Chapter 9

The delta function and
other distributions

9.1 Introduction

In this chapter we give a very informal introduction to distributions, also called
generalised functions. We do two rather amazing things: we see how to differ-
entiate a function with a jump discontinuity, and we develop a mathematical
framework for point forces, masses, charges, sources etc. Furthermore, we find
that these two ideas find their expression in the same mathematical object: the
Dirac delta function.

When I learned proper real analysis for the first time, we spent ages agonising
about continuity, left and right limits, one- and two-sided derivatives, and so on.
The result was a lingering fear of pathological functions (continuous everywhere
differentiable nowhere, that sort of thing) and associated technicalities. It came
as a great relief to find (much later on, alas) that by getting away from the
pointwise emphasis of introductory analysis one can give a beautifully consistent
and holistic definition of the derivative of the Heaviside function'

H(x):{l x>0,

0 x < 0.

In pointwise mode, the best we can do with this function is to talk about the
left and right limits of its derivative at the origin. Both these are equal to zero,
but the function nevertheless gets up from 0 to 1. There must be something
behind this!

The Heaviside function and its derivative, the delta function (or distribu-
tion), are ubiquitous in whole swathes of linear applied mathematics, not to
mention discrete probability. They, and other distributions, are invaluable in
developing an intuitive framework for modelling and its interaction with math-
ematics. Don’t be inhibited about using them: your mistakes are unlikely to
do worse than lead to inconsistencies (which I hope you are constantly on the
look out for) and plainly wrong answers, rather than the deadly ‘plausible but
fallacious’ solution.

IThe value H(0) = 0 has been assigned for consistency with probability, as we shall see;
but for reasons that will shortly become clear it really doesn’t matter what value we take.
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Consistency check on the
signs: F' > 0 and dy/dx is
negative to the right of a,
positive to the left.
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Figure 9.1: The Heaviside function H(x). Its derivative vanishes for all 2 # 0
but it still gets up from 0 to 1. How?

9.2 A point force on a stretched string; impulses

force F

Tension T’

Figure 9.2: A string with a point force.

Let’s start with a couple of motivating physical examples. We have all at
some time worked out the displacement of a stretched string under the influence
of a point force, as sketched in Figure 9.2. Under the standard assumptions that
the string is effectively weightless, and that the force F' (measured upwards, in
the same direction as y) can be considered as acting at a point 2 = a and
only causes a small deflection, the equilibrium displacement y(x) of the string
satisfies

dz—y—O 0<z<a, a<z<L (9.1)
de - Y 9 ) .
with the force balance condition
dy r=a+
T-= =F. 9.2
L 62

Notice the implicit assumption that y itself is continuous at x( although its
derivative is not.

Now we might ask, can we somehow put the force on the right-hand side
of (9.1), and have the equilibrium conditions hold at x = a as well? After all, if
we have a distributed force per unit length f(z) on the string, the usual force
balance on a small element (see Figure 9.3) gives the equation?

&y
da?

2You might wonder why there is a minus sign on the right. If we were to consider the
unsteady motion of the string, Newton’s Second Law in the form

= —f(z), 0<z<L.

mass X acceleration = force
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force fdx

T =<
o~
T
Figure 9.3: Force on an element of a string.
For example, when f = —pg, the gravitational force on a uniform wire of line

density p, the displacement is a parabola (the small-displacement approximation
to a catenary).
Can we devise some limiting process in which all the force becomes concen- Question expecting the answer
trated near x = a, with the total force fOL f(x) dx tending to F'? A possible way Y%
to do this would be to take

F/2e a—e<x<a-te,
fley =" .
0 otherwise,

and then to let € — 0. But would we get the same answer if we took the limit
of some other concentrated force density, and in any case how, exactly, are we
to interpret the result of this limiting process?

In a very similar vein, recall the concept of an impulse in mechanics. In
one-dimensional motion, the velocity v of a particle under a force f(t) satisfies

Newton’s equation
dv
hp—y
m= = 1),

from which .
1
t) =v(0) + — ds.
o) = o0+ - [ f)ds
If the force is very large but only lasts for a short time, say

f(t){l/e 0<t<e,

0 otherwise,

then we can integrate the equation of motion from ¢t = 0 to t = € to find

1[I I
vie)=— [ —dt=—.
m Jo € m

gives
0%y 9%y
Prm =T 5+,
ot oz
leading to the minus sign in question. Many mathematicians, writing the wave equation as
0%y 9%y
P g T =,
ot oz
would write the equilibrium equation for the string as
d?y
—T— = f(x).
L
Note the absence of minus signs in the impulse example that follows.



Notice that the wire slope has
a jump discontinuity at a
point force.
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8

€3 €2 €

Figure 9.4: Three approximations to the delta function; €; > €3 > e3 > 0.

Letting ¢ — 0, we have the result of an impulse I: the velocity v changes
discontinuously from 0 to I/m. Again, we can ask the question, can we put
the limiting impulse directly into the equation of motion, rather than having to
smooth it out and take a limit?

9.3 Informal definition of the delta and Heavi-
side functions

Obviously the answer to all our questions above is yes. The powerful and elegant
theory of distributions allows us to model point forces and much more (dipoles,
for example). However, the intuitive view of a point force (mass, charge, ...) as
the limit of a distributed force turns out to be technically very cumbersome, and
nowadays a more concise and general, but physically less intuitive, treatment
is preferred. This oblique approach requires some groundwork, and we defer a
brief self-contained description until Chapter 10. You will survive if you don’t
read it, although I recommend that you do: it is not technically demanding or
complex.

In this chapter we concentrate on the intuitive approach to the delta function.
Although this is not how the theory is nowadays developed, it absolutely is how
to wvisualise this central part of it. Taking the examples of the previous section
and stripping away the physical background, consider the functions

fe(x){l/% —e<x <e,

0 otherwise.
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They are shown in Figure 9.4 for various values of €. The following facts are
obvious:

° / fe(x)dx =1 for all € > 0;

° for x # 0, fe(x) =0 ase—0.

The limiting ‘function’ is very strange indeed. It has a ‘mass’, or ‘area under
the graph’, of 1, but that mass is all concentrated at x = 0. This is just what
we need to model a point force, and even though we don’t quite know how to
interpret it rigorously, we provisionally christen the limit as the delta function,
o(x).

Two extremely useful properties of the delta function are now at least plau-

sible. Firstly, as ¢ — 0,
r 1 z >0
(s)ds — ’
/_Oo Je(s) {O r <0,

and the right-hand side is the Heaviside function H(z) with its jump disconti-
nuity at x = 0. So, we should have

/_OO 5(s) ds = H(a),

at least for z # 0. Furthermore, fingers crossed and appealing to the Funda-
mental Theorem of Calculus, we should conversely have

d
aH(ac) = 0(x).

That is, delta functions let us differentiate functions with jump discontinuities.
The Heaviside function has a jump up of 1 at x = 0, and its derivative is (),
and by an obvious extension, the derivative of a function with a jump of A at
= a contains a term Ad(z — a).

The second vital attribute of §(x) is its ‘sifting’ property. Intuitively, for
sufficiently smooth functions ¢(z),

/jo fe(@)od(z)dr — ¢(0) ase— 0,

simply because all the mass of f.(x), and hence of the product f.(z)d(z), be-
comes concentrated at the origin. So, we conjecture that we can make sense of
the statement

| ot e = 000 (9.3)

and, by a simple change of variable,

oo
| s -0 do = o(a)
—0o0
for any real a.

These assertions are eminently plausible. However, if you stop to think how
you might make them mathematically acceptable, difficulties start to appear.

For now, let’s not worry what
its value is at z = 0.

A proof is requested in the
exercises.



Assuming we believe that
differentiation still makes
sense.
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Would we get the same results if we used a different approximating sequence
ge(x)? Do we need to worry about the value of H(0)? Having differentiated
H(z), can we define do/dx? Clearly this last runs a big risk of being very
dependent on the approximating sequence we use.

For all these reasons, and more, the theory is best developed slightly differ-
ently, without the ‘epsilonology’.® The clue lies in the sifting property. Using
the fact that integration is a smoothing process, we can get away from the
‘pointwise’ view of functions which is so troublesome, and instead define distri-
butions via averaged properties. An example is the integral (9.3), which leads
to the definition of 6(z).* Before looking at this idea in more detail, we consider
some examples.

9.4 Examples

9.4.1 A point force on a wire revisited

All our discussion suggests that we should model the point force F' acting at
x = a by a term Fd(x — a) in the equilibrium equation for the displacement,
and assume that the latter now holds for all x, so that

d?y

T&Y
dx?

=—Fi(z —a), 0<z<L.

We now know that this means that the left-hand side is the derivative of a
function which jumps by F' at £ = a. But the left-hand side is also the derivative
of T'dy/dx. Thus, putting the delta function into the equilibrium equation leads
automatically to the force balance

dy1*"
T— =—F
], -

a—

and there is no need to state this separately.

9.4.2 Continuous and discrete probability.

We can interpret each of the approximations fe(x) of Figure 9.4 as the probabil-
ity density of a random variable X. whose value is uniformly distributed on the
interval (—e,€). The mean of this distribution is 0 and its standard deviation
is e/ V3. As € — 0, the random variable becomes equal to 1 with certainty, be-
cause its standard deviation tends to zero, and any random variable with zero
standard deviation must be a constant. This suggests that we can interpret the
delta function as the probability density ‘function’ of a variable whose prob-
ability of being equal to zero is 1. Likewise, the cumulative density function
(distribution function) Fx, (z) = P(X. < ) tends to the Heaviside function.’

3See [42] page 97 for this neologism.

4The process of generalisation by looking at a weaker (smoother) definition using an inte-
gral, rather than a pointwise definition, is common in analysis. A famous example in applied
mathematics is the definition of weak solutions to hyperbolic conservation laws, which leads
to the Rankine—-Hugoniot relations for a shock.

5In this case the strict inequality in the definition of Fx_ suggests that we should take
‘H(0) = 0. Looking in the books on my shelf, I find that there is no consensus in the probability

For example,

1 1.2
z) = e~ 2% /€
9(0) = Jom

as discussed in Section 9./
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.

Figure 9.5: Cumulative density functions for the distributions of Figure 9.4.

In a similar vein, we can take approximations

ge() = ——e 371
V21

which are the density functions of normal random variables with mean zero and
standard deviation e. These also clearly tend to the delta function as ¢ — 0.

Now suppose we have a coin-toss random variable X taking values +1 with
equal probability % As X can only equal 1 or —1, all its probability mass
is concentrated at these values: its density function is zero for x # +1. The
density of this random variable is

fx(@)=2((z+1)+6(z—1)).

In this way, we can unify continuous and discrete probability — at least when
the number of discrete events is finite. The extension to infinitely many discrete
events is much more difficult, and may require the tools of measure theory.

9.4.3 The fundamental solution of the heat equation

If we set € = 2t in the functions g. of the previous section, we get the function

1 2
z,t) = ——e /4,
Direct differentiation shows that g(x,t) satisfies the heat equation. As we saw
above, as t | 0, g(z,t) — d(z). In summary, g(x,t) satisfies the initial value
problem
dg g

a—@, t>0, —o0o < x <00,

g(z,0) = d(x).

This solution represents the evolution of a ‘hot spot’, a unit amount of heat

world whether to use P(X < z) or P(X < z) to define the distribution function (no wonder
I can never remember). It is a matter of convention only, and would lead to corresponding
conventional definitions of 7(0). Another highly plausible definition is H(0) = %, on the
grounds that any Fourier series or transform inversion integral for a function with a jump
converges to the average of the values on either side. This sort of hair splitting is one reason
why the pointwise view of distributions is not really workable.

What is its distribution
function?

Note the infinite propagation
speed of the heat: t =0 is a
(double) characteristic of the
heat equation. Note also the
very rapid decay in the
solution as |z| increases.



Confirm that u(z,t) satisfies
the heat equation by
differentiating under the
integral sign.

This is just the Laurent
expansion.
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which at ¢ = 0 is concentrated at x = 0.
With this solution, we can solve the more general initial value problem

du_0% 450 —w<a<
ot Ox?’ pTOS T
u(z,0) = up(x).

We first note that the initial data ug(x) can be written as

o0
un() = [ unl€)3(e—€)de
— 00

by the picking-out property of the delta function. Now the evolution of a solution
with initial data §(x —¢) is just g(@ —&, t) where g is as above. The integral over
& amounts to superposing the initial data for these solutions, so that each point
contributes a delta function weighted by ug(€) d€. Because the heat equation is
linear, we can superpose for ¢ > 0 as well, so we have

utet) = [ T uo(©)gle — &, de

— 00

1 o0 2
- - —(z=)7/4t ¢
N [ RGE ¢

This solution has a physical interpretation as the superposition of elementary
‘packets’ of heat evolving independently.®

9.5 ‘Balancing the most singular terms’
If we have an equation involving ‘ordinary’ functions, and there is a singularity

on one side, there must be a balancing singularity somewhere else. For example,
we could never find coefficients a,, such that

2
- =ap+a1x+ax” + -
S T

because the left-hand side clearly has a 1/x (simple pole) singularity at x = 0.
On the other hand there is an expansion

1

sinx

a_q 2
=—+aot+ax+ar”+---,
x

and furthermore we know that a_; = 1 because 1/sinz ~ 1/ as & — 0. Thus,
both sides have this singularity in their leading-order behaviour as x — 0.

This is a simple but powerful idea, and it applies to distributions as well. In
our naive approach, a delta function is a ‘function’ with a particular singularity
at = 0. Thus, if part (for example the right-hand side) of an equation contains
a delta function as its ‘most singular’ term, there must be a balancing term
somewhere else. For instance, when we write

dv _
dt

5(t),

I
m



ck and look at the point
m a string in this light.

9.5. BALANCING SINGULARITIES 125

for the motion of a particle subject to a point force, there must be another
singularity to balance the delta function. It can only be in dv/dt, so we
know straightaway that v has a jump at ¢ = 0; furthermore, we know that the
magnitude of the jump is I/m, by ‘comparing coefficients’ of the delta functions.
In this case it is trivial to find the balancing term, because there is only one
candidate. Suppose, though, that the equation has a linear damping term:
mfl—z = —mkuv + I(t),

where k£ > 0 is the damping coefficient. The balancing singularity is still in
the derivative dv/dt, simply because dv/dt always has worse singularities than
v itself.  Going back, we can check: if dv/dt has a delta, then v has a jump,
which is indeed less singular.

9.5.1 The Rankine—Hugoniot conditions

In Chapter 7 we looked briefly at the Rankine-Hugoniot conditions for a first
order conservation law
orP  0Q

ot oz
where, for example, P is the density p of traffic and @ the flux up. We saw that
we can construct solutions in which P and ) have jump discontinuities across
a shock at x = S(t), provided that

as _ (@]

dt — [P]

0

We can interpret this condition as a balance of delta functions. If P has a (time-
dependent) jump of magnitude [P](¢) at x = S(t), we can (very informally) write

P(z,t) = [P](t)H (z — S(t)) + smoother part,

and similarly for Q(x,t). Differentiating, we find

oP s .
e —[P](t)d (x — S(t)) o + less singular terms,
z—Q = [Q](t)d (x — S(t)) + less singular terms.

x

Adding these and balancing the coefficients of the delta functions, the Rankine—
Hugoniot condition drops out.

9.5.2 Case study: cable-laying

In Chapter 4, we wrote down the model

dF, dF,
= —Dg, — =-B c A= ; 4
I s y+pegA=0 (9-4)
A 2 40 ind 0=
E Ak i F,sinf + F, cosf =0, (9.5)

SThere is also an interpretation in terms of random walkers following Brownian Motion:
see Exercise 9 on page 137.

Differentiation makes matters
worse, integration makes them
better.



Because there is a reaction
force between the sea bed and
the cable, and maybe some
friction, we do not expect the
right-hand sides of (9.4) to be
continuous at s = 0.
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where
(Bz, By) = (,ongCOSG—i—pAZ—e) (—sin@, cos ). (9.6)
s

for a cable being laid on a sea bed, where 6 is the angle between the cable
and the horizontal. We stated, on a rather intuitive basis, that the boundary
conditions at s = 0 are § = 0 (no worries about this one) and df/ds = 0,
namely continuity of 6 and df/ds, since § = 0 for s < 0. We can now see why
this is necessary. If df/ds is not continuous, then d?6/ds? has a delta function
discontinuity at s = 0. But then there is no balancing term in (9.5) since, loosely,
(9.4) shows that both F, and F), are at least as continuous as B, and B,;, and
so from (9.6) they are no worse than df/ds with its assumed-for-a-contradiction
jump discontinuity; we have duly obtained said contradiction.

9.6 Green’s functions

9.6.1 Ordinary differential equations

The two-point boundary value problem”

L) = - (@) +alely = fa), 0<w<1 1)
(0) = y(1) =0, 0.)

is standard. often arising in a separation of variables calculation in an exotic
coordinate system. As a matter of terminology, we call the combination of L,
the interval on which it is applied, and the boundary conditions at the ends
of this interval, the differential operator for this problem. Changing any of
these changes the differential operator. The operator (9.7), (9.8) above is called
self-adjoint, a term that will be made clearer later.

One of the first things that one does with problems of this kind is to show
that they can be solved with the help of a Green’s function. Provided that
the homogeneous problem (f(z) = 0) has no non-trivial solutions, the Green’s
function is the function G(z, &) that satisfies

LeG(z,8) =0, O<é<ax, xz<€<, (9.9)
G(z,0) = G(z,1) =0, (9.10)

with some rather opaque-seeming conditions at £ = z:

Gzt =0, {p(f)%]z:i =1 (or {%E:j = ﬁ) . (9.11)

If we can solve this problem, then we have a representation for y(z) as
1
o) = [ G5 de
0

The elementary proof of this is by direct construction of the Green’s function
via variation of parameters, assuming the existence of appropriate solutions of



ke inverting a matrix A
e Ax = b; see
se 7.
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the homogeneous equation, and we do not describe it here. The point is that we
need only calculate G once, and then we have the solution whatever we take for
f(x).® In this way, we can think of the operation of multiplying by the Green’s
function and integrating as the inverse of the differential operator L.

This is all very well, but I don’t think it gives a good intuitive feel for what
the Green’s function really does. Suppose, though, that we take the solution

y(z) = / G, €)f(€) de (9.12)

and apply L, to it. Assuming that we can differentiate under the integral, we
get

Loy(z) = / L., €)(€) de
— f(z)

We recognise this: it is the sifting property. Whatever f we take, when we
multiply f(§) by £,G(z,§) and integrate, we get f(xz). Thus, as a function
(actually, a distribution) of x, G(z, ) satisfies

EIG('T75) = 5({E - 5)7

that is
2 (0 ) + a6 =06 -9

Also, the boundary conditions y(0) = y(1) = 0 mean that we need to take
G(0,8) =G(1,6) =0,

so that (9.12) satisfies the boundary conditions whatever f(z) we take. In sum-
mary, as a function of x, the Green’s function satisfies the differential equation
with a delta-function on the right-hand side, and with the homogeneous version
of the original boundary conditions.

This calculation tells us several things. Thinking physically, it tells us that
the Green’s function is the response of the system to a point stimulus (force,
charge, ...) at x = £. The solution (9.12) is then just the response to f(x), re-
garded as a superposition of point stimuli (the delta function at x = £) weighted

by f(£) d€.

"The subscript to £ tells you which variable to use. Strictly speaking, in much of the
discussion to follow all the derivatives should be partial, but it seems to be conventional to
stick to ordinary derivatives.

8 A very common use of the Green’s function is to turn a differential equation into an integral
equation as a prelude to an iteration scheme to prove existence, uniqueness and regularity.
Often the equation has a linear part and some nonlinearity as well, and we use the Green’s
function for the linear part. A simple example of this procedure is Picard’s theorem for local
existence and uniqueness of the solution to dy/dx = f(z,y), y(0) =y, for a set of first-order
equations, where the first step is to write

y(@) = yo + /0 " i y(e) de;

the only modification needed is to adapt the Green’s function methodology to cater for initial
value problems, as described in Exercise 4.



Note that
5 —€) = (¢ —a).

128 CHAPTER 9. DISTRIBUTIONS

Looking more mathematically, if we expand L,G(z, &) as

d*G
L,G(x,§) = p(sr:)ﬁ + lower order derivatives,
x

we see by balancing the most singular terms (the highest derivatives) that
d*>G/dx?® must have a delta function, scaled by p(z), at o = £. That is,

azg=o o] o (o (5] 5)

This should ring a bell. It is the same as the ‘opaque’ jump conditions (9.11),
except that it refers to the x—dependence of G(z, §) instead of the é~dependence.
Indeed, comparing the original definition of G given in (9.9)—(9.11) and recalling
that G(0,¢&) = G(1,&) = 0, we see that the two formulations are identical except
that = and ¢ are swapped. That is, we have established that, for self-adjoint
problems,

G(z,§) =G( x)
and that
LeGl,€) = (¢ — ).

We are now in a position to tie together the = and £ dependence of G(z, ).
Consider the integral

/0 Y() LG, €) — Gl ) Ley(€) de.

Inserting the right-hand sides of the differential equations for G and y, we get
1 1
| 9©£e6(.9) ~ 6. L) d = [ y(©5(¢ ) - Gl 1) de
0 0

— () - / G(a,€)(¢) de.

On the other hand, integrating the same expression by parts, we get

ly(f)ﬁsG(waé)—G(waé)ﬁay(f)d£= 11/(6) < P(E)E +q(§)G(x,€)
0 0 d€ d€

& (rO2) +atewte)) ac

— W% - GO

3
dy dG dG dy

1
—/0 P(ﬁ)%% _p(f)d_gd_f dg

~ao

0

=0.

Thus we retrieve the solution

y(z) = / G, €) () de.
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This calculation is really the key to the whole procedure. It tells us that the
differential equation and boundary conditions (that is, the differential operator)
for G as a function of £ must be such that we can integrate by parts and get
zero (so in the second line of our calculation, we must have zero multiplying
dy/dx, about which we know nothing at the endpoints).

Non-self-adjoint problems

For a self-adjoint problem, such as those discussed thus far, G is symmetric and
the two operators, for y and G, are the same. Now suppose that we have a more
general problem, such as

2
Loy(e) = a(e) T4 +5() 52 + o)y = f(0),

with the boundary conditions (sometimes called primary boundary conditions

aoy(0) + Boy'(0) = 0, ay(1) + Ay’ (1) = 0.

(to save ink, ¢y’ = dy/dx). We aim to find a differential operator for G which
allows us to follow the calculation above as closely as possible. That is, we want
to find a combination of derivatives £* such that, as a function of £, G(z,¢)
satisfies

LeG(x,§) = 0(z = &),

with appropriate boundary conditions. We can then integrate by parts as above;
and provided that

/0 Y(E) LG (1, €) — Gz, €) Ley(€) dE =0,

we have the answer )
o) = [ Gle)se)de.
0

For the general operator just introduced, the new operator, called the adjoint
operator, is given by

L) = g (alw)o(@) — - (b)) + cla)o(a),

with the adjoint boundary conditions

a(0) (v (0) + Bov'(0)) + Bo(a’(0) = b(0))v(0) =
a(1)(aro(1) + B1o'(1)) + Bu(a’(1) = b

as you will find out by doing Exercise 5.
You might very reasonably ask why we bother with the adjoint when all we
need to do is differentiate the answer

y(z) = / G(a,€) () d



Think of some physical
interpretations for u, and then
for the Green’s function G.

The Laplacian is self-adjoint
(L=L*)...
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under the integral sign to show that

1
Loy = /O £.G(x.€)f(€) d

so that
L.G(x,§) =6(x— &)

with no mention of adjoints at all. An aesthetic reason is the mathematical
structure uncovered (compare vector spaces and their duals), but a compelling
practical reason is that if the primary boundary conditions are inhomogeneous,
for example y(0) = yo # 0, y(1) = y; # 0, then only the adjoint calculation
works (try it!).

One can take all this a great deal further, both making it more rigorous
and looking at more general problems. I recommend reading the relevant parts
of [32] or [54] if you want to do this; we are moving on to a brief look at partial
differential equations.

9.6.2 Partial differential equations

Much of the theory we have just seen can be generalised to linear partial differ-
ential equations. This is so much vaster a topic that it is only feasible to discuss
one example in detail, the Green’s function for Poisson’s equation, which is
probably the closest in spirit to the two-point boundary value problems we have
been discussing so far. We then briefly mention two other canonical problems,
for the heat equation and the wave equation.

We first have to generalise the delta function. In our informal style, this is
easy: we just say that for x € R”, the delta function d(x) is such that

for all smooth functions ¢(x). As before, we can think of this as a limiting
process in which the delta function is the limit of a family of functions whose
mass becomes more and more concentrated near the origin.” Thinking about
how the integral is calculated, say in two dimensions with dx = dx dy, we may
also write

o(x) = 6(x)d(y),

and similarly in three or more variables.
Now suppose that we have to solve the problem

Lyxu(x) = V?u(x) = f(x)
in some region D, with the homogeneous Dirichlet boundary condition
u(x)=0 on 9D.

We choose the Green’s function to satisfy

9They might, but need not, be radially symmetric; we might, but won’t, worry about how
to define integrals in n dimensions.
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LeG(x,€) = 3(€ )

and look at the integral
/ () LeG(x,€) — G(x,€) Leu(x) dE = / (&) V2G(x,€) — Gx,©)V2u(x) d
D D
- /D w(€)5(E — %) — G(x.€)[(€) de
= ufx) - /D G(x.€)/(€) de.

On the other hand, using Green’s theorem, we have
[ w60, - 6x. V() de (9.13)
D

= /aD uw(@n - VeG(x,8) — G(x,6)n - Veu(x) dSe
=0, (9.14)

provided that we take G(x,£) = 0 for £ € 9D, where we do not know the normal
derivative of u. Putting these together, we have

u(x) = /D Glx, ) (€) de.

It is an easy generalisation to account for nonzero Dirichlet data u(x) = g(x)
on 0D: we just get an extra known term in (9.14).

Two more things should be said about this calculation. The first is that we
have not yet said anything about the nature of the singularity of G(x, &) at x = £
(in one space dimension, as we saw above, the first derivative of G has a jump
and @ itself is continuous). Knowing as we do that line (in two dimensions) or
point (in three) charges generate electric fields which are solutions of Laplace’s
equation, we should not be surprised to see logs in two dimensions and inverse
distances in three. This is confirmed by a simple version of the calculation we
have just done.'® In R? for example, take & = 0 and suppose that

V3G = §(x) (9.15)

in the whole space. Clearly, then, G is radially symmetric: G = G(r) where
r = |x|. That means that

an:A+§

and if we want G — 0 as r — oo, we take A = 0. Now use the divergence
theorem on the left-hand side of (9.15), integrating over a sphere of radius r
centred at x = 0. The left-hand side gives a surface integral equal to —4wB/r
and the volume integral of the delta function on the right is equal to 1. We
conclude that the singular behaviour of G(x,&) near x = ¢ is

1

G(x,§) ~ T Ik g +O(1),

...because uV2G — GV3?u is a
divergence and can be
integrated (a generalisation of
integration by parts).

Or line/point masses and their
gravitational potentials, fluid
sources and their velocity
potentials, or heat sources and
their steady-state temperature
fields.

The meaning of ~ and O(1) is
explained in Chapter 12.



You can safely ignore this
section, but have a look if you
have seen the classical
treatments of these problems.

Two minus signs from the
exponent cancel.
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and in two dimensions the corresponding result is
1
Glx,€) ~ 5-log[x — €] + O(1).

The second point to make about the Green’s function for the Laplacian
is that it has a natural physical interpretation. The singular part we have just
discussed gives us the electric potential due to a point charge (or whatever) with
no boundaries. The remaining part, G + 1/(4n|x — £]), is known as the regular
part of the Green’s function and it gives the potential due to the image charge
system induced by the boundary condition G = 0 on dD. Indeed, almost all
the Green’s functions for which explicit formulas are available are constructed
by the method of images (possibly with the help of conformal maps).

The heat and wave equations

To round off, let’s look quickly at two other equations, the heat and wave equa-
tions in two space variables. Let us look at the simplest initial-value problem
for the heat equation, on the whole line, namely

ou  0%u
E—wzo, —o0 < <00, t>0,

u(x,0) = ug(x).

Ew,tu =

By any of a variety of methods (for example, the Fourier transform in z), we
obtain the solution in the form

= 2%% /,OO up(§)e™ /M de.

It is no surprise that this is closely related to the Green’s function. The adjoint
to the forward heat equation is the backward heat equation, and as a function
of £ and 7 (the analogue here of £ above), G(x,t;£, 7) satisfies

. G G
LirG =50+ 5 = 0l&—)i(r 1)

and, remembering the fundamental solution of the forward heat equation (see
Exercise 8 and reversing time,

Glati6,7) = — (= /A(t=r),
2/m(t —7)

The usual integration in the form

00 t
/ / ule ;G — GL¢ ;u dr d§
—oo J0

then yields precisely the solution we derived earlier. It is an exercise to generalise
this result to the heat equation with a source term, Lu = f(x,t); you will get a

10Tn the more classical treatment of Green’s functions, you see essentially this calculation
when you integrate uV2G — GV2u over a region consisting of D with a sphere of radius e
around x = ¢ removed. There, the singular behaviour of G is prescribed (and looks mysterious:
why this form?), whereas here it emerges naturally.

Can you now answer the
marginal question after
equation (4) on page 33?7
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\ (z,9)
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Figure 9.6: Domain of integration for the Riemann function for the wave equa-
tion.

double integral involving the product of G and f which has the simple physical
interpretation of being a superposition of solutions of initial value problems
starting at different times. Do it and see.

For the inhomogeneous wave equation in the canonical form

0%u

Lu= 0x0y -

f(z,y),

with Cauchy data u and du/dn given on a non-characteristic curve I, we proceed
in the same spirit but differently in detail. One of the differences of detail is
that the the Green’s function is now usually called a Riemann function, and we
denote it by R(x,y;&,n). The differential operator 9% /0xdy is self-adjoint, but
we have to consider the direction of information flow carefully (see Figure 9.6).
When we solve

*G
oo

we look for a solution valid for ¢ < x, n < y. Then the ‘usual’ integral

LR =

6(€ —z)o(n—y),

/uE*R — RLu

is taken over the characteristic triangle shaded in Figure 9.6, and after use of
Green’s theorem yields the solution in terms of an integral along I' from A to
B and an integral over the shaded triangle.
The Riemann function for the wave operator is particularly simple: Differentiate it and see.

R(z,y;&,n) = H(z — ) H(y — n),

ie. it is equal to 1 in the quadrant £ < x, n < y and zero elsewhere. It yields
the familiar D’Alembert solution (see [42]). Unfortunately this is a rare explicit
example. Although it is not hard to prove that the Riemann function exists,
only for a very few hyperbolic equations can it be found in closed form.
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Sources and further reading

The material on Green’s functions is just a small step into Sturm-Liouville and
Hilbert—Schmidt theory and eigenfunction expansions/transform methods. If
you want to explore further, [25] gives a straightforward account of the theory
for ordinary differential equations, [42] present an informal introduction to the
corresponding material for partial differential equations, and the excellent [54]
contains a more thorough account.

9.7 Exercises

1. Truncated random variables. Suppose that X is a continuous random
variable taking values in (—o0,00), for example Normal. The truncated
variable Y is defined by

v — X if X <a
a if X >a.

What are its distribution and density functions?

2. A useful identity. Interchange the order of integration (draw a picture
of the region of integration) to show that

[ [ rsrasas= [[a-ereae

Generalise to reduce an n—fold repeated integral of a function of a single
variable to a single integral.

3. Green’s function for a stretched string. Integrate twice to find the
solution of the two-point boundary value problem

d?y

Tz = @), 0<z<l y(0)=y(1)=0

in the form
1
T) = G(x d€.
o) = [ Gl de

Verify that if you differentiate twice under the integral sign and use the
jump conditions at £ = x you recover the original problem.

4. Green’s function for an initial value problem.

Use the result of Exercise 2 to show that the solution of the initial value
problem

d?y dy

CE=f), 0<z<l )= L) (916)

is

y(z) = /0 “(@ - () de.



9.7. EXERCISES 135

Now pick X > x and write this answer in the form

X
y(z) = /O G, €)1 (€) de;

what is G? Show that G satisfies

d*G dG

Verify by differentiating under the integral sign that your answer satisfies
the original problem. What is the adjoint problem (differential equation
and boundary conditions) to the original problem (9.16)?

This kind of Green’s function is the ordinary differential equation analogue
of the Riemann function for a hyperbolic equation.

5. Adjoint of a differential operator. Suppose that

d2y
Lyy = a(x)@ +b()

dy

aIr + c(x)y,

with
aoy(0) + Boy'(0) = 0, ary(1) + 1y’ (1) = 0.
Show that the adjoint is

with

a(0) (aov(0) + Bov’(0)) + Bo(a’(0) — b 0
a(1)(e1v(1) + B1v'(1)) + Br(a'(1) — b(1))v(1) = 0,

in either or both of the following ways.

(a) Show that yL*v —vL,y can be integrated by parts as in the text; The easy way if you know the
(b) Write answer.
. d?v dv ) ]
Emv = A(I)—2 + B(I)— + C(:C)’U What you might do if you
dx dx didn’t know the answer and

and hack away at the integration by parts (start by integrating the highest couldn’t guess it.
derivatives) until everything has been integrated. Whenever terms crop

up that can’t be integrated up, set them equal to zero to find A, B and

C, and similarly determine the adjoint boundary conditions.

Hence verify that, for self-adjoint operators, £,y is of the form

L= g (o) ) + aloy

for some functions p(z) and ¢(x), while the boundary conditions are as
above. Also show that periodic boundary conditions, y(0) = y(1), ¥'(0) =
y'(1), give a self-adjoint operator as long as p(0) = p(1).

What is the adjoint operator if Ly = d*y/dz?, 0 < x < 1, and the
boundary conditions for y are y(0) = y(1) +¢'(1), v'(0) = 0?



If A is symmetric, then v =w
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6. The Fredholm Alternative: linear algebra and two-point bound-

ary value problems. Suppose that A is an n X n matrix, and we want
to solve the linear equations
Ay =f

for the vector y given f. Show that, if y; and y, are two solutions, then
their difference is an eigenvector of A with eigenvalue 0.

We know that if the rank of A is n, then A is invertible, its determinant
(equal to the product of the eigenvalues) is nonzero, and the solution y
exists and is unique. Suppose now that the rank of A is n — 1, so that
the null space of A has dimension 1 and precisely one eigenvalue of A is
zero. That is, there are vectors v and w, unique up to multiplication by

a scalar, such that
Av =0, wlA=0";

they are the right and left eigenvectors of A with eigenvalue 0. Put another
way, the corresponding homogeneous system Ay = 0 has the nontrivial
solution cv for any scalar c.

Premultiply Ay = f by w' to show that

e Either w'f =0, in which case the solution exists but is only unique
up to addition of scalar multiples of v;

e Or w'f+£0, in which case no solution exists at all.

Mlustrate by finding the value of fs for which the equations

G C)-()

have any solution at all; interpret geometrically.

This result is known as the Fredholm Alternative. It applied, mutatis
mutandis, to two-point boundary value problems. For example, consider

2
Loy = % +a’y=f(z), O<az<1l, y0)=y1l)=0 (9.17)
(the analogue of Ay = f). Show that the corresponding homogeneous
problem L,y = 0 has only the trivial solution y = 0 unless a« = mm for
integral m (the analogue of A having zero for an eigenvalue). Find the
corresponding eigenfunctions (analogous to v and w, here equal as £, is
self-adjoint). Suppose that o = 7. Multiply (9.17) by the corresponding
eigenfunction and integrate by parts to show that there is only a solution

to (9.17) if
1
/ f(x)sinmx dr = 0,
0

the analogue of w'f = 0. Generalise to the case of any (not necessarily
self-adjoint) second order differential operator.

Of course, this is not a coincidence. One could take a two-point boundary
value problem and discretise it using finite difference approximations to
the derivatives; the result would be a set of linear equations whose solv-
ability or otherwise should, as n — oo, be the same as that of the original
continuous problem.
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7. Matrix inversion. In this question, we develop the matrix analogue of
the calculation of Section 9.6.1 involving the Green’s function for a two-
point boundary value problem for an ordinary differential equation. For
clarity, we use the summation convention (see page 22) throughout.

Suppose that the matrix equation Ay = f (in which A is not necessarily
symmetric) is written in component form as

Aijy; = fi (identify this with L,y = f).

Let the inverse matrix A~! have components (A7');; = Gy;, so that from
y = A7 f we have

1
b= Gofy  (identity with y(o) = | Gl.)7(€)do)

Let 0;; be the Kronecker delta, the discrete analogue of the delta function. That is, 6;; = 0 if i # j,
Show that A='A =T and AA~! =1 are written bij = 1if i = j. What is 6;;7

GijAjk = dik (identify with £,G = d(x — &)),
A”ij = 5ik-

Take the transpose of the last equation to identify it with LG = §(§ —z). Note that, just as
Lastly, take the dot product with the vector (y) to show that 5(z —§) =6(§ — ), so

8ij = 6.
0= Ai;Giryr — GizAjeyr = yi — Giz i3
identify this with the calculation involving [ yL*G — GLy.

8. The fundamental solution of the heat equation. Show that the

heat equation

ou_ o

ot 0Ox2
has similarity solutions of the form wu(z,t) = t* f(x//t) for all a and find
the ordinary differential equation satisfied by f. Show that

/o; u(z, t) dz

is independent of ¢ when a = —%, use the result of Exercise 1 of the
next chapter to show that in this case u(x,0) o §(z), and hence find the

fundamental solution of the heat equation.

9. Brownian Motion. A particle performs the standard drunkard’s random
walk on the real line, in which in timestep 4, of length 6t, it moves by
X, = +0x with equal probability % It starts from the origin and the
increments are independent. Define

Show that E[Wn] =0, Var[Wn] = n5x2/5t. Now let n — oo with ndt = ¢ This scaling is the simplest
fixed and 6z = /dt. Call the limiting process (assuming it exists!) 1W;. that allows proper time

Use the Central Limit Theorem to show that variation yet keeps the
variance of the limit finite.



Do not worry about the
infinite displacement!

Can you find a dimension-
less parameter to quantify this
modelling assumption?
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e For each t > 0, W; has the Normal distribution with mean zero and
variance t.

Show also that

° Wo = 0.
e For each 0 < s < t, W; — W is independent of W.

The resulting stochastic process is called Brownian Motion and it is central
to modern analysis of financial markets. Give a heuristic argument that
the sample paths (realisations, graphs of the random walk) are continuous
in ¢ but not differentiable.

Now let p(z,t) be the probability density function of many such random
walks (as a function of position z for each t). Go back to the discrete
random walk and, as in the discussion of Poisson processes in Chapter 7,
condition on one step to write down

p(z,t+0t) = L (p(x — 6z,t) + p(x + 6z, 1)).

Expand the right-hand side in a Taylor series and use dz = /6t to show
that

op 1 9%p

ot 20x2
Explain why p(x,0) = d(x) and hence find p(z,t) (see Exercise 8).

The % in front of the second derivative in the heat equation is a diagnostic
feature for a probabilist as distinct from a ‘physical’ applied mathemati-

cian.

Regular part of the Green’s function for the Laplacian.

A horizontal membrane stretched over a region D is stretched to tension
T and a normal force f per unit area is then applied. The displace-
ment (which, like the force, is measured vertically upwards) is zero on
the boundary 0D. Show that the displacement u(x,y) of the membrane
satisfies

TV?u=—f in D, u=0 on JD.

Suppose that f(x,y) = §(x — &) where x = (z,y) and & = (&, 7n) is known.
How is u(z, y; £, n) related to the Green’s function for the Laplacian in D?

Now suppose that the force is due to a very heavy ball which is free to
roll around, and that it is in equilibrium at £. Suppose that we model its
effect by that of a point force. Take a small square centred on x = £ and
resolve forces in the z— and y—directions to show that the gradient of the
regular part of GG vanishes at x = £. Do you think there is always just one
such equilibrium point? If not, when might you have one and when more
than one?

“What’s the word beginning with D which means distribution? Oh,
distribution.”



Chapter 10

Theory of distributions

The time has come to look at the theoretical underpinning of the delta function
and its relatives. You may choose not to read this chapter, but I promise that
it is not complex or technically demanding. We begin with a few (as few as we
can get away with) necessary definitions.

10.1 Test functions

We noted earlier that the proper way to approach 6(x) was by thinking of the
result of multiplying a suitably smooth function ¢(z) and integrating to get
¢(0). The first step in setting up a robust framework is to define a class of
‘suitably smooth’ functions, called test functions. We say that ¢(z) is a test
function if

e ¢(z) is a C* function. That is, it has derivatives of all orders at each
point z € R.

e ¢(x) has compact support: that is, it vanishes outside some interval (a, b).
(The support is the closure of the set where ¢ is non-zero.)

The first of these requirements makes these functions very smooth indeed.! This
high degree of regularity guarantees a trouble-free ride for the theory, the reason
being that if ¢(z) is a test function, then so are all its derivatives.

We should note that test functions do exist (and that we never need to know
much more than this: they are a background tool). The easiest way to see this is
to construct one, using the famous example of a function which has derivatives
of all orders, and hence a Taylor series, at = 0, but which is not equal to the
sum of its Taylor series. That is, look at

0 z <0
@ — —_ )
() {e‘l/l z >0,

which vanishes for z < 0, is positive for £ > 0, and is C*°. The only thing
wrong with this function is that it does not have compact support. To fix this

I'Roughly speaking, only real analytic functions (defined as equal to the sum of a convergent
Taylor series) are smoother, and they can never be test functions because they cannot have
compact support (why not?).
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Because every derivative of ¢
is itself differentiable, the
derivatives are all continuous
and bounded.

See Exercise 5 on page 148.
Perhaps those pathological
real-analysis examples were
more useful than I thought.



It’s also a bit like an inner
product: but note that f and
¢ lie in different spaces.

Measurable functions would be
better, but that requires too
much machinery.
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up, just multiply by, say, ®(1 — x):
p(z) = ¢(z)2(1 — x)

is a perfectly good test function with support on the interval (0, 1).
We also need a definition of convergence for a sequence of test functions
{¢n(x)}. We say that ¢, (z) — 0 asn — oo if

e ¢,(z) and all its derivatives gb%m)(x) tend to zero, uniformly in both  and
m;

e There is an interval (a,b) containing the support of all the ¢,,.

The first of these is an incredibly strong form of convergence: the ¢, have no
room to wriggle at all. The second stops them from running away to infinity as
n increases.

The only other thing to say about test functions is that we shall denote them
by lower case Greek letters, usually ¢ or .

10.2 The action of a test function

Suppose that f(z) is an integrable? function (we denote such functions by lower
case Roman letters f, g, etc.). We define the action of f on a test function ¢(x)
by

(f.6) = /_ ” Fw)(e) dr.

So, this action is a kind of weighted average of f(z). If we know the action of
f on all test functions, we should know all about f itself (a bit like recovering a
probability distribution from its moments). The action, regarded as a map from
the space of test functions to R, satisfies the usual linearity properties, such as

(f;a¢ + b)) = a{f,d) + b{f, ¥),

for real constants a, b. Also, if ¢,(z) — 0 in the sense defined above, then
(f,dn) — 0 as a sequence of real numbers.

10.3 Definition of a distribution

In defining distributions, we use the very mathematical idea of taking things
we already know about, here functions, and dropping some of their properties
while retaining others in order to obtain something broader or more general.
In this way, we see that distributions are indeed ‘generalised functions’, despite
the inexplicable reluctance of some to use the term.

As foreshadowed above, the properties that we want to keep are those to do
with the action of a function on a test function; that is, we keep the ‘smoothing’
idea of averaging while quietly dropping all worries about pointwise definition.
We do this is such a way that all the properties of distributions are consis-
tent with the corresponding properties of (say) piecewise continuous functions.

2We sidestep the question of what we mean by this, exactly. Piecewise continuous will do
for now, or locally Lebesgue integrable.
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Then, all such functions are subsumed within the larger class of distributions.
The two properties that we keep are those we reached at the end of the

previous section: linearity and continuity. We define: a distribution D is a

continuous linear map from the space of test functions to R, denoted by

D:¢ (D,¢) €R.

The result of the map, (D, ¢), is known as the action of D on ¢. We say that
two distributions are equal if their action is the same for all test functions.
The properties of linearity and continuity are as above:

(D,a¢ + b)) = a(D,¢) + b(D, ¢),
for real constants a, b, and
if ¢n(x) =0 as n— oo, then (D, ¢,)— 0.

Evidently any piecewise continuous function f(z) corresponds to a distribution
Dy with the obvious action (Dy, ¢) = (f, ¢). Indeed, we normally don’t bother
to write Dy, but just use f itself. This is an example of the consistency referred
to above.

We shall mostly use the letter style of D, H to denote distributions, unless
they already have a name. The set of test functions is often called [script D, need
typeface for this] and the set of distributions is then written [script D prime].
Sometimes we write D(x) to emphasise the dependence on x; the dependence
is of course in the test functions, but it’s quite OK, and indeed a good idea, to
think of distributions as depending on x as well.

Example: the delta function. There could be no better example than the
delta distribution, § or §(xz). It is defined as a distribution by its action on a
test function ¢(x):

(0,0) = ¢(0).

You should check carefully that this action does indeed define a distribution
satisfying the properties above. Again, it is OK, and indeed a good idea, to
think intuitively of the action of the delta function as

@@z/&&@m@m.

However, you should always use the formal definition to prove anything about
0(x) or any other distribution.

10.4 Further properties of distributions

If our distributions are to be useful, we need to give them some more properties.
We assume that, if D and £ are distributions, a is a real constant, ¢(zx) is a test
function and ®(z) is a C*° function (not necessarily a test function), then there
are new distributions D + &, aD, D(x — a) and D(ax) such that

o D+&,0)=(D,9)+ (£, 0);

‘We could also have written

(0(z), d(x)) = $(0).



Watch out for the modulus
sign.

Note that ®(x)¢(x) is a test
function even if ®(x) is not.

What properties of test
functions do we use here?
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® <aD7 ¢> = a’<D7 ¢>7
o (D(z — a),¢(x)) = (D(x), ¢(z + a));

%'w,as(x/a».

o (®(2)D(x), ¢(x)) = (D(x), ®(x)¢(x)).

You should check all these when D corresponds to an integrable function f(z);
it will give you intuition as to why the definitions have been made in this way.
Note in particular that from the third definition, we have

o (D(ax), ¢(x)) =

(0(x — a), ¢(x)) = (6(x), o(x + a))
= ¢(a).

As expected, we have recovered the sifting property of the delta function.

10.5 The derivative of a distribution

One more idea completes our introduction to the distributional framework. If
we want to make sense of ideas such as d?y/dz? = 6(x — ¢), we had better have
a definition of the derivative of a distribution. Again, consistency with ordinary
functions provides the way in. If f(x) is differentiable, with derivative f'(z),
then integrating by parts we calculate the action of f’(x):

oo = [ T P (@)é() da

— j@o)|™, - [ " f@) (@) de
= {f(2).8/()).

Notice how the compact support of the test function takes care of f(x)p(x)|” .
We define the derivative D' of a distribution D in terms of its action by

<D/a ¢> - 7<ID7 ¢/>

(note that ¢'(x) is also a test function). The point is that although we do not
know about D’, we do know about D, so we can calculate (D, ¢') and hence
(D', 6).

For example, let us show that H'(z) = d(x). We define the Heaviside func-
tion H(x) by its action:

(H,6) = /0 " () da

this is entirely consistent with our view of H(x) as the unit step function since

H(@)o(w) = {Ss(x) i i 8

Note how we slip in and ¢
stating the x—dependence
explicitly.
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Now consider the action of H'(z):

(H'(x), ¢(x)) (x), ¢ (x))

= —/ ¢ (x) dx
0
= ¢(0)
= (0(x), ¢(x)).
Since their actions are identical, we conclude that H'(z) = 6(z) (as distribu-
tions).

We can extend this definition recursively, to give action of the m—th deriva-
tive of D as

(D™ (2), ¢()) = (~1)"™(D, ¢!™ (x))

form =1,2,3,.... Because every derivative of a test function is a test function,
we see that distributions have derivatives of all orders too, an example of the
technical simplicity of this theory.

10.6 Extensions of the theory of distributions

We conclude with an overview (a glimpse, really) of two vital extensions of the
theory just outlined.

10.6.1 More variables

It is a very straightforward business to define distributions in the context of
functions of several variables. We first define test functions to have compact
support and to be C'*° in all their arguments. Then, we define distributions as
continuous linear maps from this space of test functions to R. In particular, the
delta function satisfies

(0(x), ¢(x)) = ¢(0).

The partial derivatives of a distribution D(x) are defined recursively using
the formula
99

Again, D has derivatives of all orders, and because the mixed partial derivatives
of the test functions are always equal, so are the mixed partials of D. Thus,
identities such as V A VD = 0 are automatically true for distributions. The
whole theory is splendidly robust, and we need have no qualms at all about
writing down equations such as V2G = §(x — &).

oD
<a_x77¢> = _<D7

10.6.2 Fourier transforms

Space does not permit a full description of the theory of Fourier transforms
of distributions in one or more variables. Nevertheless, here is an outline. For
technical reasons, we use a slightly different class of test functions, which are still
C but no longer have compact support. Instead, they and all their derivatives
decay faster than any power of x as * — Z£oo. In principle, this defines a



See Exercise 12 on page 150 to
see why this would not be so
for compact support test
functions.

You might want to write this
out, swapping the dummy
variables x and k in the
second line.

Check this one for an ordinary
function.

Line 1 is the definition of the
transform; line 2 is the
distributional derivative; line 3
is a standard identity; in line 4
we swap x for k and shift it to
the first argument of the
action.
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different class of distributions (known as tempered distributions — the compact
support ones are Schwartz® distributions), but we won’t notice the difference.

The new test functions can be shown to have the nice property that if ¢(x)
is a test function then so is its Fourier transform; this is why we use this class
of test functions. We write the transform as*

~ s .
o = [ sl)etaa.
This is just the usual Fourier transform; we write the inverse transform as
0@ =5 [ v an
¥) =5 N e ,

and we recall the standard results

o~

% = —iko, xp = —i%7
the first of which is established by integration by parts and the second by dif-
ferentiation under the integral sign.

Let’s see what the action of the Fourier transform of an ordinary function is
on a test function. The Fourier transform of a tempered distribution D is then
defined to be consistent with this; as ever, we look at its action and transfer the
work to the test function. A formal calculation gives

do= [ ( I f(af)e“”dm> o(k) dk

_ /_ Z ( /_ o; ¢(k)e““dk) @) da

=(f,9)

We therefore define

and similarly we define the inverse by
(D, ¢) = (D, 9).

Notice how important it is that ngS should be a test function too. If it were not,
we could not be confident that some of these actions are defined at all. Notice
too that the factors of 2 don’t appear here: they are all hidden in the inverse
of ¢.

Using these deceptively simple formulas, we can prove that the Fourier trans-
form of the derivative D’ = dD/dx is —ikD:

3Rather to my surprise, Schwartz, who invented the theory in 1944, died as recently as
the time of writing. A fearless opponent of political and military oppression and a great
mathematician, his support was the interval (1915,2002).

4Beware: notations differ, both in the signs in the exponent and in the placement of the 27
which can appear in the exponent, or symmetrically as 1/\/% multiplying both the transform
and its inverse. The definition here is probably the commonest among applied mathematicians.
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(D', ¢) = (D', )
= —(D,d¢/dk)
= _<Da @)
= (—ikD, ¢)

as required. It is an exercise for you to prove that the transform of zD is
—idD/dk.
We end this section by finding the transforms of d(z) and 1. (Yes, 1 has
a Fourier transform in this theory; so do , |z|, etc.).® The transform of §(x)
must surely be 1: informally, Very informally, because etk®
is not a test function, although
R ik k0 one could ‘truncate’ it by
5($)6 dr =e =1 multiplying by a test function
—© which is small for |z| > R and
taking R — oo.

Formally,
(0,) = (6,9)
= $(0)
:/ ¢(x) dx
=(L,9)
so we do indeed have A
(k)=1
For the inverse, we have
< 1 > —ikx
0= — d(k)e dk
21 J_ o
_ L
o’

so taking the transform of both sides, remembering that (6 = 6, we get
1(k) = 276 (k).

You may like to show this from the formal definitions alone, using the fact that

for test functions (1, @) = 27 (1, ¢).

The heat equation

We conclude with an example: it’s one we have seen before but we do it in a
different way. Consider the initial value problem for the heat equation

ou  0%u
§:ﬁ7 —o0 < x < 00, t>0,

u(z,0) = §(z).

5The transforms of sums of delta functions are the characteristic functions of discrete
random variables.




If the idea of extending our
definition of functions to make
sense of the result

Ld
[ 5=
—1 $2
appeals to you then you
should definitely read [50].
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This time we’ll take a Fourier transform in . The equation for i(k,t) is

94
9 _ k2, —o00o < k<oo, t>0,
ot

w(z,0) = 6(k) = 1.

The solution is ,

ik, t) = e ¥t
and inversion by any of a number of methods (see Exercise 14 on page 150)
yields the answer

1
u(x,t) = T4

2/t

Sources and further reading

The theory of distributions in its modern form was developed by Schwartz [53];
the epsilonological approach is exemplified by Lighthill’s book [38]. My descrip-
tion of the modern theory is heavily based on the very approachable book by
Richards & Youn [50] (my main quibble with that book is the intrusive 27 in
the exponent of the Fourier Transform).

10.7 Exercises

1. Constructing delta functions from continuous functions I: by the
Lebesgue Dominated Convergence Theorem. Suppose that f(x) €
L' is continuous and [*_ f(z)dz = 1. Take a test function ¢(z) and
show that, as € — 0,

*1 T
o= [ 2 (5) otayda = o00)
as follows. First show that

= O;f(sw(w)d&

Next, show that
[f(s)o(es)| < M [f(s)]

for some constant M > 0, that if f(s) € L! then f(s)¢(es) € L, and that,

for each s, f(s)p(es) — f(s)¢(0) as € — 0. Deduce from the Dominated

Convergence Theorem that you can justify interchanging the limit and the

integral:

tim [ (s)(es) ds = o(0).

2. Constructing delta functions from continuous functions II: by
splitting the range of integration. If you don’t know about Lebesgue
integration, derive the following slightly weaker result. Suppose that f(x)
is any continuous function with

/O;f(x)dle, /<><> |f(2)] dz < oo, /O;|»Tf($)|d:v<oo.

— 00
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Take a test function ¢(z) and show that, as e — 0,

L= [ (%) st@rde = o00)

as follows. First write £ = es in the integral and split the range of inte-
gration up to get

-1/ 1/e oo
I, :/ —|—/ + f(s)p(es) ds.
—oo —ive Jive

Noting that |¢(z)| is bounded and using the idea that if || < ¢, | [ gh| <
Jlgh| < ¢ [g|, show that the first and third integrals tend to zero as
€ — 0 because [ is integrable. For the inner integral, expand ¢(es) using
Taylor’s theorem to get

1/ve
[ e (0000 + eso o) ) s

—1/ve
where £(s) lies between 0 and s. Show that the first term in this integral
tends to what we want and, noting that |¢’| is bounded, that the second
tends to zero as € — 0.

3. Delta sequences. Consider the functions

n sin nx
@) = iy o el =

Sketch them and show that f,(x) tends to §(x) as n — oo, in the distri-
butional sense, so for any test function ¢(z),

{fn:®) = ¢(0)

as n — o0o. Use the method of Exercise 3, but be careful when estimating
the integrals as f,(x) does not satisfy all the conditions of that question.
Repeat for g, (z).

This might suggest that if d,,(x) is a sequence tending to d(x) then d,,(0) —
oo. Construct a piecewise constant example to show that this is false.

4. Discrete and continuous sources. Suppose that u(x) is a classical so-
lution of V2u = f(x) in R", n > 2, where f(x) is smooth and has compact
support, and appropriate growth conditions at infinity are assumed. Let
¢(x) be a test function. Use Green’s theorem in the form

Viw — v2=/ — —w——, 10.1
/Dv w—wVv aDvan wo (10.1)
where D is a region containing the support of f, to show that

(u, V20) = (f, 9).

Now suppose that we approximate f(x) by delta functions, defining the
sequence of distributions



Remember that X7e~X — 0
as X — oo for all N.
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and taking the limit n — oo in such a way that all the weights «,, tend to
zero but

(Fns @) = ([, 0)

for all test functions ¢. Also let u, be the solution of V?u, = F,. Show
that

<un7v2¢> = <~7:na ¢>7

and deduce that w, — u (as a distribution). Interpret this result in
terms of the gravitational potential due to a finite mass distribution (or
in electrostatic terms).

=1/ Consider

0 <0
(0] = -
(@) {61/z x> 0.

The function e

Show that for x > 0 its n-th derivative ®)(z) is a polynomial in 1/x
times e~1/? and hence that lim, o ®™ (z) = 0. Deduce that the Taylor
coefficients of this function are all zero. Does the complex function e~1/%
have a Taylor series at z = 07 If not, what does it have?

The distribution ¢(az). Show from the interpretation as an integral
that

—4(z)

—4(x).

lal
Derivatives of the delta function. Show carefully, using the definition

of a distributional derivative, that, if ¥(z) is a smooth (C'*°) function and
D a distribution, then (DV)" = D'U + DU’ (Leibniz). Deduce that

d(ax) =

0 m <n,

xn(;(m) (3;) = M5(mn) (;c) m>n

(6(™) = mth derivative). What is 26(z)? Show that §(z) = —zd'(x).

Convergence of series of distributions. We say that a sequence {D,, }
of distributions converges to D if

(Dn, ¢) — (D, ¢)

for all test functions ¢(x). This is an incredibly tolerant form of conver-
gence, because our definition of convergence of a sequence of test functions
is so stringent: show that if D,, — D, then the same applies to all the
derivatives, so that Dﬁlm) — D) Show also that you can differentiate a
convergent series of distributions term by term.

Find the Fourier series of the sawtooth function

= — — 0<x<m,

x
—_ = — —m <x<0.
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10.

11.

Now differentiate both sides, noting that the jumps of 1 in f(z) at = 2nr
contribute delta functions §(x — 2n7), to establish the result

i 5(x—2n7r)=% i cos mzx,

n=—oo m=—0oQ

an identity which makes classical nonsense but perfect distributional sense.

Note: it can be shown that every distribution D is the distributional limit
of a sequence of test functions (which are C°°). So the set of distributions
is not unboundedly diverse.

Derivative of a distribution. Let D(x) be a distribution. Show (by
considering its action) that

D'(a) = }ngb D(z+ h})L - D(x)

Use the right-hand side of this equation to confirm (again by considering
the action) that §(x) = H'(z).

Dipoles.  The derivative of the delta function, §’(z), is known as a
(one-dimensional) dipole, which you can think of as the limit as ¢ — 0
of a positive delta function at x = € and a negative one at = 0 (see
Exercise 9). What is its action on a test function ¢ (z)?

In hydrodynamics, a mass dipole aligned with the z—axis is obtained as the
limit of point (in two dimensions, line) sources of strength ¢ at (+e, 0, 0),
keeping the product m = 2eq constant as e — 0. Explain why the velocity
potential for inviscid irrotational flow with a point source at the origin
satisfies

V2 = ¢d(x)

and deduce that if there is a dipole as above at the origin, the potential
satisfies 95
Vi =m—.
¢ " O
(The right-hand side may also be written as §'(2)d(y)d(z) in three di-
mensions, or §'(2)d(y) in two.) Hence calculate the potential for a dipole
and sketch the streamlines in two dimensions. Show that the potential
U(rcosf + a?cos0/r) for flow past a cylinder consists of a uniform flow
plus a dipole.

Interpret these results in terms of electric charges. (Whereas point charges
generate electric fields, because there are no magnetic monopoles, the
basic generator of magnetic fields is the infinitesimal current loop, giving
a dipole field with lines of force similar to those of a bar magnet. Higher-
order derivatives, called multipoles, are important in, for example, the
analysis of the far field of radio transmitters.)

Vector distributions. [NEED BOLD CALLiGRAPHIC FONT HERE
for the vector distributions, and bold for the vector ¢ in (b).] Develop the
following two ways of defining vector-valued distributions in R?. In both
cases aim to establish the identities V-V AD =0, VA VD = 0 for vector

Remember that

(D(z+h), ¢(x)) = (D(z), p(z—h)).

Notation clash! ¢ is not a test
function here.



It’s not hard: just integrate.
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13.

14.
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and scalar distributions D and D respectively. You will need to establish
variants of Green’s theorem in order to define the action of the operators
div and curl by integration by parts.

(a) Take scalar test functions ¢(x) and define their action on a vector
function v(x) as the vector

(v,0) = /W v(x)p(x) dx.

Then define a vector-valued distribution D as a continuous linear map
from the space of test functions to R? consistently with this action.

(b) Use vector test functions ¢ and the action
o) = [ v-odx
R3

Open support test functions. To get an idea why compact support
test functions do not lead to a good theory for the distributional Fourier
transform, work out the Fourier transform of

f(x):{l —-l<ax<l,

0 otherwise,

and observe that, unlike f(z), f(k) does not have compact support. (Al-
though f(z) is not a test function, a similar result would hold if it were.)
Now look at the definition of the Fourier transform to see why compact
support test functions are not useful here.

Commutation of the Fourier transform and its inverse. Show di-
rectly from the definitions that if D is a distribution with Fourier transform
D, then X }

(D) = (DY =D,
assuming that this holds for test functions.

—k

The inverse of ¢=*"*. Find the inverse of u(k,t)=-e 1 in the following

two ways.

(a) Write down the inversion integral and complete the square in the ex-
ponent; then, thinking of the integral as a contour integral in the complex
k-plane, move the integration contour to the line Imk = —x/2t (check
that the endpoint contributions vanish) and evaluate a standard real in-
. 2

tegral, using the result [* e~ ds = /7.

(b) Show that du/0k = —2kta, then use the standard identities for the
transforms of Ou/dz and zu to obtain a similar ordinary differential equa-
tion for u; solve this and choose the ‘constant of integration’ (which is
actually a function of t) to set [~ w(z,t)dx =1 for all ¢ (which is easy
to show from the original problem).

The pseudofunction 1/z. Obviously, 1/x is defined for z # 0 as an
ordinary function. Its definition for all x € R is achieved by defining its
action on a test function ¢(x):

(1/z,¢(x)) = lim(1/z, ¢(2))e,



10.7. EXERCISES 151

16.

where
oo = [+ [ "

the limiting integral, denoted by

][OO de,

is called a Cauchy principal value integral. Note that the small interval
(—¢,€) that we remove before integrating and taking the limit € — 0 is
symmetric about x = 0.

Show that the limit exists for all test functions ¢(z). Show directly from
the distributional definitions that

1 dl ;s
x_degx’

that is, show that

(dlog |z|/dx, §(x)) = —(1/x,d¢/dx)

by considering the same statement with (-, -) replaced by (,-). and letting
e — 0.

Show also (for future reference) that

][1 dr _y, (10.2)

1 T

The Fourier transform of H(x). A distribution D(z) is called odd if
the result of its action gives D(—x) = —D(z), and even if D(—z) = D(x).
Show that §(x) is even. Show also that zd(x) = 0. If H(z) is the Heaviside
function, show that H(z) = H(x) — § is odd.

Show that the Fourier transform of a real-valued odd function is a purely
imaginary odd function of k, and deduce (or assert) that the same applies
to distributions.

Since H'(x) = §(z), taking the Fourier transform gives
—ikH =4=1.

However, before dividing through by k, we must realise that we can add
ckdé(k) (= 0) to the right-hand side, where ¢ is an as yet unspecified
complex constant. By considering instead the transform of the odd distri-
bution H(z), and recalling that 1 = 274(k), show that

~ 1
H(k) = ——= (k).
(k) = —= +md(k)
Note that 7 requires the definition of 1/k introduced in the previous
exercise.



They are 1(¢(k) + ¢(—k));
show that both of these are
test functions.

Use the decay properties of
the test function to justify use
of the Riemann—Lebesgue
lemma for the outer integrals,
and expand ¢ in a Taylor
series for the inner one.

Note that this ‘does the right
sort of thing” as € — 0: it
tends to —1/ik for k # 0, and
to infinity for k = 0.

Remember that

(xf) = —idf/dk.
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The Fourier transform of H(xz) again. Here are two more ways of
calculating H (k).

(i) Consider
eik/e

1/6 ik 1
R gy = —— .
/0 S T

The first part is already in the answer, so the second part must tend to
wo(k) as € — 0. Write

et/ _ sin(k/e) Z_cos(k/e)

ik k k

and note that the real part has been shown (in Exercise 3) to give wd (k).
It remains to show that the principal value integral

* cos(k/e)d(k)
]{m — dk — 0

as € — 0 for any test function ¢. Write ¢ as the sum of its even and
odd parts and note that we need only consider the odd part of ¢ as the
integral of the even part vanishes by symmetry. Now proceed as in earlier
exercises, splitting the range of integration into |k| > /e and |k| < /e
and dealing with each separately. Alternatively, don’t bother with the
odd/even split, and just use (10.2) for the inner integral.

(ii) Consider the Fourier transform of

~ 1
(k) = —.
He(k) e—ik
Writing
1 n 1 € i€
e—ik ik 2 +k2 k(e +k?)’

show that as € — 0 the action of the right-hand side on a test function
tends to that of 7d(k). (You will need to interpret the second term as a
principal value integral; use the results of Exercise 3.)

More Fourier transforms. What are the Fourier transforms of

for integral n > 07

“You can always make infinity smaller by multiplying by h.”



