, we have |g(z)| � � > 0 on

@B(z0, r).

 



Open Mapping Theorem

Theorem

(Open mapping theorem): Suppose that f : U ! C is

holomorphic and non-constant on a domain U. Then for any

open set V ⇢ U the set f (V ) is also open.

Proof. It is enough to show that for any w0 2 f (V ) there is a

� > 0 such that B(w0, �) ✓ f (V ).

Suppose that w0 2 f (V ), say f (z0) = w0. Then g(z) = f (z)�w0

has a zero at z0 which, since f is nonconstant, is isolated.

Thus we may find an r > 0 such that g(z) 6= 0 on

B̄(z0, r)\{z0} ⇢ U.

Since @B(z0, r) is compact, we have |g(z)| � � > 0 on

@B(z0, r).



Open Mapping Theorem

Theorem

(Open mapping theorem): Suppose that f : U ! C is

holomorphic and non-constant on a domain U. Then for any

open set V ⇢ U the set f (V ) is also open.

Proof. It is enough to show that for any w0 2 f (V ) there is a

� > 0 such that B(w0, �) ✓ f (V ).

Suppose that w0 2 f (V ), say f (z0) = w0. Then g(z) = f (z)�w0

has a zero at z0 which, since f is nonconstant, is isolated.

Thus we may find an r > 0 such that g(z) 6= 0 on

B̄(z0, r)\{z0} ⇢ U.

Since @B(z0, r) is compact, we have |g(z)| � � > 0 on

@B(z0, r).

f fei



Open Mapping Theorem

Theorem

(Open mapping theorem): Suppose that f : U ! C is

holomorphic and non-constant on a domain U. Then for any

open set V ⇢ U the set f (V ) is also open.

Proof. It is enough to show that for any w0 2 f (V ) there is a

� > 0 such that B(w0, �) ✓ f (V ).

Suppose that w0 2 f (V ), say f (z0) = w0. Then g(z) = f (z)�w0

has a zero at z0 which, since f is nonconstant, is isolated.

Thus we may find an r > 0 such that g(z) 6= 0 on

B̄(z0, r)\{z0} ⇢ U.

Since @B(z0, r) is compact, we have |g(z)| � � > 0 on

@B(z0, r).



Open Mapping Theorem

Theorem

(Open mapping theorem): Suppose that f : U ! C is

holomorphic and non-constant on a domain U. Then for any

open set V ⇢ U the set f (V ) is also open.

Proof. It is enough to show that for any w0 2 f (V ) there is a

� > 0 such that B(w0, �) ✓ f (V ).

Suppose that w0 2 f (V ), say f (z0) = w0. Then g(z) = f (z)�w0

has a zero at z0 which, since f is nonconstant, is isolated.

Thus we may find an r > 0 such that g(z) 6= 0 on

B̄(z0, r)\{z0} ⇢ U.

Since @B(z0, r) is compact, we have |g(z)| � � > 0 on

@B(z0, r).

I AO Bcwo.s



Open Mapping Theorem

Theorem

(Open mapping theorem): Suppose that f : U ! C is

holomorphic and non-constant on a domain U. Then for any

open set V ⇢ U the set f (V ) is also open.

Proof. It is enough to show that for any w0 2 f (V ) there is a

� > 0 such that B(w0, �) ✓ f (V ).

Suppose that w0 2 f (V ), say f (z0) = w0. Then g(z) = f (z)�w0

has a zero at z0 which, since f is nonconstant, is isolated.

Thus we may find an r > 0 such that g(z) 6= 0 on

B̄(z0, r)\{z0} ⇢ U.

Since @B(z0, r) is compact, we have |g(z)| � � > 0 on

@B(z0, r).



But then if |w �w0| < � it follows |w �w0| < |g(z)| on @B(z0, r).

We apply now Rouche’s theorem to g(z) and the constant

function w0 � w and we conclude that g(z) = f (z)� w0 and

h(z) = g(z) + (w0 � w) = f (z)� w have the same number of

zeros in B(z0, r).

Since g(z) has a zero in B(z0, r) it follows h(z) = f (z)� w does

also, that is, f (z) takes the value w in B(z0, r).
Thus B(w0, �) ✓ f (B(z0, r)) and hence f (U) is open.

Remark

If w0 = f (z0) then the multiplicity d of the zero of the function

g(z) = f (z)� w0 at z0 is called the degree of f at z0.

We showed that f (z)� w has as many zeros as f (z)� w0 so f

is locally d-to-1, counting multiplicities, that is, there are

r , � 2 R>0 such that for every w 2 B(w0, �) the equation

f (z) = w has d solutions counted with multiplicity in the disk

B(z0, r).
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Inverse function theorem

Theorem

(Inverse function theorem): Suppose that f : U ! C is injective

and holomorphic and that f 0(z) 6= 0 for all z 2 U. If

g : f (U) ! U is the inverse of f , then g is holomorphic with

g0(w) = 1/f 0(g(w)).

Proof.

g is continuous: Let V ✓ f (U) open. Then then g�1(V ) = f (V )
is open by the open mapping theorem.

g is holomorphic: fix w0 2 f (U) and let z0 = g(w0). Note that

since g and f are continuous, if w ! w0 then f (w) ! z0.

Writing z = f (w) we have

lim
w!w0

g(w)� g(w0)

w � w0

= lim
z!z0

z � z0

f (z)� f (z0)
= 1/f

0(z0)



Inverse function theorem

Theorem

(Inverse function theorem): Suppose that f : U ! C is injective

and holomorphic and that f 0(z) 6= 0 for all z 2 U. If

g : f (U) ! U is the inverse of f , then g is holomorphic with

g0(w) = 1/f 0(g(w)).

Proof.

g is continuous: Let V ✓ f (U) open. Then then g�1(V ) = f (V )
is open by the open mapping theorem.

g is holomorphic: fix w0 2 f (U) and let z0 = g(w0). Note that

since g and f are continuous, if w ! w0 then f (w) ! z0.

Writing z = f (w) we have

lim
w!w0

g(w)� g(w0)

w � w0

= lim
z!z0

z � z0

f (z)� f (z0)
= 1/f

0(z0)



Inverse function theorem

Theorem

(Inverse function theorem): Suppose that f : U ! C is injective

and holomorphic and that f 0(z) 6= 0 for all z 2 U. If

g : f (U) ! U is the inverse of f , then g is holomorphic with

g0(w) = 1/f 0(g(w)).

Proof.

g is continuous: Let V ✓ f (U) open. Then then g�1(V ) = f (V )
is open by the open mapping theorem.

g is holomorphic: fix w0 2 f (U) and let z0 = g(w0). Note that

since g and f are continuous, if w ! w0 then g(w) ! z0.

Writing z = f (w) we have

lim
w!w0

g(w)� g(w0)

w � w0

= lim
z!z0

z � z0

f (z)� f (z0)
= 1/f

0(z0)



Remark

In fact the condition that f 0(z) 6= 0 follows from the fact that f is

bijective:

if f 0(z0) = 0 and f is nonconstant, then

f (z)� f (z0) = (z � z0)
kg(z) where g(z0) 6= 0 and k � 1

But then z0 is a root of multiplicity k of f (z)� f (z0) = 0 so f (z)
is locally k-to-1 near z0.
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The Residue Theorem

The Residue Theorem reduces the problem of calculating path
integrals over closed paths to calculating the residues of power
series.
Recall that if a is an isolated singularity of f and

f (z) =
X

n2Z
cn(z � a)n, 8z 2 B(a, r)\{a}.

then the residue Resa(f ) of f at a is c�1 and

Pa(f ) =
�1X

n=�1

cn(z � a)n,

is the principal part of f at a. Pa(f ) is holomorphic on C \ {a}
It turns out that it is possible to use this method and calculate
ordinary integrals of real functions. There are several tricks that
allow us to pass from an integral of a real function to a path
integral of a complex function.
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The Residue Theorem

Theorem
(Residue theorem): Suppose that U is an open set in C and �
is a closed path whose inside is contained in U, so that for all
z /2 U we have I(�, z) = 0. Then if S ⇢ U is a finite set such
that S \ �⇤ = ; and f is a holomorphic function on U\S we have

1
2⇡i

Z

�
f (z)dz =

X

a2S

I(�, a)Resa(f )



Proof.
For each a 2 S let Pa(f )(z) =

P�1
n=�1 cn(a)(z � a)n be the

principal part of f at a, a holomorphic function on C\{a}.

Then f � Pa(f ) is holomorphic at a 2 S, and thus
g(z) = f (z)�

P
a2S Pa(f ) is holomorphic on all of U.

So by Cauchy’s Theorem
R
� g(z)dz = 0, hence

Z

�
f (z)dz =

X

a2S

Z

�
Pa(f )(z)dz

But the series Pa(f ) converges uniformly on �⇤ so that

Z

�
Pa(f )dz =

Z

�

�1X

n=�1

cn(a)(z � a)n =
1X

n=1

Z

�

c�n(a)dz
(z � a)n

=

Z

�

c�1(a)dz
z � a

= 2⇡i · I(�, a)Resa(f ),

since for n > 1 the function(z � a)�n has a primitive on C\{a}.
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Remark
In applications the winding numbers I(�, a) will be simple to
compute in terms of the argument of (z � a) - in fact most often
they will be 0 or ±1 as we will usually apply the theorem to
integrals around some standard contours that are simple
closed curves.



Example Calculate the integral
R 2⇡

0
dt

1+3 cos2(t) .

We will turn this to an integral of a complex function.
If z = eit then

cos(t) = <(z) = 1
2
(z + z̄) =

1
2
(z + 1/z), so

1
1 + 3 cos2(t)

=
1

1 + 3/4(z + 1/z)2

=
1

1 + 3
4z2 + 3

2 + 3
4z�2

=
4z2

3 + 10z2 + 3z4 ,

Let � be the path t 7! eit . Note then that
Z

�
f (z)dz =

Z 2⇡

0
f (eit)ieitdt so

Z 2⇡

0

dt
1 + 3 cos2(t)

=

Z

�

�4iz
3 + 10z2 + 3z4 dz.
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Thus we have turned our real integral into a contour integral,
and to evaluate the contour integral we just need to calculate
the residues of the meromorphic function g(z) = �4iz

3+10z2+3z4 at
the poles it has inside the unit circle.

The poles of g(z) are the zeros of p(z) = 3 + 10z2 + 3z4,
which are at z2 2 {�3,�1/3}. Thus the poles inside the unit
circle are at ±i/

p
3.

Since p has degree 4 and has four roots, they must all be
simple zeros, and so g has simple poles at these points.
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The residue at a simple pole z0 can be calculated as the limit
limz!z0(z � z0)g(z), thus

Resz=±i/
p

3(g(z)) = lim
z!±i/

p
3

�4iz(z �±i/
p

3)
3 + 10z2 + 3z4

= (±4/
p

3) · 1
p0(±i/

p
3)

= (±4/
p

3) · 1
20(±i/

p
3) + 12(±i/

p
3)3

= 1/4i .

It now follows from the Residue theorem that
Z 2⇡

0

dt
1 + 3 cos2(t)

= 2⇡i
�
Resz=i/

p
3((g(z)) + Resz=�i/

p
3(g(z))

�
= ⇡.
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Applications of The Residue Theorem

Theorem

(Residue theorem): Suppose that U is an open set in C and �
is a path whose inside is contained in U, so that for all z /2 U

we have I(�, z) = 0. Then if S ⇢ U is a finite set such that

S \ �⇤ = ; and f is a holomorphic function on U\S we have

1

2⇡i

Z

�
f (z)dz =

X

a2S

I(�, a)Resa(f )

 



Remark

Often we are interested in integrating along a path which is not

closed or even finite, for example, we might wish to understand

the integral of a function on the positive real axis.

The residue theorem can still be a powerful tool in calculating

these integrals, provided we complete the path to a closed one

in such a way that we can control the extra contribution to the

integral along the part of the path we add.



Remark

Often we are interested in integrating along a path which is not

closed or even finite, for example, we might wish to understand

the integral of a function on the positive real axis.

The residue theorem can still be a powerful tool in calculating

these integrals, provided we complete the path to a closed one

in such a way that we can control the extra contribution to the

integral along the part of the path we add.



If we have a function f which we wish to integrate over the

whole real line (so we have to treat it as an improper Riemann

integral) then we may consider the contours �R given as the

concatenation of the paths �1 : [�R,R] ! C and �2 : [0, 1] ! C
where

�1(t) = �R + t ; �2(t) = Re
i⇡t .

(so that �R = �2 ? �1 traces out the boundary of a half-disk).

In many cases one can show that
R
�2

f (z)dz tends to 0 as

R ! 1, and by calculating the residues inside the contours �R

deduce the integral of f on (�1,1).
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Example. Calculate the integral

Z 1

0

dx

1 + x2 + x4
.

This integral exists as an improper Riemann integral, and since

the integrand is even, it is equal to

1

2
lim

R!1

Z
R

�R

dx

1 + x2 + x4
dx .

If f (z) = 1/(1 + z2 + z4), then
R
�R

f (z)dz is equal to 2⇡i times

the sum of the residues inside the path �R.
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Thus by the residue theorem, for all R > 1 we have

Z

�R

f (z)dz = 2⇡i
�
Res!(f (z)) + Res!2(f (z))

�
,

We calculate the residues:

Res!(f (z)) = lim
z!!

(z � !)

1 + z2 + z4
=

1

2! + 4!3
=

1

2! � 4

Res!2(f (z)) =
1

2!2 + 4!6
=

1

4 + 2!2

Z

�R

f (z)dz = 2⇡i
� 1

2! � 4
+

1

2!2 + 4
) = ⇡i

� 1

! � 2
+

1

!2 + 2

�

= ⇡i
� !2 + !

2(! � !2)� 5

�
= �

p
3⇡/(�3) = ⇡/

p
3,

(where we used the fact that !2 + ! = i
p

3 and ! � !2 = 1).
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On the other hand

Z

�R

f (z)dz =

Z
R

�R

dt
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Z

�2

f (z)dz,

so we need to calculate the limit of
R
�2

f (z)dz as R ! 1.

By the estimation lemma we have

��
Z

�2

f (z)dz
��  sup

z2�⇤
2

|f (z)| · `(�2) 
⇡R

R4 � R2 � 1
! 0,

as R ! 1,

hence

⇡/
p

3 = lim
R!1

Z

�R

f (z)dz =

Z 1

�1

dt

1 + t2 + t4
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Applications of The Residue Theorem

Theorem

(Residue theorem): Suppose that U is an open set in C and �
is a path whose inside is contained in U, so that for all z /2 U
we have I(�, z) = 0. Then if S ⇢ U is a finite set such that
S \ �⇤ = ; and f is a holomorphic function on U\S we have

1

2⇡i

Z

�
f (z)dz =

X

a2S

I(�, a)Resa(f )

 



Jordan’s Lemma and applications

Recall:

Lemma

Let g : R ! R be a twice differentiable function. Then if [a, b] is
an interval on which g00(x) < 0, the function g is concave on
[a, b], that is, for x < y 2 [a, b] we have

g(tx + (1 � t)y) � tg(x) + (1 � t)g(y), t 2 [0, 1].
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Proof.

Given x , y 2 [a, b] and t 2 [0, 1] let ⇠ = tx + (1 � t)y , a point in

the interval between x and y .

The slope of the chord between (x , g(x)) and (⇠, g(⇠)) is, by the

Mean Value Theorem, equal to g0(s1) where s1 lies between x
and ⇠, while the slope of the chord between (⇠, g(⇠)) and

(y , g(y)) is equal to g0(s2) for s2 between ⇠ and y .

If g(⇠) < tg(x) + (1 � t)g(y) it follows that g0(s1) <
g(y)� g(x)

y � x

and g0(s2) >
g(y)� g(x)

y � x
.

Thus by the mean value theorem for g0(x) applied to the points

s1 and s2 it follows there is an s 2 (s1, s2) with

g00(s) = (g0(s2)� g0(s1))/(s2 � s1) > 0, contradicting the

assumption that g00(x) is negative on (a, b).

or
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Corollary

sin(t) � 2

⇡ t for t 2 [0,⇡/2] and sin(⇡ � t) � 2(⇡ � t)/⇡ for
t 2 [⇡/2,⇡].

Proof.

By the lemma since sin00 t < 0 in (0,⇡/2)

sin t = sin ((1 � 2

⇡
t) ·0+

2

⇡
t · ⇡

2
) � (1� 2

⇡
t) sin 0+

2

⇡
t sin

⇡

2
=

2

⇡
t .

Clearly for t 2 [⇡/2,⇡], ⇡ � t 2 [0,⇡/2] so the same inequality

applies.
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Lemma

(Jordan’s Lemma): Let f : H ! C1 be a meromorphic function
on the upper-half plane H = {z 2 C : =(z) > 0}. Suppose that
f (z) ! 0 as z ! 1 in H. Then if �R(t) = Reit for t 2 [0,⇡] we
have Z

�R

f (z)ei↵zdz ! 0

as R ! 1 for all ↵ 2 R>0.
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Proof.

Suppose that ✏ > 0 is given. Then by assumption we may find

an S such that for |z| > S we have |f (z)| < ✏. Thus if R > S
and z = �R(t), it follows that

|f (z)ei↵z | = ✏e�↵R sin(t).

By the corollary we have

|f (z)ei↵z | 
⇢

✏ · e�2↵Rt/⇡, t 2 [0,⇡/2]
✏ · e�2↵R(⇡�t)/⇡ t 2 [⇡/2,⇡]

But then it follows that

��
Z

�R

f (z)ei↵zdz
��  2

Z ⇡/2

0

✏R·e�2↵Rt/⇡dt = ✏·⇡1 � e�↵R

↵
< ✏ · ⇡/↵,

But ⇡/↵ is constant, so
R
�R

f (z)ei↵zdz ! 0 as R ! 1
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Remark

If ⌘R is an arc of a semicircle in the upper half plane, say
⌘R(t) = Reit for 0  t  2⇡/3, then the same proof shows that

Z

⌘R

f (z)ei↵zdz ! 0 as R ! 1.

This is sometimes useful when integrating around the boundary
of a sector of disk.

Note that if ↵ < 0 then the integral of f (z)ei↵z around a
semicircle in the lower half plane tends to zero as R ! 1
provided |f (z)| ! 0 as |z| ! 1 in the lower half plane. This
follows immediately from the above applied to f (�z).

o
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Example. Calculate the integral
R1
�1

sin(x)
x dx .

This is an improper integral of an even function, thus it exists if

and only if the limit of
R R
�R

sin(x)
x dx exists as R ! 1.

To compute this consider the integral along the closed curve ⌘R
given by the concatenation ⌘R = ⌫R ? �R, where

⌫R : [�R,R] ! R given by ⌫R(t) = t and �R(t) = Reit (where

t 2 [0,⇡]).

We will integrate over this f (z) = eiz�1

z

.

Note that the singularity at z = 0 is removable as

eiz = 1 + iz + (iz)2/2+ ... so lim
z!0

f (z) = i .

Thus we have
R
⌘R

f (z)dz = 0 for all R > 0.
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Avoiding singularities

To deal with the previous integral it would be more natural to

consider the function
eiz

z
instead.

The problem is that this function has a pole at 0 so our contour

can not include 0. The solution is to modify the contour slightly

and go around 0.

Explicitly, we replace the ⌫R with ⌫�R ? �✏ ? ⌫
+
R where ⌫±R (t) = t

and t 2 [�R,�✏] for ⌫�R , and t 2 [✏,R] for ⌫+R (and as above

�✏(t) = ✏ei(⇡�t) for t 2 [0,⇡]).

How can we calculate the value of the integral after this

change? We have a general lemma:
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Lemma

Let f : U ! C be a meromorphic function with a simple pole at
a 2 U and let �✏ : [↵,�] ! C be the path �✏(t) = a + ✏eit , then

lim
✏!0

Z

�✏

f (z)dz = Resa(f ) · (� � ↵)i .

Proof.

Since f has a simple pole at a, we may write

f (z) =
c

z � a
+ g(z)

where g(z) is holomorphic near z and c = Resa(f ).

A
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As g is holomorphic at a, it is continuous at a, and so bounded.

Let M, r > 0 be such that |g(z)| < M for all z 2 B(a, r). Then if

0 < ✏ < r we have

��
Z

�✏

g(z)dz
��  `(�✏)M = (� � ↵)✏ · M ! 0

Also

Z

�✏

c
z � a

dz =

Z �

↵

c
✏eit i✏eitdt =

Z �

↵
(ic)dt = ic(� � ↵).

Since
R
�✏

f (z)dz =
R
�✏

c/(z � a)dz +
R
�✏

g(z)dz the result

follows.
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We return now to the calculation of the integral
R1
�1

sin(x)
x dx

using the more ‘obvious’ function
eiz

z
.

Since
sin(x)

x ! 1 as x ! 0 for small enough ✏ we have

Z ✏

�✏

sin(x)
x

dx 
Z ✏

�✏
2dx = 4✏

so the sum

Z �✏

�R

sin(x)
x

dx +

Z R

✏

sin(x)
x

dx !
Z R

�R

sin(x)
x

dx ,

as ✏ ! 0.
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Integrating then
eiz

z
over �✏ = ⌫�R ? �✏ ? ⌫

+
R ? �R, we get:

0 =

Z

�✏

f (z)dz =

Z �✏

�R

eix

x
dx +

Z

�✏

eiz

z
dz +

Z R

✏

eix

x
dx +

Z

�R

eiz

z
dz.

= 2i
Z R

✏

sin(x)
x

+

Z

�✏

eiz

z
+

Z

�R

eiz

z
dz

! 2i
Z R

0

sin(x)
x

dx�i⇡ +

Z

�R

eiz

z
dz.

as ✏ ! 0.

Then letting R ! 1, it follows from Jordan’s Lemma that the

third term tends to zero so we see that

Z 1

�1

sin(x)
x

dx = 2

Z 1

0

sin(x)
x

dx = ⇡

T
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Computation of Residues

Recall if f has a pole of order k at z0 then

f (z) =
X

n��k

cn(z � z0)
n.

Then

Pz0
(f ) = c�k (z � z0)

�k + c�k+1(z � z0)
�k+1 + ....+ c�1(z � z0)

�1

is the principal part of f at z0

.

Resz0
(f ) = c�1

is the residue of f at z0.

How do we calculate these?
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In order to use the Residue Theorem we need to calculate

residues of meromorphic functions. The integral formulas we

have obtained for the residue are often not the best way to do

this.

We discuss now a more direct method to calculate the residue

in the case of functions which are given as the ratio of two

holomorphic functions.

Precisely let F : U ! C given to us as a ratio f/g of two

holomorphic functions f , g on U. The singularities of the

function F are therefore poles which are located precisely at

the (isolated) zeros of the function g.
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For convenience, we assume that we have translated the plane

so as to ensure the pole of F = f/g we are interested in is at

a = 0.

Since g(0) = 0, there is a k > 0 such that

g(z) = ckz
k (1 +

X

n�1

anz
n),

where ck 6= 0 and the power series converges on B(0, r) ✓ U

for some r > 0.

We set h(z) =
P1

n=1
anzn�1, then

1

g(z)
=

1

ckzk

�
1 + zh(z)

��1
,

we expand

1

1 + zh(z)
=

1X

n=0

(�1)n
z

n
h(z)n
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Note that this expansion is valid in B(0, �) for small � by

Weierstrass M-test.

Specifically if M = max{h(z) : z 2 B̄(0, r)} we may take

� = min(r , 1/2M).

We can ‘ignore’ the terms after k as:

X

m�k

(�1)m
z

m
h(z)m = z

k
h1(z)

(where h1 is holomorphic) since then
1

ck zk

P
n�k

(�1)nznh(z)n is

holmorphic.

Hence the principal part of the Laurent series of 1/g(z) is equal

to the principal part of the function

1

ckzk

kX

n=1

(�1)k�1
z

k
h(z)k



Note that this expansion is valid in B(0, �) for small � by

Weierstrass M-test.

Specifically if M = max{h(z) : z 2 B̄(0, r)} we may take

� = min(r , 1/2M).

We can ‘ignore’ the terms after k as:

X

m�k

(�1)m
z

m
h(z)m = z

k
h1(z)

(where h1 is holomorphic) since then
1

ck zk

P
n�k

(�1)nznh(z)n is

holmorphic.

Hence the principal part of the Laurent series of 1/g(z) is equal

to the principal part of the function

1

ckzk

kX

n=1

(�1)k�1
z

k
h(z)k



Note that this expansion is valid in B(0, �) for small � by

Weierstrass M-test.

Specifically if M = max{h(z) : z 2 B̄(0, r)} we may take

� = min(r , 1/2M).

We can ‘ignore’ the terms after k as:

X

m�k

(�1)m
z

m
h(z)m = z

k
h1(z)

(where h1 is holomorphic) since then
1

ck zk

P
n�k

(�1)nznh(z)n is

holmorphic.

Hence the principal part of the Laurent series of 1/g(z) is equal

to the principal part of the function

1

ckzk

kX

n=1

(�1)k�1
z

k
h(z)k



Note that this expansion is valid in B(0, �) for small � by

Weierstrass M-test.

Specifically if M = max{h(z) : z 2 B̄(0, r)} we may take

� = min(r , 1/2M).
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Since we know the power series for h(z), this allows us to

compute the principal part of
1

g(z) .

Finally, the principal part P0(F ) of F = f/g at z = 0 is just the

principal part of the function f (z) · P0(g), which again we can

compute if we know the power series expansion of f (z) at 0.
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Example. Calculate the principal part of f (z) = 1/(z2 sinh(z)3).

sinh(z) = (ez � e�z)/2 vanishes on ⇡iZ, and these zeros are all

simple since
d

dz
(sinh(z)) = cosh(z) has cosh(n⇡i) = (�1)n 6= 0.

Thus f (z) has a pole or order 5 at zero, and poles of order 3 at

⇡in for each n 2 Z\{0}. We calculate the principal part of f at

z = 0.

We will write O(zk ) for holomorphic functions which have a

zero of order at least k at 0

.
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so to find the principal part we just need to consider the first

two terms in the series (1 + zh(z))�1 =
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(�1)nznh(z)n:
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