A2: Metric Spaces and Complex Analysis Sheet 5, sections 4-7.1 from the notes — MT20

1. Consider the multifunction $[F(z)] = (z^2 - 1)^{1/2}$. It was asserted in lectures that $\{1, -1\}$ were branch points for this multifunction. Prove this carefully, using the branches which were constructed in lectures.

[Hint: Suppose, for the case of -1, there was a continuous branch f(z) of [F(z)] defined on some $B(-1,r)\setminus\{-1\}$. Compare this to a branch as we constructed in lectures to obtain a contradiction.]

2. i) Suppose that l(z) is holomorphic on $\mathbb{C}\setminus(-\infty, 0]$ and satisfies $\exp l(z) = z$. Show that

$$l(z) = L(z) + 2n\pi i$$

for some $n \in \mathbb{Z}$ where L(z) is the holomorphic branch of log defined in lectures.

- *ii*) Show that there is no holomorphic function $\lambda(z)$ on $\mathbb{C}\setminus\{0\}$ such that $\exp \lambda(z) = z$.
- *iii*) There are unique holomorphic branches of $\log z$, \sqrt{z} and $\sqrt[3]{z}$ on the cut plane $\mathbb{C} \setminus \{\text{negative imaginary axis}\}$ such that $\log 1 = 0$; $\sqrt{1} = 1$; $\sqrt[3]{1} = 1$. For these branches determine

$$\log(1+i), \quad \sqrt{-1-i}, \quad \sqrt[3]{-2}, \quad \sqrt{1-i}.$$

iv) Let C denote the logarithmic spiral given in polar coordinates by $r = 2e^{\theta}$. There is a unique holomorphic branch of log on $\mathbb{C} \setminus C$ such that $\log 1 = 0$. For this branch determine

 $\log i$, $\log 3$, $\log(-1)$, $\log 1000$, $\log(-1000)$, $\log 2000$.

A2: Metric Spaces and Complex Analysis: Sheet 5, sections 4-7.1 from the notes— MT20

3. Green's Theorem states, for a region D in the plane, bounded by (an) oriented closed curve(s)¹ C in \mathbb{R}^2 and for real-vaued L and M with continuous partial derivatives on D, then

$$\int_C (L \,\mathrm{d}x + M \,\mathrm{d}y) = \int \int_D (M_x - L_y) \,\mathrm{d}x \,\mathrm{d}y.$$

If we assume, for a holomorphic function f = u + iv, that u_x, u_y, v_x, v_y are continuous, show that Cauchy's Theorem follows from Green's Theorem, that is, show that for a function f which is holomorphic on the interior D of a closed curve C, we have $\int_C f(z)dz = 0.$

[The terms "positively oriented" and "interior" should be interpreted as they were in multivariable calculus. We will discuss them more rigorously later in the course.]

In the following questions, for $a \in \mathbb{C}$, $r \in \mathbb{R}_{>0}$ we let $\gamma(a, r)$ denote the positively oriented circle centred at a of radius r > 0.

4. By making the substitution $z = re^{i\theta}$, and making clear any special cases, for each integer k determine $\int_{\gamma(0,r)} z^k dz$ (where as usual $\gamma(0,r)$ is the path $\gamma(0,r)(t) = re^{it}$ for $t \in [0, 2\pi]$). By writing $\sin \theta = (e^{i\theta} - e^{-i\theta})/2i$ rewrite the integral on the left as a path integral around $\gamma(0, 1)$ and deduce that

$$\int_0^{2\pi} \sin^{2n}\theta \, \mathrm{d}\theta = \frac{2\pi}{4^n} \binom{2n}{n}.$$

5. Use the estimation lemma to show that, if $\gamma : [0,1] \to \mathbb{C}$ is a piece-wise C^1 closed path, then the winding number $I(\gamma, z)$ is constant on the connected components of $\mathbb{C} \setminus \gamma^*$.

[Hint: Since it is integer-valued, it suffices to show that $I(\gamma, z)$ is a continuous function on $\mathbb{C}\setminus\gamma^*$.]

6. Suppose that $f: U \to \mathbb{C}$ is holomorphic on $U \setminus \{p\}$ for some $p \in U$, and that f is bounded near p (thus there are constants $r, K \in \mathbb{R}_{>0}$ such that |f(z)| < K for all $z \in B(p, r)$). Show that if T is any triangle whose interior is entirely contained in U then Cauchy's theorem for a triangle still holds, that is

$$\int_T f(z)dz = 0$$

[*Hint: Use Cauchy's theorem for a triangle to shrink the size of the triangle T.*]

 $^{^{1}}$ Note that the boundary of a region in the plane, for example "with holes", may be a disjoint union of closed curves.

A2: Metric Spaces and Complex Analysis: Sheet 5, sections 4-7.1 from the notes— MT20

7. Use Cauchy's Integral Formula and the holomorphic function $f(z) = z^n (z-a)^{-1}$, where $a \in \mathbb{R}$ with a > 1, to calculate the integral:

$$\int_0^{2\pi} \frac{\cos(n\theta)}{1 - 2a\cos(\theta) + a^2} d\theta.$$

8. Suppose that D is a domain bounded by a contour C, which we assume can be parameterized by a function $\gamma_1 \colon [0,1] \to \mathbb{C}$ (that is, $C = \gamma_1^*$). Let $z_0 \in D$ and let r > 0 be small enough so that $\overline{B}(z_0,r) \subset D$. The region $D \setminus \overline{B}(z_0,r)$ is thus bounded by $C \cup \partial B(z_0,r)$. Use the result of question 3 to show that if f is holomorphic on $D \setminus \{z_0\}$ then

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz,$$

where $\gamma_2(t) = z_0 + re^{it}, \ (0 \le t \le 2\pi).$

Use this and question 4 to calculate

$$\int_0^{2\pi} \frac{dt}{a^2 \cos^2(t) + b^2 \sin^2(t)} dt$$

- 9. (Optional)In this question you should compute winding numbers "by eye".
 - 1. Compute the value of the winding number of the path γ in the connected components of $\mathbb{C} \setminus \gamma^*$ in the diagram below.
 - 2. Suppose that $a, b \in \mathbb{C}$ and |a| < r < |b|. Compute using the integral formula for the winding number, the integral

$$\int_{\gamma(0,r)} \frac{dz}{(z-a)(z-b)}.$$

Figure 1: The path γ for question 9.