A2: Metric Spaces and Complex Analysis
Sheet 7, sections 10-11.3 — MT20

1. Suppose that f is a holomorphic function defined on an open set U of the complex plane
containing B(0,1). Let St = {z € C: |2| = 1} = dB(0,1). Show that if f(S?) is an
ellipse and f restricted on S! is injective, then f is injective on B(0,1). [Hint: Apply

the argument principle to f(z) —wqy for wy € C. |

2. Prove, for a > 0, that
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where '), is the square in C with vertices +(n + 1/2)(1 £ ¢) show that

3. Show that

4. By considering the integral
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(You may assume that there exists C' such that |cscmw| < C on I, for all n and all w.)

5. Write down a definition of a branch of log(z + ) which is holomorphic in the cut-plane
C\{z:Rez=0,Imz < —1}.

By integrating log(z +7)/(2% + 1) around a suitable closed path, evaluate
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and, by taking real parts, show that
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6. Show that _ _ _
/°° sin px sin qx 7 min(p, q)
— S dv=——-—,
0 x 2
where p,q > 0.
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7. Let a € C with —1 < Rea < 1. By considering a rectangular contour with corners at
R, R+, —R + iw, —R, show that
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and hence evaluate, for real n,
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