
Summation of infinite series

We will use residues to calculate sums of infinite series.

We illustrate this by an example.

Consider f (z) = cot(⇡z).

We will calculate the residues at its poles seeing it as quotient

cos(⇡z)/ sin(⇡z).

Poles of f=zeros of sin(⇡z), so poles are the integers.

(We calculate the zeros of sin z using sin(z) = ei z�e�iz

2
).

Since f is periodic with period 1, it suffices to calculate the

principal part of f at z = 0.
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sin(z) = z � z3

3! +
z5

5! + O(z7) so

sin(z) = z(1 � zh(z)) where h(z) = z/3!� z3/5! + O(z5) is

holomorphic at z = 0.
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+h(z)+O(z2).

cos(z) = 1 + O(z2) so the principal part of cot(z) is 1/z. It

follows that cot(⇡z) has a simple pole at each n 2 Z with

residue 1/⇡.
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We can also calculate further terms of the Laurent series of

cot(z): As h(z) actually vanishes at z = 0, the terms h(z)nzn

vanish to order 2n.
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Lemma

Let f (z) = cot(⇡z) and let �N denote the square path with

vertices (N + 1/2)(±1 ± i) where N 2 N. There is a constant C

independent of N such that |f (z)|  C for all z 2 �⇤
N

.

Proof.

Note that cot(⇡z) = (ei⇡z + e�i⇡z)/(ei⇡z � e�i⇡z).

Horizontal sides: z = x ± (N + 1/2)i and

�(N + 1/2)  x  (N + 1/2)

| cot(⇡z)| =

�����
ei⇡(x±(N+1/2)i) + e�i⇡(x±(N+1/2)i)

ei⇡(x±(N+1/2)i � e�i⇡(x±(N+1/2)i)

�����

 e⇡(N+1/2) + e�⇡(N+1/2)

e⇡(N+1/2) � e�⇡(N+1/2)

as |x + ei✓y |  x + y for x , y positive reals and

|x � ei✓y | > x � y .
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so we have

| cot(⇡z)|  e⇡(N+1/2) + e�⇡(N+1/2)

e⇡(N+1/2) � e�⇡(N+1/2)

=
1 + e�2⇡(N+1/2)

1 � e�2⇡(N+1/2)

 2

1 � e�3⇡

as e�x is decreasing for x > 0.
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Vertical sides: z = ±(N + 1/2) + iy , where

�N � 1/2  y  N + 1/2.

| cot(⇡z)| =

�����
ei⇡(±(N+1/2)+iy) + e�i⇡(±(N+1/2)+iy)

ei⇡(±(N+1/2)+iy) � e�i⇡(±(N+1/2)+iy)

�����

=

����
e�⇡y � e⇡y

e�⇡y + e⇡y

����  1

since ei⇡(±(N+1/2)) = ±i .

so we can take C =
2

1 � e�3⇡
.
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Example Let g(z) = cot(⇡z)/z2. By the calculation of Laurent

series of cot(⇡z) at z = 0:

cot(⇡z)

z2
=

1

⇡z3
� ⇡

3z
+ O(z)

Since cot(⇡z) = cot(⇡(z � n)) at z = n and 1/z is holomorphic

near n we have:
cot(⇡z)

z2
=

(1/n2 + O(z � n)) · ( 1

⇡(z�n) + O(z � n)) = 1

⇡n2(z�n)
+ O(z � n)

So g(z) has simple poles with residues
1

⇡n2
at each non-zero

integer n and residue �⇡/3 at z = 0.

Consider now the integral of g(z) around the paths �N : We

know |g(z)|  C/|z|2 for z 2 �⇤
N

, and for all N � 1. Thus by the

estimation lemma

✓Z

�N

g(z)dz

◆
 C · (4N + 2)/(N + 1/2)2 ! 0,

as N ! 1.
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But by the residue theorem we know that

Z

�N

g(z)dz = �⇡/3 +
X

n 6=0,
�NnN

1

⇡n2
.

It therefore follows that

1X

n=1

1

n2
= ⇡2/6

Remark

Notice that the contours �N and the function cot(⇡z) clearly

allows us to sum other infinite series in a similar way – for

example if we wished to calculate the sum of the infinite

series
P

n�1

1

n2+1
then we would consider the integrals of

g(z) = cot(⇡z)/(1 + z2) over the contours �N.
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example if we wished to calculate the sum of the infinite

series
P

n�1

1

n2+1
then we would consider the integrals of

g(z) = cot(⇡z)/(1 + z2) over the contours �N.
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To take advantage of the residue theorem to calculate integrals
of real functions one needs to choose the appropriate contour.

The keyhole contour is useful when the integrand is
multi-valued as a function on the complex plane. Formally:
Given 0 < ✏ < R pick � < ✏ small. Consider two circles C✏,CR
of radius ✏,R centered at 0.
Take two line segments ⌘+(t) = t + i�, ⌘�(t) = (R � t)� i�
where t 2 [a, b] such that ⌘+(a), ⌘�(b) 2 C✏, ⌘+(b), ⌘�(a) 2 CR.

Let �R be the positively oriented path on the circle of radius R
joining the endpoints of ⌘+ and ⌘� on that circle and similarly
let �✏ the path on the circle of radius ✏ which is negatively
oriented and joins the endpoints of �± on the circle of radius ✏.
�R,✏ = ⌘+ ? �R ? ⌘� ? �✏ is the keyhole contour.
We let ✏ ! 0 and R ! 1.
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Example. Calculate the integral
Z 1

0

x1/2

1 + x2 dx .

Let f (z) = z1/2/(1 + z2), where we use a continuous branch on
C\R>0, given by z1/2 = r1/2eit/2 (where z = reit with
t 2 [0, 2⇡)).

We use the keyhole contour �R,✏.

|
Z

�R

z1/2/(1 + z2)dz|  2⇡R · R1/2

R2 � 1
! 0

|
Z

�✏

z1/2/(1 + z2)dz|  2⇡✏ · ✏1/2

1 � ✏2 ! 0
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Z

⌘+
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Z 1
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1 + x2 dx

and

Z
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z1/2/(1 + z2)dz !
Z 1

0

x1/2

1 + x2 dx

since
for z = rei✓ 2 ⌘�, z1/2 ⇠ r1/2ei⇡ = �r1/2 and ⌘� is traversed in
the opposite direction from ⌘+.
We use the residue theorem: The function f (z) has simple
poles at z = ±i . We calculate the residues:

lim
z!i

(z � i)z1/2/(1 + z2) =
1
2

e�⇡i/4,
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e5⇡i/4.

as
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It follows that
Z

�R,✏

f (z)dz = 2⇡i
✓

1
2

e�⇡i/4 +
1
2

e5⇡i/4
◆

= ⇡
p

2.

Taking the limit as R ! 1 and ✏ ! 0 we see that
2
R1

0
x1/2

1+x2 dx = ⇡
p

2, so that

Z 1

0

x1/2dx
1 + x2 =

⇡p
2
.



Conformal transformations

Informally if U,V ✓ C, T : U ! V is conformal if it preserves
the angles at each point.

To make sense of this recall

Definition
If � : [�1, 1] ! C is a C1 path which has �0(t) 6= 0 for all t , then
we say that the line {�(t) + s�0(t) : s 2 R} is the tangent line to
� at �(t), and the vector �0(t) is a tangent vector at �(t) 2 C.
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Definition
Let U be an open subset of C and suppose that T : U ! C is
continuously differentiable in the real sense (so all its partial
derivatives exist and are continuous). If �1, �2 : [�1, 1] ! U are
two paths with z0 = �1(0) = �2(0) then �01(0) and �02(0) are two
tangent vectors at z0, and we may consider the angle between
them (formally speaking this is the difference of their
arguments).

By our assumption on T , the compositions T � �1
and T � �2 are C1-paths through T (z0), thus we obtain a pair of
tangent vectors at T (z0). We say that T is conformal at z0 if for
every pair of C1 paths �1, �2 through z0, the angle between their
tangent vectors at z0 is equal to the angle between the tangent
vectors at T (z0) given by the C1 paths T � �1 and T � �2. We
say that T is conformal on U if it is conformal at every z 2 U.
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Remark
Note that we can define tangent vectors at points on subsets of
Rn using C1-paths (ie all component functions are C1).
In particular, if S is the unit sphere in R3 we consider C1 paths
on S ie paths � : [a, b] ! R3 whose image lies in S.

It is easy to check that the tangent vectors at a point p 2 S all lie
in the plane perpendicular to p – simply differentiate the identity
f (�(t)) = 1 where f (x , y , z) = x2 + y2 + z2 using the chain rule
to get

f (p) · �0(t) = 0.

So it makes sense to say that a map T : S ! C or T : S ! S is
conformal.

Proposition
Let f : U ! C be a holomorphic map and let z0 2 U be such
that f 0(z0) 6= 0. Then f is conformal at z0. In particular, if
f : U ! C has nonvanishing derivative on all of U, it is
conformal on all of U (and locally a biholomorphism).
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Proof.
Let �1 and �2 be C1-paths with �1(0) = �2(0) = z0. Then we
obtain paths ⌘1, ⌘2 through f (z0) where ⌘1(t) = f (�1(t)) and
⌘2(t) = f (�2(t)).

We show that a version of the chain rule applies to these
compositions. For i = 1, 2 we have

⌘0i (0) = lim
h!0

f (�i(h))� f (�(0))
h

= lim
h!0

f (�i(h))� f (z0)

�i(h)� z0
· �i(h)� z0

h

Clearly for small h, �i(h) 6= z0 as �0i (0) 6= 0 and

limh!0
f (�i(h))� f (z0)

�i(h)� z0
= f 0(z0).

So if we set f 0(z0) = ⇢ei✓ we have

⌘0i (0) = f 0(z0)�
0
i (0) = ⇢ei✓�0i (0), i = 1, 2.
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so if

�01(0) = r1ei�1 , �02(0) = r2ei�2

then the angle between �01(0), �
0
2(0) is �1 � �2

and the angle between ⌘01(0), ⌘
0
2(0) is

(✓ + �1)� (✓ + �2) = �1 � �2

For the final part, note that if f 0(z0) 6= 0 then f (z) is locally
biholomorphic by the inverse function theorem.
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and the angle between ⌘01(0), ⌘
0
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Example
The function f (z) = z2 has f 0(z) nonzero everywhere except
the origin. It follows f is a conformal map from C⇥ to itself. Note
that the condition that f 0(z) is non-zero is necessary – if we
consider the function f (z) = z2 at z = 0, f 0(z) = 2z which
vanishes precisely at z = 0, and it is easy to check that at the
origin f in fact doubles the angles between tangent vectors.
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The stereographic projection is conformal

Lemma

The sterographic projection map S : C ! S is conformal.

Proof. Let z0 be a point in C, and suppose that �1(t) = z0 + tv1

and �2(t) = z0 + tv2 are two paths having tangents v1 and v2 at

z0 = �1(0) = �2(0)

.

Then the lines L1 and L2 they describe, together with north pole

of S, N, determine planes H1 and H2 in R3.

The image of L1, L2 under stereographic projection is the

intersection of H1,H2 with S.

So the paths �1 and �2 get sent to two circles C1 and C2

passing through P = S(z0) and N.
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By symmetry, C1,C2 meet at the same angle at N as they do at

P.

The tangent lines of C1 and C2 at N are just the intersections of

H1 and H2 with the plane tangent to S at N.

But this means the angle between them will be the same as

that between the intersection of H1 and H2 with the complex

plane, since it is parallel to the tangent plane of S at N. Thus

the angles between C1 and C2 at P and L1 and L2 at z0

coincide as required.
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Möbius transformations are conformal

We would like to see Möbius transformations as maps from the

extended complex plane C [ {1} = S to itself.

We note that if f is conformal at z1 and g is conformal at f (z1)
then g � f is conformal at z1. Since the stereographic projection

is conformal a map f : C ! C is conformal if and only if the

corresponding map f : S ! S is conformal.

We claim that 1/z seen as a map S ! S is conformal. Indeed

1/z : C \ {0} ! C is conformal as it is differentiable with

non-zero derivative. For z = 0 note that seen as a map S ! S it

sends great circles passing from N,S to great circles passing

from N,S intersecting at the same angles, so it is conformal.

Similarly it is easy to see that z 7! z + a and z 7! az are

conformal maps for a 2 C \ {0}.
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The maps z 7! z + a, z 7! az (a 6= 0) are clearly conformal for

every z 2 C, so they are conformal at every z 2 S \ {N}

We claim that if f is z 7! z + a or z 7! az then f is conformal at

N as well.

To see this we consider the images of great circles through N.

These circles correspond to lines through 0 under S and as in

the previous lemma we note that the angles of two such circles

at N is equal to the angle of the lines at 0. But, since f is

conformal as a map C ! C the angles at 0 are preserved by f ,

so the angles at N are preserved as well.
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Lemma

Möbius transformations are conformal.

Proof.

We note that if f (z) = az+b

cz+d
then

f
0(z) =

ad � bc

(cz + d)2
6= 0,

for all z 6= �d/c, thus f is conformal at each z 2 C\{�d/c}

.

We claim further that a Möbius transformation is conformal

seen as a map S ! S (where S can be identified with C [1).

Indeed we have seen that any Möbius transformation can be

written as a composition of dilations, translations and an

inversion. Since all these are conformal maps S ! S their

compositions are conformal as well. So Möbius tranformations

are conformal.
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Proposition

If z1, z2, z3 and w1,w2,w3 are triples of pairwise distinct

complex numbers, then there is a unique Möbius

transformation f such that f (zi) = wi for each i = 1, 2, 3.

Proof. It is enough to show that, given any triple (z1, z2, z3) of

complex numbers, we can find a Möbius transformations which

takes z1, z2, z3 to 0, 1,1 respectively.

Indeed if f1 is such a transformation, and f2 takes 0, 1,1 to

w1,w2,w3 respectively, then clearly f2 � f
�1

1
is a Möbius

transformation which takes zi to wi for each i .

Now consider

f (z) =
(z � z1)(z2 � z3)

(z � z3)(z2 � z1)

It is easy to check that f (z1) = 0, f (z2) = 1, f (z3) = 1, and

clearly f is a Möbius transformation as required.
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If z1 = 1 then we set f (z) = z2�z3

z�z3
; if z2 = 1, we take

f (z) = z�z1

z�z3
; and finally if z3 = 1 take f (z) = z�z1

z2�z1
.

Uniqueness: Suppose f1 and f2 both take z1, z2, z3 to

w1,w2,w3.

If g, h are Möbius maps sending z1, z2, z3 and w1,w2,w3 to

0, 1,1 then hf1g�1 and hf2g�1 both take (0, 1,1) to (0, 1,1).

But suppose T (z) =
az + b

cz + d
is Möbius with T (0) = 0, T (1) = 1

and T (1) = 1. Since T fixes 1 it follows c = 0. Since

T (0) = 0 it follows that b/d = 0 hence b = 0, thus

T (z) = a/d · z, and since T (1) = 1 it follows a/d = 1 and

hence T (z) = z.

Hence

hf1g
�1 = hf2g

�1 = id,

and so f1 = f2.
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Examples of conformal maps

Möbius tranformations give us a source of conformal maps.

They have some useful geometric properties as they map

circles/lines to circles/lines, they are bijective, and are

determined by their value in 3 points.

Example Find a conformal map that takes the upper half plane

H = {z 2 C : =(z) > 0} to the unit disk B(0, 1).

The boundary of the half plane is a line, so by a Möbius map

we can map it to the boundary of the disc:

Take f the Möbius defined by 0 7! �i , 1 7! 1, 1 7! i . Then the

real axis is sent to the unit circle.
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We calculate:

f (z) =
iz + 1

z + i

f is continuous so it maps connected sets to connected sets.

We note that C\R has two connected components, the upper

and lower half planes, H and iH, and similarly C\S1 has two

connected components, B(0, 1) and C\B̄(0, 1).

As f is 1-1 one of the two open half planes maps to the disc

and the other to the complement of B̄(0, 1).

We calculate f (i) = 0 2 B(0, 1), so f (H) = B(0, 1).
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Note that if we had taken g(z) = (z + i)/(iz + 1), then g also

maps R to the unit circle S
1, but g(�i) = 0

However it is easy to correct this as R(z) = �z maps H to iH
so we may take g(�z) as our map instead.

In particular the conformal map taking H to B(0, 1) is far from

unique. Any Möbius map that preserves B(0, 1) will give

another such map. Thus for example ei✓ · f is another such map.

Definition

If there is a bijective conformal transformation between two

domains U and V in the complex plane then we say that they

are conformally equivalent.
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Riemann mapping theorem

Since two conformally equivalent domains are in particular

homeomorphic, one can not expect that any two domains are

conformally equivalent.

Denote by D the unit disc B(0, 1)

.

Theorem

(Riemann’s mapping theorem): Let U be an open connected
and simply-connected proper subset of C. Then for any z0 2 U
there is a unique bijective conformal transformation f : U ! D

such that f (z0) = 0, f 0(z0) > 0.
For the proof see eg Shakarchi and Stein’s Complex Analysis

book

.

Liouville’s theorem implies that there can be no bijective

conformal transformation taking C to B(0, 1), so the whole

complex plane is an exception

.
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Say D1,D2 are open proper simply connected subsets. How do

we construct f : D1 ! D2 conformal?

Some useful maps: Möbius transformations, the exponential

function, branches of the multifunction [z↵] (away from the

origin)

.
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More examples of conformal maps

Example.
Let D1 = B(0, 1) and D2 = {z 2 C : |z| < 1,=(z) > 0}. Since
these domains are both convex, they are simply-connected, so
by Riemann’s mapping theorem there is a conformal map
sending D2 to D1.

The boundary of D2 consists two curves �(0, 1) and [�1, 1]
which intersect on �1, 1.

We map ±1 to 0 and 1 by a Möbius transformation:

f (z) =
z � 1
z + 1

,

Since f is Möbius and f (�1) = 1, f (1) = 0 both �(0, 1), [�1, 1]
map to half lines from 0.
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f (0) = �1 so [�1, 1] maps to the negative real axis.
f (i) = i�1

i+1 = i so �(0, 1) maps to the imaginary axis. Since
f (i/2) = (�3 + 4i)/5 it follows by connectedness that f (D1) is
the second quadrant Q = {w 2 C : <(z) < 0,=(z) > 0}.

Now the squaring map s : C ! C given by z 7! z2 maps Q

bijectively to the lower half-plane H = {w 2 C : =(w) < 0}, and
is conformal except at z = 0 (0 does not lie in Q).

We may then use a Möbius map to take this half-plane to the
unit disc: as last time we see that g(z) = z+i

iz+1 takes H to the
disk.

So F = g � s � f is a conformal transformation taking D1 to D2.
We calculate:

F (z) = i

✓
z2 + 2iz + 1
z2 � 2iz + 1

◆
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General principles: If we have circular arcs on the boundary we
may transform them to half-lines by Möbius transformations that
map one of the endpoints to 1.
Branches of fractional power maps [z↵] allow us to change the
angle at the points of intersection of arcs of the boundary.
Möbius transformations allow us to map half planes to discs.



The Laplace equation

We say that a C2 function v : R2 ! R sarisfies the Laplace
equation if @2

x v + @2
y v = 0.

A function v : R2 ! R is said to be harmonic if it is twice
differentiable and @2

x v + @2
y v = 0. Often one seeks to find

solutions to this equation on a domain U ⇢ R2 where we
specify the values of v on the boundary @U of U. This problem
is known as the Dirichlet problem.

Lemma
Suppose that U ⇢ C is a simply-connected open subset of C
and v : U ! R is twice continuously differentiable and

harmonic. Then there is a holomorphic function f : U ! C such

that <(f ) = v. In particular, any such function v is analytic.
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Proof.
(sketch)Consider the function g(z) = @xv � i@yv . Then since v

is twice continuously differentiable, the partial derivatives of g

are continuous and

@2
x v = �@2

y v ; @y@xv = @x@yv ,

ie g satisfies the Cauchy-Riemann equations, hence g is
holomorphic.
Since U is simply-connected, g has a primitive G : U ! C,
G = u + iw .
G0 = @xu + i@xw = �i@yu + @yw so @xu = @xv , @yu = @yv .
It follows that u, v differ by a constant on each vertical and on
each horizontal path.
However since U is open connected there is a path consisting
of vertical and horizontal segments joining any two points of U.
It follows that u � v = c a constant and u is the real part of
F + c.
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Dirichlet problem and holomorphic maps

Recall the Dirichlet Problem: Given a continuous function v on
@U for some domain U find a harmonic function u extending v
to U. So u is continuous on U and equal to v on @U.

We showed in the last lecture that if u is a harmonic function on
a simply connected domain U then u is the real part of a
holomorphic function. Conversely given a holomorphic function
f we obtain a harmonic function by taking its real part.

So to solve the Dirichlet problem for a simply connected domain
U for a given function g on @U, it suffices to find a holomorphic
function f on U such that <(f ) = g on the boundary @U.
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Relationship with conformal mappings

If we have a solution u to the Dirichlet problem for a domain V
and G : U ! V is a conformal mapping then we can ‘transport’
our solution to U.
This is because (locally) u is the real part of a holomorphic
function f and f � G is holomorphic.
Precisely we have:

Lemma
If U and V are domains and G : U ! V is a conformal
transformation, then if u : V ! R is a harmonic function on V ,
the composition u � G is harmonic on U.
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Proof.
To see that u � G is harmonic we need only check this in a disk
B(z0, r) ✓ U about any point z0 2 U.

There are �, ✏ > 0 such that G(B(z0, �)) ✓ B(w0, ✏) ✓ V .

But now since B(w0, ✏) is simply-connected we can find a
holomorphic function f (z) with u = <(f ).

But then on B(z0, �) we have u � G = <(f � G), and by the chain
rule f � G is holomorphic, so its real part is harmonic.
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By the Riemann mapping theorem there is a conformal map
from any proper simply connected open subset of C to the disk.

Strategy in two steps for solving the Dirichlet problem on a
simply connected domain U.
We are given a continuous function h : @U ! R and we would
like to extend this to a harmonic function defined on U.

Step 1: Find a conformal map G : U ! D where D = B(0, 1).
We need to check then that G extends continuously to the
boundary @U.

Then h1 = h � G�1 is a continuous function on @D.

Step 2: Solve the Diriclet problem on the disk D, i.e. find a
harmonic function u1 extending h1 to the whole of D. Then
u = G � u1 is harmonic on U and equal to h on @U.
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Step 1: The Riemann mapping theorem states that every
domain which is simply connected, other than the whole
complex plane itself, is in fact conformally equivalent to B(0, 1).

For the solution of Dirichlet’s problem one needs something
slightly stronger:

Theorem
Let U,V be bounded domains in C and let f : U ! V be a
conformal map. If @U, @V are piecewise C1 Jordan curves the
conformal map f : U ! V can be extended to a
homeomorphism f̄ : Ū ! V̄ .
(for a proof see the book Introduction to Complex Analysis by
K. Kodaira, p. 215)
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Step 2: Suppose that u is a harmonic function defined on
B(0, r) for some r > 1. Then there is a holomorphic function
f : B(0, r) ! C such that u = <(f ).

By Cauchy’s integral formula, if � is a parametrization of the
positively oriented unit circle, then for all w 2 B(0, 1) we have
f (w) = 1

2⇡i
R
� f (z)/(z � w)dz, and so

u(z) = <
� 1

2⇡i

Z

�

f (z)dz
z � w

�
.

Since the integrand uses only the values of f on the boundary
circle, we have almost recovered the function u from its values
on the boundary. But we need the values of f rather than u on
the boundary. The next lemma gives an expression that only
depends on u.



Step 2: Suppose that u is a harmonic function defined on
B(0, r) for some r > 1. Then there is a holomorphic function
f : B(0, r) ! C such that u = <(f ).

By Cauchy’s integral formula, if � is a parametrization of the
positively oriented unit circle, then for all w 2 B(0, 1) we have
f (w) = 1

2⇡i
R
� f (z)/(z � w)dz, and so

u(z) = <
� 1

2⇡i

Z

�

f (z)dz
z � w

�
.

Since the integrand uses only the values of f on the boundary
circle, we have almost recovered the function u from its values
on the boundary. But we need the values of f rather than u on
the boundary. The next lemma gives an expression that only
depends on u.



Step 2: Suppose that u is a harmonic function defined on
B(0, r) for some r > 1. Then there is a holomorphic function
f : B(0, r) ! C such that u = <(f ).

By Cauchy’s integral formula, if � is a parametrization of the
positively oriented unit circle, then for all w 2 B(0, 1) we have
f (w) = 1

2⇡i
R
� f (z)/(z � w)dz, and so

u(z) = <
� 1

2⇡i

Z

�

f (z)dz
z � w

�
.

Since the integrand uses only the values of f on the boundary
circle, we have almost recovered the function u from its values
on the boundary. But we need the values of f rather than u on
the boundary. The next lemma gives an expression that only
depends on u.

Ataman



Lemma
If u is harmonic on B(0, r) for r > 1 then for all w 2 B(0, 1) we
have

u(w) =
1

2⇡

Z 2⇡

0
u(ei✓)

1 � |w |2

|ei✓ � w |2
d✓ =

1
2⇡

Z 2⇡

0
u(ei✓)<

�ei✓ + w
ei✓ � w

�
d✓.



Proof (Sketch.) Let f (z) be holomorphic with <(f ) = u on
B(0, r). Then letting � be a parametrization of the positively
oriented unit circle we have

f (w) =
1

2⇡i

Z

�

f (z)dz
z � w

� 1
2⇡i

Z

�

f (z)dz
z � w̄�1

where the first term is f (w) by the integral formula and the
second term is zero because f (z)/(z � w̄�1) is holomorphic
inside all of B(0, 1). So

f (w) =
1

2⇡

Z

�
f (z)

1 � |w |2

|z � w |2
dz
iz

=
1

2⇡

Z 2⇡

0
f (ei✓)

1 � |w |2

|ei✓ � w |2
d✓.

The real part is

u(z) =
Z 2⇡

0
u(ei✓)

1 � |w |2

|ei✓ � w |2
d✓.
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Finally for the second integral expression note that if |z| = 1
then

z + w
z � w

=
(z + w)(z̄ � w̄)

|z � w |2
=

1 � |w |2 + (z̄w � zw̄)

|z � w |2
.

from which one readily sees the real part agrees with the
corresponding factor in our first expression.

Given now a function h : @D ! R we define

u(z) =
Z 2⇡

0
h(ei✓)

1 � |w |2

|ei✓ � w |2
d✓.

As we have seen in the proof of the lemma this is the real part
of

f (w) =
1

2⇡i

Z

�

h(z)dz
z � w

which is clearly holomorphic. So its real part u is harmonic.
It remains to show that as z ! z0 2 @D, u(z) ! h(z0) for all
z0 2 @D. We refer to the book Complex Analysis by Ahlfors sec.
6, thm 23 for this.
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