
A1 Differential Equations I: MT 2020/21 Sheet 2.

Systems of non-linear ODEs.

2.1 The aim of this question is to fill in the details of the proof of Theorem 1.6 in
the lecture on Picard’s theorem for a system of two first order ODEs via the
CMT (video on section 1.7).

Consider the system of first order ODEs, for the functions y1 and y2

y′1(x) = f1(x, y1(x), y2(x)) (1)

y′2(x) = f2(x, y1(x), y2(x)) (2)

with initial condition y1(a) = b1, y2(a) = b2. (3)

If we write

y(x) =

(

y1(x)
y2(x)

)

, f(x, y) =

(

f1(x, y)
f2(x, y)

)

, b =

(

b1
b2

)

;

then we can write the problem (1), (2), (3) in vector form as

y′(x) = f(x, y(x)), (4)

y(a) = b, (5)

We will use the l1 norm in R
2, ||(y1, y2)||1 = |y1|+ |y2|. Let Bk(b) be the disc in

R
2, centre b, radius k. Define the set S = {(x, y) ∈ R

3 : |x−a| ≤ h, y ∈ Bk(b)}.
We assume f is continuous on the set S, with sup

S

||f(x, y)||1 ≤ M , and for

x ∈ [a− h, a+ h], f(x, y) is Lipschitz continuous with respect to y on S. That
is, there exists L such that for x ∈ [a− h, a+ h] and u, v ∈ Bk(b),

||f(x, u)− f(x, v)||1 ≤ L||u− v||1. (6)

We will work in the space Ch = C([a− h, a+ h];Bk(b)) of continuous functions
from [a−h, a+h] to the disc Bk(b) in R

2, with the sup norm defined for y ∈ Ch

by
||y||sup := sup

x∈[a−h,a+h]

||y(x)||1.

We can write the initial value problem (4), (5) as an integral equation

y(x) = b+

∫ x

a

f(s, y(s))ds (7)

where by the integral we mean that we integrate componentwise.

Now we define

(Ty)(x) = b+

∫ x

a

f(s, y(s))ds

so we can write equation (6) as a fixed point problem in Cη, for 0 < η ≤ h.

y = Ty.
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(i) Prove that for g ∈ Ch,
∥

∥

∥

∥

∫ x

a

g(t)dt

∥

∥

∥

∥

1

≤

∣

∣

∣

∣

∫ x

a

∥

∥g(t)
∥

∥

1
dt

∣

∣

∣

∣

.

[You may assume that if h : [a, x] → R is continuous then
∣

∣

∫ x

a
h(t)dt

∣

∣ ≤
∣

∣

∫ x

a
|h(t)| dt

∣

∣ .]

(ii) Prove that for suitable 0 < η ≤ h, T satisfies the conditions of the CMT so
has a unique fixed point. Explain why this solution is also the unique solution
of (4), (5).

[You may assume that Ch is a complete metric space]

(iii) Explain why, if the Lipschitz condition (6) holds for all x ∈ [a − h, a + h]
and u, v ∈ R

2 (instead of only u, v ∈ Bk(b)), then there is a unique solution for
all x ∈ [a− h, a+ h].

(iv) Show that solutions depend continuously on the initial data. (You will have
to decide what this means precisely.)

2.2 (a) Consider the second order differential equation for y(x)

y′′(x) = F (x, y(x), y′(x)), x ∈ [a− h, a+ h], (8)

with initial conditions y(a) = c, y′(a) = d. Set S = {(x, u, v) : |x − a| ≤
h, |u − c| + |v − d| ≤ k}. Suppose that F (x, u, v) is continuous on S and that
there exists L such that at all points in S

|F (x, u1, v1)− F (x, u2, v2)| ≤ L(|u1 − u2|+ |v1 − v2|).

By writing (8) as a system of differential equations, and demonstrating that the
conditions of Theorem 1.6 (Picard’s existence theorem for systems, see question
2.1) are satisfied, show that there exists 0 < η ≤ h such that (8) with the given
initial conditions has a unique solution on [a− η, a+ η].

(b) Now consider the second order linear differential equation for y(x)

p(x)y′′ + q(x)y′ + r(x)y = s(x), x ∈ [a, b] (9)

with initial condition y(x0) = y0, y
′(x0) = y1, with x0 ∈ [a, b]. Here p(x) 6= 0

and p, q, r and s are continuous. Show that (9) with the given initial conditions
has a unique solution on [a, b].

(c)(Taken from Collins) Consider the problem

yy′′ = −(y′)2, y(0) = y′(0) = 1.

(i) Use part (a) to show that the problem has a unique solution on an interval
containing 0.

(ii) Find the solution and state where it exists.

2



Autonomous systems of ODEs and the phase plane

The material for these problems is covered in the videos on sections 2.1-2.4.

2.3 Consider the plane autonomous system

dx

dt
= x(1− 2x− y),

dy

dt
= y(1− x− 2y).

By showing that the axes of the phase plane and the line x = y are solution
trajectories explain why a solution starting in the octant x > 0, x < y must
remain in this region for all time.

Find all the critical points and analyse them to determine their local behaviour
including the local direction of the trajectories and whether the points are stable.

Sketch the phase plane.

Use the Bendixson-Dulac theorem, with φ = 1/xy, to show that there are no
closed trajectories in R = {(x, y) : x > 0, y > 0}.

In an application, when suitably scaled, x and y represent species populations
which are in competition for resources. Use the phase plane to interpret what
happens to the populations in the long term.

2.4 Find and classify the types of all critical points of the system

dx

dt
= (a− x2)y,

dy

dt
= x− y,

in each of the cases (i) a < −1
4
, (ii) −1

4
< a < 0, (iii) a > 0.

Consider the case a = −1/4 and analyse in detail the behaviour at all the
critical points. Hence sketch the phase plane in this case.

[Optional] Consider the case a = 1/2 and analyse in detail the behaviour at all
the critical points. Hence sketch the phase plane in this case.
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