Part A Linear Algebra MT 2020, Sheet 2 of 4

1. Find all the invariant subspaces of A viewed as a linear map on \mathbb{R}^2 or \mathbb{R}^3 when A is

(25)	(5)	1	-1	
$\begin{pmatrix} 2 & -3 \\ 1 & 2 \end{pmatrix}$,	0	4	0	
$\begin{pmatrix} 1 & -2 \end{pmatrix}$	$\begin{pmatrix} 1 \end{pmatrix}$	1	3 /	

Now consider A as a linear map on \mathbb{C}^2 or \mathbb{C}^3 . Find the invariant subspaces of A. Also find invertible matrices P such that $P^{-1}AP$ is upper triangular.

- 2. Let A be an $n \times n$ matrix over \mathbb{C} . Show that trace of A is equal to the sum of the eigenvalues, counting each eigenvalue *m*-times where *m* is its algebraic multiplicity. Show that the determinant of A is the product of the eigenvalues, again counting algebraic multiplicity. [Use the upper triangular form, rather than reproducing the proof in Prelims.]
- 3. Calculate the minimal and characteristic polynomials of the following matrices.

1	(1	1	$0 \rangle$		(-2)	-3	-3)		(-1)	-3	6
	_	-9	-4	1	,	-1	0	-1	,	-1	1	-7
1	<u> </u>	-3	3	2)	/	0 /	1	-1 ,)	0	1	-3

4. (a) Find two 2×2 matrices over \mathbb{R} which have the same characteristic polynomial but which are not similar.

(b) Find two 3×3 matrices over $\mathbb R$ which have the same minimal polynomial but which are not similar.

(c) Find two 4×4 matrices over \mathbb{R} which have the same minimal polynomial and the same characteristic polynomial, but which are not similar.

(d) [Optional] Find two nilpotent matrices over \mathbb{R} which have the same minimal polynomial and the same characteristic polynomial, and which have kernels of the same dimension, but which are not similar.

5. The Fibonacci numbers x_n are defined by $x_{n+2} = x_{n+1} + x_n$ and $x_0 = 0, x_1 = 1$. Find a formula for x_n in terms of n. [Hint: Find a two-by-two matrix A that maps (x_n, x_{n+1}) to (x_{n+1}, x_{n+2}) .]

6. Decide whether or not the matrix $A = \begin{pmatrix} 1 & 6 \\ 3 & 5 \end{pmatrix}$ can be diagonalised over the field

- (i) \mathbb{R} ;
- (ii) $\mathbb{C};$
- (iii) \mathbb{Q} ;
- (iv) any field where 1 + 1 = 0;
- (v) $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ with addition and multiplication modulo 7.

7. Consider the matrix

$$A = \left(\begin{array}{rrr} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

Is A diagonisable over \mathbb{C} , \mathbb{R} , and \mathbb{F}_3 ?

8. Let V be an n-dimensional complex vector space, and let $T \colon V \to V$ be a linear transformation.

(i) Show that for each *i*, ker $T^i \subseteq \ker T^{i+1}$, and deduce that there exists a non-negative integer *r* such that ker $T^r = \ker T^{r+1}$. Prove that ker $T^r = \ker T^{r+j}$ for all $j \ge 1$. Hence, or otherwise, show that $V = \ker T^r \oplus \operatorname{Im} T^r$.

(ii) Suppose that the only eigenvalues of T are 0 and λ , where $\lambda \neq 0$. Let $W := \operatorname{Im} T^r$, where r is as above. Show that $T(W) \subseteq W$, and that the restriction of T to W has λ as its only eigenvalue. Let S denote the restriction of $(T - \lambda I)$ to W. Show that 0 is the only eigenvalue of S. By applying (i) with S, W in place of T, V, show that $S^m = 0$ for some m.

- 9. Let $T: V \to V$ be a linear transformation and suppose that for some $v \in V$, $T^k(v) = 0$ but $T^{k-1}(v) \neq 0$. Prove that the set $\mathcal{B} = \{T^{k-1}(v), \ldots, T(v), v\}$ is linearly independent, and its span U is T-invariant. Find the matrix of T restricted to U relative to the basis \mathcal{B} .
- 10. Let $T: V \to V$ be linear and V be finite dimensional. Assume $m_T(x) = x^m$. Prove that

 $0 \subsetneqq \ker(T) \subsetneqq \ker(T^2) \subsetneqq \cdots \subsetneqq \ker(T^{m-1}) \subsetneqq \ker(T^m) = V.$

and that these inclusions are indeed strict.