A2: Metric Spaces and Complex Analysis Sheet 3 (Metric Spaces, Chapters 7–9) — MT20

- 1. Let X = C[0, 1], with the usual distance coming from the $\|\cdot\|_{\infty}$ -norm. Is X connected?
- 2. Let $A \subseteq \mathbf{R}^2$ be the set of all points with at least one rational coordinate. Is A connected? What if the points with *both* coordinates rational are removed from A?
- 3. Show that there is no continuous injective map $f : \mathbf{R}^2 \to \mathbf{R}$. [*Hint: consider the restriction of f to* $\mathbf{R}^2 \setminus \{a\}$, for a suitable point a]
- 4. Let X be a metric space and A_1, A_2, \ldots an infinite collection of subsets of X. For each of the following statements, give a proof or counterexample.
 - (i) If A_1, A_2, \ldots, A_k are sequentially compact then so is $A_1 \cup A_2 \cup \ldots \cup A_k$.
 - (ii) If A_1, A_2, \ldots, A_k are connected then $A_1 \cap A_2 \cap \ldots \cap A_k$ is connected.
 - (iii) If A_1, A_2, \ldots are sequentially compact then $\bigcup_{k \ge 1} A_k$ is sequentially compact.
 - (iv) If A_1, A_2, \ldots are connected and $A_j \cap A_{j+1} \neq \emptyset$ then $\bigcup_{k \ge 1} A_k$ is connected.
- 5. Show that \mathbf{Z} with the 2-adic metric is not connected.
- 6. Suppose that X is connected and that $f : X \to \mathbf{R}$ is *locally constant*, meaning that every $x \in X$ lies in some open set U on which f is constant. Show that f is constant.
- 7. Is there a metric on ${\bf N}$ which makes it connected?
- 8. Let $(V, \|.\|)$ be a normed vector space whose unit sphere $S = \{v \in V : \|v\| = 1\}$ is sequentially compact. Show that any closed ball $B = \{v \in V : \|v\| \leq R\}$ is sequentially compact. Show that V is complete.
- 9. Let X be a subset of \mathbf{R}^n such that every continuous function $f: X \to \mathbf{R}$ is bounded. Show that X is sequentially compact.
- 10. Let $\|\cdot\|$ be an arbitrary norm on \mathbf{R}^n . Show that there is some constant C such that $\|v\| \leq C \|v\|_1$ for all $v \in \mathbf{R}^n$. Using this, show that there is some constant c > 0 such that $\|v\| \geq c \|v\|_1$ for all $v \in \mathbf{R}^n$. [*Hint. Consider* $\|\cdot\| : \mathbf{R}^n \to \mathbf{R}$ as a function on the normed space \mathbf{R}^n with the $\|\cdot\|_1$ -norm.]
- 11. Write down an infinite compact subset of \mathbf{Q} and prove that it is compact directly from the open cover definition of compactness.
- 12. Consider the space Ω of all sequences $\mathbf{x} = (x_n)_{n=1}^{\infty}$ with $x_n \in [0, 1]$ for all n, together with the metric $d(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{\infty} 2^{-k} |x_k y_k|$. Show that Ω is sequentially compact. [*Hint. You might wish to use a diagonal argument.*]