A2: Metric Spaces and Complex Analysis Sheet 8, sections 11.4-12 from the notes — MT20

1. Evaluate, using a keyhole contour cut along the positive real axis, or otherwise,

$$\int_0^\infty \frac{x^{1/2} \log x}{(1+x)^2} \mathrm{d}x.$$

2. Let $n \ge 2$. By using the contour comprising [0, R], the circular arc from R to $Re^{2\pi i/n}$, and $[0, Re^{2\pi i/n}]$, show that

$$\int_0^\infty \frac{\mathrm{d}x}{1+x^n} = \frac{\pi}{n} \csc\left(\frac{\pi}{n}\right).$$

3. Suppose that $f: U \to \mathbb{C}$ is a holomorphic function on an open set $U \subseteq \mathbb{C}$, and suppose $f'(a) \neq 0$ for some $a \in U$. Show that there is an r > 0 such that f is injective on B(a, r) and that its inverse g is given on the image of such a disk by

$$g(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z) - w} dz.$$

where $\gamma(t) = a + re^{it}, t \in [0, 2\pi].$

[*Hint:* You may find it helpful to use the winding number version of Cauchy Integral Formula.]

- 4. In each of the following cases find a conformal mapping from the given region G onto the open unit disc $\mathbb{D} = B(0, 1)$.
 - $i) \ G = \{z \in \mathbb{C} : \operatorname{Im} z > 0\},\$
 - *ii*) $G = \{ z \in \mathbb{C} : z \neq 0 \text{ and } -\pi/4 < \arg z < \pi/4 \},\$
 - *iii*) $G = \{z \in \mathbb{C} : |z i| < \sqrt{2} \text{ and } |z + i| > \sqrt{2} \}.$

5. Let \mathbf{Let}

 $A = \{ z \in \mathbb{C} : |z - 2| < 2 \text{ and } |z - 1| > 1 \}; \qquad B = \{ z \in \mathbb{C} : 0 < \operatorname{Re} z < \pi \}.$

Find the image of A under the map $z \mapsto 1/z$ and the image of B under the map $z \mapsto \exp(iz)$.

Let $H = \{z \in \mathbb{C} : \text{Im } z > 0\}$. Given $a, b \in H$ find a conformal bijection $H \to H$ of the form $z \mapsto \lambda z + \mu$ which maps a to b.

Deduce that for any two points $a, b \in A$ there is a conformal bijection $f : A \to A$ such that f(a) = b.

- 6. Let $\mathbb{R}_{\infty} = \mathbb{R} \cup \{\infty\} \subset \mathbb{C}_{\infty}$.
 - i. Show that group Γ of Mobius transformations T for which $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$ are exactly those of the form T(z) = (az+b)/(cz+d) where a, b, c, d can be chosen to be real.
 - ii. Calculate the group Γ_1 of Mobius tranformations which preserve $\mathbb{H} = \{z \in \mathbb{C} : \Im(z) > 0\}$ [*Hint: Why must* Γ_1 *be a subgroup of* Γ ?]
- 7. Write down a bounded solution u(x, y) to the Dirichlet problem for the following region and boundary conditions:

$$U = \{x + iy : 0 \le y \le 1\}, \qquad u(x, 0) = 0, \qquad u(x, 1) = 1.$$

Hence, using appropriate conformal maps, solve the Dirichlet problem for the following regions and boundary conditions.

- *i*) $U = \{z : r_1 \le |z| \le r_2\},$ u(z) = 0 when $|z| = r_1,$ u(z) = 1 when $|z| = r_2.$
- *ii*) $U = \{z : \text{Im } z \ge 0\},$ u(x, 0) = 0 when x > 0, u(x, 0) = 1 when x < 0.
- $\begin{array}{l} iii) \ U = \left\{ z: |z| \leqslant 1 \right\}, \qquad u(z) = 0 \ \text{when} \ |z| = 1 \ \text{and} \ \mathrm{Im} \ z < 0, \qquad u(z) = 1 \ \text{when} \ |z| = 1 \\ \text{and} \ \mathrm{Im} \ z > 0. \end{array}$
- iv) $U = \{z : \text{Im } z \ge 0\}, \quad u(x,0) = 0 \text{ when } |x| > 1, \quad u(x,0) = 1 \text{ when } |x| < 1.$

A2: Metric Spaces and Complex Analysis: Sheet 8, sections 11.4-12 from the notes— $\rm MT20$

- 8. (Optional.) Let $f : \mathbb{D} \to \mathbb{D}$ be a holomorphic function, where $\mathbb{D} = B(0, 1)$.
 - i) Show that if f(0) = 0 then $|f(z)| \le |z|$ for all $z \in \mathbb{D}$. (*hint*: show that $|f(z)/z| \le 1/r$ if $|z| \le r$, for any r < 1). Show that if, moreover, $|f(z_0)| = |z_0|$ for some $z_0 \in \mathbb{D}, z_0 \ne 0$, then f is a rotation.
 - *ii*) Show that if $a \in \mathbb{D}$ the function

$$g_a(z) = \frac{a-z}{1-\bar{a}z}$$

maps \mathbb{D} to \mathbb{D} .

iii) Show that if $f : \mathbb{D} \to \mathbb{D}$ is holomorphic and bijective then there is some $\theta \in \mathbb{R}$ and $a \in \mathbb{D}$ such that $f(z) = e^{i\theta}g_a(z)$.