INTEGRAL TRANSFORMS – SHEET 1

(Exercises on lectures in Weeks 1 and 2)

The Dirac Delta Function and Distributions. The Laplace Transform. Applications to ODEs.

- 1. Let $\phi(x)$ be a test function. Show that the following are test functions:
	- (i) $\phi(ax+b)$ where $a>0$ and $b \in \mathbb{R}$.
	- (ii) $f(x)\phi(x)$ where $f(x)$ is an arbitary smooth function.
	- (iii) $\phi^{(k)}(x)$ where $k \in \mathbb{N}$.
- 2 (i) Let $0 < a < 1$. Solve the boundary-value problem:

$$
f''(x) = \delta(x - a), \qquad f(0) = f(1) = 0.
$$

(ii) Let $a > 0$ and $k \in \mathbb{R}$. Solve directly the initial value problem

$$
f''(x) - 3f'(x) + 2f(x) = k \delta(x - a) \qquad f(0) = f'(0) = 1.
$$

3. (Kick Stop) Consider a mass on a spring where the extension of the spring $x(t)$ satisfies

$$
m\ddot{x} + kx = I \,\delta(t - T),
$$

where m is the mass, and $k > 0$ is the spring constant. Suppose initially $x(0) = a$ and $\dot{x}(0) = 0$ and that at time $t = T$ an instantaneous impulse I is applied to the mass.

Obtain the motion of the mass for $t > 0$, and find conditions on I and T such that the impulse completely stops the motion. Explain the result physically.

4. Show that, for $a \neq 0$,

$$
\delta(ax) = \frac{1}{|a|} \delta(x).
$$

[Hint: use the approximating functions δ_n from lectures.] What is $\delta(x^2 - a^2)$?

5. Solve the following IVPs using the Laplace transform.

(i)
$$
f'(x) + f(x) = x
$$
, $f(0) = 0$.
\n(ii) $f''(x) - f(x) = 4e^x$, $f(0) = f'(0) = 1$.

6. (i) Show that the Laplace transform of x^a , where $a > -1$ is a real number, is $\Gamma(a+1)/p^{a+1}$ where the Gamma Function is defined as $\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt$.

- (ii) Find the Laplace transform of $(1 \cos(ax))/x$.
- (iii) Find the Laplace transform of $\int_0^x \frac{\sin t}{t} dt$.
- 7. (i) Solve the IVP in Exercise 2(ii) using the Laplace transform.
- (ii) Use the Laplace transform to find a solution of

$$
xf''(x) + 2f'(x) + xf(x) = 0.
$$

Find a second independent solution of the equation. Why was this solution not found using the Laplace transform?

- 8. A sequence of distributions (F_n) converges to a distribution F if $\langle F_n, \phi \rangle \to \langle F, \phi \rangle$ for all test functions ϕ .
- (i) Show that if $F_n \to F$ then $F'_n \to F'$.

(ii) This limiting process applies to the partial sums (n terms) of a series. Define $F(x) = x$ for $-\pi < x < \pi$, extended periodically to R. Show that its Fourier series is

$$
F(x) = 2\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin kx.
$$

Differentiate [the partial sums of] both sides to find an expression for $\sum_{k=1}^{\infty}(-1)^{k+1}\cos kx$; remember the discontinuities in $F(x)$. (Such a result has no counterpart in 'ordinary' analysis.)

(iii) Suppose that the integrable function $F(x)$ satisfies $\int_{-\infty}^{\infty} F(x) dx = 1$. (This implies that $\lim_{X \to \infty} \int_{X}^{\infty} F(x) dx = 0$.) Define $F_n(x) = nF(nx)$. Draw a sketch to show how F_n is related to F. Show that $\langle F_n, \phi \rangle \to \phi(0)$ as $n \to \infty$. [Hint: split the range of integration into $(-\infty, -1/\sqrt{n}), (-1/\sqrt{n}, 1/\sqrt{n}), (1/\sqrt{n}, \infty)$; use the note above on the outer intervals and the MVT for integrals on the inner one.] Deduce that $F_n \to \delta$.

(iv) Suppose the random variable $X \sim N(0, \sigma^2)$ and write $G_{\sigma}(x)$ for its density function. Let $F_{\sigma}(x) = 2G_{2\sigma}(x) - G_{\sigma}(x)$. Show that F_{σ} satisfies the conditions of part (iii). What is $\lim_{\sigma\to 0^+} F_{\sigma}$? Roughly sketch $F_{\sigma}(x)$ for small σ and comment on your graph [hint: evaluate $F_{\sigma}(0)$]. Repeat for $F_{\sigma}(x) = 2G_{3\sigma}(x) - G_{\sigma}(x)$. What do you notice?

INTEGRAL TRANSFORMS – SHEET 2

(Exercises on lectures in Weeks 3 and 4)

Applications to ODEs. The Convolution and Inversion Theorem. Fourier Transform. Applications to PDEs.

1. The life time T of a particular brand of light bulb is modelled as follows. There is a probability p of the light-bulb blowing immediately (so that $T = 0$); given that the light bulb does not blow immediately, the probability of it having life time τ or less is $1 - e^{-\lambda \tau}$ (where $\lambda > 0$).

- (i) Write down the cumulative distribution function, $F_T(t)$, of T.
- (ii) Write down the (generalized) probability density function $f_T(t)$ of T.
- (iii) What is the expectation of T ?
- (iv) Write down the characteristic function of T, that is $\mathbb{E}(\mathrm{e}^{\mathrm{i}sT}) = \hat{f}_T(-s)$.
- **2**. The *Laguerre polynomials* $L_n(x)$ are defined by

$$
L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x}).
$$

Show that $\overline{L_n}(p) = n!(p-1)^n p^{-n-1}$ and hence determine $L_n(x)$ for $1 \leq n \leq 4$.

3. Solve using Laplace transform methods the following differential and integral equations:

(i)
$$
f'(x) + f(x) = 1_{[0,1]}(x)
$$
, $f(0) = 0$.
\n(ii) $f'(x) - 2 \int_0^x f(t)e^{t-x} dt = e^{2x}$, $f(0) = 0$.

- **4.** Find the inverse Laplace transform of $(p^3 + 1)^{-1}$
	- (i) using partial fractions.
	- (ii) using the inversion formula.
	- (iii) using term-by-term inversion of power series.

[Hint for (iii): to find $\sum_{n=0}^{\infty} z^{3n}/(3n)!$, let $\omega = e^{2\pi i/3}$ so that $\omega^3 = 1$, note that $1 + \omega + \omega^2 = 0$, and consider $e^z + e^{\omega z} + e^{\omega^2 z}$. You can adapt this technique to find the sum you need in (iii).

5. In lectures it was shown that the Fourier transform of $f = 1_{[-1,1]}$ is $\hat{f}(s) = 2 \sin s/s$. Determine the convolution $f * f$ and hence evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} \, \mathrm{d}x.
$$

6. The function $u(x, t)$ is defined for $x \in \mathbb{R}$ and $t > 0$ and solves the following boundary value problem

$$
\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \qquad u(x,0) = g(x).
$$

Show that the Fourier transform $\hat{u}(s,t)$ of u in the x variable satisfies

$$
\frac{\partial \hat{u}}{\partial t} = -ks^2 \hat{u}, \qquad \hat{u}(s,0) = \hat{g}(s).
$$

Deduce that

$$
\hat{u}(s,t) = \hat{g}(s)e^{-ks^2t},
$$

and hence write down the solution $u(x, t)$ as a convolution.

7. The function $u(x, y)$ is defined for $x \ge 0, y \ge 1$ and solves the following boundary value problem

$$
y\frac{\partial u}{\partial y} + \frac{\partial u}{\partial x} = 1, \qquad u(x,1) = 1 = u(0,y).
$$

Show that the Laplace transform $\overline{u}(p, y)$ of u in the x variable satisfies

$$
y\frac{\partial \overline{u}}{\partial y} + p\overline{u} = \frac{1}{p} + 1, \qquad \overline{u}(p, 1) = \frac{1}{p}.
$$

Show further that $\overline{u}(p, y) = p^{-2} + p^{-1} - p^{-2}y^{-p}$ and deduce that

$$
u(x,y) = \begin{cases} 1+x & \text{if } e^x < y \\ 1 + \log y & \text{if } e^x \ge y. \end{cases}
$$