Part A Linear Algebra MT 2020, Sheet 3 of 4

1. For the matrix

$$A = \left(\begin{array}{rrr} 0 & 2 & -1 \\ -2 & 3 & -2 \\ -3 & 2 & -2 \end{array}\right)$$

compute a base-change matrix P such that $P^{-1}AP$ is in Jordan normal form using the following steps:

- (a.) Compute $\chi_A(x)$. Show that it is of the form $-(x-\lambda_1)(x-\lambda_2)^2$ for some distinct λ_1,λ_2 .
- (b.) Find basis vectors u of $Ker(A \lambda_1 I)$, v_1 of $Ker(A \lambda_2 I)$, and v_1, v_2 of $Ker(A \lambda_2 I)^2$.
- (c.) Working from first principles, explain why $(A \lambda_2 I)v_2$ is a scalar multiple of v_1 .
- (d.) Let $w_1 = u$, $w_2 = (A \lambda_2 I)v_2$, and $w_3 = v_2$. What is the matrix of the linear transformation A with respect to this basis? Write down the base-change matrix P.
- 2. Write down all possible Jordan normal forms for matrices with characteristic polynomial $(x \lambda)^5$. In each case, calculate the minimal polynomial and the geometric multiplicity of the eigenvalue λ . Verify that this information determines the Jordan normal form.
- 3. Solve the following system of equations. $x_{n+1} = 2y_n z_n$, $y_{n+1} = y_n$, $z_{n+1} = x_n 2y_n + 2z_n$, $x_0 = y_0 = z_0 = 1$. What is the solution in general for x_0, y_0, z_0 arbitrary?
- 4. Prove that every square matrix over the complex numbers is similar to its transpose. I.e. prove that given any $(n \times n)$ -matrix A there exists an $(n \times n)$ -matrix P such that $P^{-1}AP = A^t$ where A^t is the transpose of A.
- 5. Let $\{e_1, e_2, e_3\}$ be the usual basis $\{(1,0,0)^t, (0,1,0)^t, (0,0,1)^t\}$ of \mathbb{R}^3 . Express the dual basis to

$$\{(1,0,0)^t,(1,-1,1)^t,(2,-4,7)^t\}$$

in terms of e'_1, e'_2, e'_3 .

- 6. Let S be a set of vectors in V. Define S^0 to be the set of linear functionals that vanish on S. Prove that $S^0 = \langle S \rangle^0$.
- 7. Suppose that $T: V \to W$ is a linear map and that V is finite dimensional. Prove that $\operatorname{Im}(T') = (\operatorname{Ker}(T))^0$. [You may assume that $W = \operatorname{Im}(T) \oplus X$ for some subspace X of W.]
- 8. Let U be a subspace of V. Show that the restriction map $f \mapsto f|_U$ defines a linear map of dual spaces $V' \to U'$. Hence prove that there is a natural injection $V'/U^0 \to U'$ which is also surjective when V is finite dimensional.
- 9. (i) Let V be a finite dimensional vector space over F. For a linear transformation T: V → V define the trace tr(T) to be the trace of the matrix representing T with respect to some basis B of V. Show that tr(T) is well-defined, i.e. show that it is independent of the choice of basis B.

- (ii) Let $\operatorname{Hom}(V,V)$ be the space of linear maps from V to itself. For $S \in \operatorname{Hom}(V,V)$ define $f_S : \operatorname{Hom}(V,V) \to \mathbb{F}$ by $T \mapsto \operatorname{tr}(S \circ T)$. Show that f_S is a functional on $\operatorname{Hom}(V,V)$ and that $S \mapsto f_S$ defines a linear isomorphism of $\operatorname{Hom}(V,V)$ to its dual that does not depend on a choice of basis.
- 10. Let V be finite dimensional. A *hyperplane* in V is defined as the kernel of a linear functional. Show that every subspace of V is the intersection of hyperplanes.