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5 Water waves

5.1 Equations and boundary conditions

5.1.1 Setup

In this Section we will analyse so-called Stokes waves, namely small-amplitude waves on
the free surface of an inviscid fluid, for example small ripples on a container of water.
Consider fluid filling the half-space y < 0 with a free surface at y = 0, gravity acting in
the −y-direction. Now suppose that the fluid is disturbed by small-amplitude waves, so
that the free surface is displaced to y = η(x, t), as shown schematically in Figure 5.1.

We assume that the flow is irrotational and incompressible, so that it may be de-
scribed by a velocity potential ϕ such that u = ∇ϕ and ϕ satisfies Laplace’s equation.
We will restrict our attention to purely two-dimensional disturbances, so that ϕ is a
function of x, y and t and hence

∇2ϕ =
∂2ϕ

∂x2
+

∂2ϕ

∂y2
= 0. (5.1)

5.1.2 Boundary conditions

Far from the free surface, as the depth tends to infinity, we expect the velocity to tend
to zero, that is

∇ϕ → 0 as y → −∞. (5.2)

At the free surface, there are two boundary conditions, and we will treat each separately
in detail.

Dynamic boundary condition A force balance on the interface y = η(x, t) implies
that the pressure must be continuous there; otherwise there would be a finite force acting
on a surface with zero mass, which contradicts Newton’s Second Law. We therefore
impose the dynamic boundary condition

p = Patm at y = η, (5.3)

where Patm denotes the atmospheric pressure above the fluid, which we assume to be
constant.

We can write the boundary condition (5.3) in terms of the velocity potential by
using Bernoulli’s Theorem. For unsteady irrotational flow, we recall from Section 1 the
equation

∂ϕ

∂t
+

1

2
|u|2 + p

ρ
+ χ = F (t), (5.4)
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Figure 5.1: (i) Fluid at rest in the half-space y < 0. (ii) The fluid following a disturbance
that displaces the free upper surface to y = η(x, t).

where the gravitational potential χ = gy for gravity acting in the −y-direction. The
integration function F (t) may be chosen arbitrarily by absorbing a suitable function of t
into ϕ.

Evaluating (5.4) at the free surface y = η and using (5.3), we find that

∂ϕ

∂t
+

1

2
|∇ϕ|2 + Patm

ρ
+ gη = F (t) on y = η. (5.5)

It is convenient to choose the arbitrary function F (t) = Patm/ρ to cancel the constant
term on the left-hand side of (5.5), and thus we obtain the dynamic boundary condition
in the form

∂ϕ

∂t
+

1

2
|∇ϕ|2gη = 0 at y = η. (5.6)

Kinematic boundary condition We recall that the normal velocity of the fluid is
required to be zero at a fixed impermeable wall. The corresponding condition at a
moving boundary such as the free surface of a fluid is that the velocity of the fluid
normal to the boundary must equal the velocity of the boundary normal to itself. If this
were not true, the fluid would either be flowing through the boundary or separating
from it, leaving behind a vacuum, neither of which is acceptable. It may be shown
that this condition is equivalent to the requirement that material fluid elements on the
free surface must remain on the free surface. Hence, if y = η for some particular fluid
particle at time t, then y = η for the same particle for all time.

It follows that
D

Dt
(y − η) = 0 when y − η = 0, (5.7)

and, by expanding out the convective derivative, we obtain the kinematic boundary
condition in the form

v =
∂η

∂t
+ u

∂η

∂x
at y = η. (5.8)
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Linearised boundary conditions Although Laplace’s equation is linear, the bound-
ary conditions (5.8) and (5.6) on the free surface are nonlinear, and the problem is
therefore difficult to solve in general. If the disturbances are small, then the boundary
conditions can be simplified by linearising, that is neglecting terms of quadratic and
higher order. For example, if we neglect the quadratic terms in (5.8), we find

∂ϕ

∂y
=

∂η

∂t
at y = η. (5.9)

This can be simplified further by Taylor-expanding the left-hand side as follows:

∂ϕ

∂y
(x, η, t) ∼ ∂ϕ

∂y
(x, 0, t) +

∂2ϕ

∂y2
(x, 0, t)η + · · · , (5.10)

in which all terms except the first are nonlinear. When linearising the boundary con-
ditions, it is thus consistent also to evaluate the left-hand side of (5.9) at y = 0 rather
than at y = η. The same simplification applies when we linearise (5.6), so we end up
with the boundary conditions

∂ϕ

∂y
=

∂η

∂t
,

∂ϕ

∂t
+ gη = 0 at y = 0. (5.11)

5.2 Harmonic waves

Now we look for solutions in which the free surface displacement η takes the form of a
sinusoidal travelling wave, that is

η(x, t) = A cos(kx− ωt− β), (5.12)

where A, k, ω and β are constants. The amplitude of the perturbations is measured by
A, while ω represents the frequency at which the surface oscillates at any fixed position
x. The wavenumber k is 2π/λ, where λ is the wavelength; thus k is small for long waves
and large for short waves. The wave-speed at which the wave crests propagate is related
to ω and k by

c =
ω

k
. (5.13)

Finally, β is an arbitrary phase shift, which may be set to zero without loss of generality
by choosing the origin for t appropriately. We show a typical harmonic travelling wave
in Figure 5.2.

By substituting (5.12) into the boundary conditions(5.11), we infer that ϕ is out of
phase with η, so that

ϕ(x, y, t) = f(y) sin(kx− ωt− β) (5.14)

for some function f(y) still to be determined. By substituting (5.14) into Laplace’s
equation (5.1), we find that f(y) satisfies the ordinary differential equation

d2f

dy2
− k2f = 0. (5.15)
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Figure 5.2: Schematic of a harmonic travelling wave, showing the amplitude A, wave-
length λ and wave-speed c.

The far-field condition (5.2) and the free-surface conditions (5.11) imply that f(y) must
satisfy the boundary conditions

f(y) → 0 as y → −∞, (5.16)

f ′(0) = ωA, −ωf(0) + gA = 0. (5.17)

Without loss of generality, we assume that k is positive, so the solution of (5.15)
that satisfies the far-field condition (5.16) is

f(y) = Beky (5.18)

for some constant B. The boundary conditions (5.17) at y = 0 thus give us a system of
linear equations for the two constants A and B, which may be written in the form(

ω −k
g −ω

)(
A
B

)
=

(
0
0

)
. (5.19)

The homogeneous linear system (5.19) admits the trivial solution A = B = 0,
corresponding to η and ϕ both being identically zero. A nontrivial solution can only
exist if the determinant of the left-hand side is zero, that is if

ω2 = gk. (5.20)

This equation for the frequency in terms of the wavenumber is called the dispersion
relation. The corresponding wave-speed c satisfies

c2 =
g

k
, (5.21)
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which depends on the wavenumber k, so that waves with different wavenumbers move
at different speeds. Such waves are called dispersive, in contrast with waves on a string
or sound waves, for example, which have a constant wave speed.

We see from (5.21) that the wave-speed is a decreasing function of the wavenumber,
so that longer waves propagate more quickly. In principle, the wave-speed may be
arbitrarily large for very long waves. We will see below that this is an artefact of our
assumption that the fluid has infinite depth.

5.3 Generalisations

5.3.1 Finite depth

The analysis performed above is easily generalised to describe waves on a fluid of finite
depth h. Suppose fluid occupies the region −h < y < η(x, t) between a rigid base at
y = −h and a free surface at y = η(x, t). We recall that the normal velocity at the base
must be zero, and hence ϕ must satisfy the boundary condition

∂ϕ

∂y
= 0 at y = −h. (5.22)

This replaces the far-field condition (5.2); otherwise the problem is identical to that
solved in §5.2.

We again seek a solution in the form of a harmonic travelling wave, so that

η(x, t) = A cos(kx− ωt− β), ϕ(x, y, t) = f(y) sin(kx− ωt− β), (5.23)

for some function f(y). By substituting this expression for ϕ into Laplace’s equation,
we again find that f(y) satisfies the differential equation

d2f

dy2
− k2f = 0 (5.24)

and the boundary conditions

f ′(0) = ωA, −ωf(0) + gA = 0. (5.25)

However, the condition (5.22) on the base now leads to the boundary condition

f ′(−h) = 0. (5.26)

Clearly the general solution of (5.24) is a linear combination of eky and e−ky. Al-
ternatively, we can write f(y) as a combination of cosh(ky) and sinh(ky). However, the
neatest approach is to note that the boundary condition (5.26) is satisfied identically by
setting

f(y) = B cosh
(
k(y + h)

)
, (5.27)
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Figure 5.3: The squared wave-speed c2 given by (5.30) versus wavenumber k.

for some constant B. Substitution into the free-surface conditions (5.25) again leads to
a system of linear equations for A and B, which now takes the form(

ω −k sinh(kh)
g −ω cosh(kh)

)(
A
B

)
=

(
0
0

)
. (5.28)

For nontrivial solutions, the determinant of the system must be zero, and this now gives
us the dispersion relation

ω2 = gk tanh(kh). (5.29)

The wave-speed c is therefore given by

c2 =
g

k
tanh(kh). (5.30)

As depicted in figure 5.3, for positive k, the right-hand side of (5.30) is a decreasing
function, indicating that long waves travel faster than short waves. However, the wave-
speed is now bounded, with a maximum achieved in the limit k → 0, where we find
that

c →
√

gh as k → 0. (5.31)

5.3.2 Flowing fluid

We can study waves on a flowing liquid by linearising about uniform flow, setting
u = Ui+∇ϕ, that is,

u = U +
∂ϕ

∂x
, v =

∂ϕ

∂y
, (5.32)

where ϕ and its derivatives are again assumed to be small. It is clear that ϕ still satisfies
Laplace’s equation. Furthermore, if we consider fluid of finite depth h, with a rigid
impermeable base at y = −h, then ϕ still satisfies the boundary condition

∂ϕ

∂y
= 0 at y = −h. (5.33)
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At the free surface, the kinematic boundary condition (5.8) now reads

∂ϕ

∂y
=

∂η

∂t
+

(
U +

∂ϕ

∂x

)
∂η

∂x
at y = η(x, t). (5.34)

When we linearise, as in §5.1.2, this is simplified to

∂ϕ

∂y
=

∂η

∂t
+ U

∂η

∂x
at y = 0. (5.35)

Next we turn to the dynamic boundary condition. With the velocity given by (5.32),
Bernoulli’s equation (5.4) is modified to

∂ϕ

∂t
+

1

2
|Ui+∇ϕ|2 + p

ρ
+ gy = F (t). (5.36)

Setting p equal to the atmospheric pressure Patm at the free surface y = η, we therefore
obtain the boundary condition

∂ϕ

∂t
+

1

2

(
U +

∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+
Patm

ρ
+ gη = F (t) at y = η(x, t). (5.37)

It is convenient to choose the arbitrary function F (t) to cancel the constant terms on
the left-hand side, that is

F (t) =
1

2
U2 +

Patm

ρ
. (5.38)

Then linearisation of (5.37) leads to the condition

∂ϕ

∂t
+ U

∂ϕ

∂x
+ gη = 0 at y = 0. (5.39)

Again, we can seek travelling-wave solutions of the form (5.23). The modified bound-
ary conditions (5.35) and (5.39) imply that f(y) must satisfy

f ′(0) = (ω − Uk)A, −(ω − Uk)f(0) + gA = 0. (5.40)

The boundary condition (5.33) at the base again implies that f(y) should take the form

f(y) = B cosh
(
k(y + h)

)
, (5.41)

and substitution into (5.40) leads to the homogeneous linear system(
ω − Uk −k sinh(kh)

g −(ω − Uk) cosh(kh)

)(
A
B

)
=

(
0
0

)
. (5.42)

For there to exist nontrivial solutions, ω must satisfy the dispersion

(ω − Uk)2 = gk tanh(kh). (5.43)
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Figure 5.4: Schematic showing the surface tension T acting at a fluid interface.

We deduce that there are two possible wave-speeds, namely

c± = U ±
(g
k
tanh(kh)

)1/2
. (5.44)

We recall that the bracketed term in this equation is bounded by gh, as shown in
Figure 5.3. Hence we can identify two possible cases in (5.44). If the flow speed U
is less than

√
gh, then waves may propagate both upstream and downstream. Such a

flow is termed subcritical. On the other hand, if U >
√
gh, then all waves are carried

downstream and the flow is said to be supercritical.

5.3.3 Two fluids

Now suppose the interface y = η separates two fluids with different densities, say ρ = ρ1
in y < 0 and ρ = ρ2 in y > 0. We denote the velocity potentials and pressures on either
side by ϕ1, ϕ2 and p1, p2 respectively. The kinematic condition (5.8) applies to both
sides of the interface, and leads to the linearised boundary conditions

∂η

∂t
=

∂ϕ1

∂y
=

∂ϕ2

∂y
at y = 0. (5.45)

The dynamic boundary condition (5.3) is replaced by the pressure continuity condition
p1 = p2 at y = η. After use of Bernoulli’s equation (5.4) and linearisation, this leads to
the boundary condition

ρ1

(
∂ϕ1

∂t
+ gη

)
= ρ2

(
∂ϕ2

∂t
+ gη

)
at y = 0. (5.46)

Notice that (5.11) is recovered if we let the density ratio ρ2/ρ1 tend to zero.

5.3.4 Surface tension

Real fluid interfaces exhibit a phenomenon called surface tension, which acts like a
membrane stretched over the interface to a tension T . In Figure 5.4 we show the forces
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acting on small element of the interface between x = a and x = b, namely the pressures
on either side and the surface tension at the ends. These forces must sum to zero, that
is ∫ x=b

x=a
(p1 − p2)nds+

[
T t

]x=b

x=a
= 0, (5.47)

where ds denotes integration with respect to arc length, t is the unit tangent and n is
the unit normal to the interface, chosen to point from fluid 1 into fluid 2, as shown in
Figure 5.4. These are given respectively by

ds =
√

1 + η2x dx, t =
1√

1 + η2x

(
1
ηx

)
, n =

1√
1 + η2x

(
−ηx
1

)
. (5.48)

By using the Fundamental Theorem of Calculus, we can write (5.47) in the form∫ b

a

(
(p1 − p2)n

√
1 + η2x +

∂

∂x
(T t)

)
dx = 0. (5.49)

This must be true for all intervals [a, b] along the surface, and the integrand, if contin-
uous, must therefore be zero. The surface tension T is assumed to be constant, and we
therefore obtain the boundary condition

(p1 − p2)n+
T√
1 + η2x

∂t

∂x
= 0 at y = η. (5.50)

Direct differentiation of (5.48) reveals that

1√
1 + η2x

∂t

∂x
= κn, (5.51)

where
κ =

ηxx

(1 + η2x)
3/2

(5.52)

is the curvature of the interface. Hence we deduce from (5.50) that there is a pressure
jump across the interface equal to

p2 − p1 = Tκ at y = η. (5.53)

After linearisation, this reads

p2 − p1 = Tηxx at y = 0, (5.54)

and the dynamic boundary condition (5.46) is thus modified to

ρ1

(
∂ϕ1

∂t
+ gη

)
− ρ2

(
∂ϕ2

∂t
+ gη

)
= T

∂2η

∂x2
at y = 0 (5.55)

to take account of surface tension. Note that (5.46) is recovered if T is set to zero.
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Figure 5.5: Schematic of a fluid of density ρ2 flowing at speed U over a fluid of density ρ1.

Example 5.1 One fluid flowing over another
We illustrate the effects outlined above by analysing the situation shown in Figure 5.5, where
an infinite layer of fluid with density ρ2 flows at speed U over an infinite layer of density ρ1.
We include a surface tension T at the interface between the two fluids, so that the disturbance
potentials ϕ1, ϕ2 and the free-surface deflection η satisfy

∇2ϕ1 = 0 in y < 0, ∇2ϕ2 = 0 in y > 0, (5.56)

∂ϕ1

∂y
=

∂η

∂t
,

∂ϕ2

∂y
=

∂η

∂t
+ U

∂η

∂x
,

ρ1

(
∂ϕ1

∂t
+ gη

)
− ρ2

(
∂ϕ2

∂t
+ U

∂ϕ2

∂x
+ gη

)
= T

∂2η

∂x2

 at y = 0. (5.57)

As usual, we look for harmonic travelling waves with η(x, t) = A cos(kx−ωt−β), where the
wavenumber k is assumed to be positive, without loss of generality. The corresponding solutions
ϕ1, ϕ2 of Laplace’s equation that decay as y → −∞ and y → +∞ respectively are then easily
found to be

ϕ1(x, y, t) = Beky sin(kx− ωt− β), ϕ2(x, y, t) = Ce−ky sin(kx− ωt− β), (5.58)

where B and C are arbitrary constants.
On substituting these into the boundary conditions (5.57), we obtain a system of three ho-

mogenous linear equations for A, B and C, which can be written in the form ω −k 0
ω − Uk 0 k

(ρ1 − ρ2) g + Tk2 −ρ1ω ρ2(ω − Uk)

A
B
C

 =

0
0
0

 . (5.59)

For nontrivial solutions, the determinant of the system must be zero, and hence we obtain the
dispersion relation

(ρ1 + ρ2)ω
2 − 2(ρ2Uk)ω + ρ2U

2k2 − (ρ1 − ρ2)gk − Tk3 = 0. (5.60)
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5.4 Instability

We have always assumed thus far that the dispersion relation gives rise to real values
of the frequency ω. However, it may well arise that ω is complex, for example when
the dispersion relation is a quadratic equation such as (5.60). If we write the real and
imaginary parts of ω as ω = ωR±iωI, then a harmonic travelling wave like (5.12) becomes

η = A cos(kx− ωt− β)

= A cos (kx− ωRt− β) cosh (ωIt) + iA sin (kx− ωRt− β) sinh (ωIt) . (5.61)

We infer that a complex value of ω corresponds to an exponentially growing amplitude,
and implies that the corresponding wave is unstable.

Example 5.2 Rayleigh–Taylor instability
We return to the problem of one fluid flowing above another, analysed above in Example 5.1. If
there is no relative flow, that is U = 0, then the dispersion relation (5.60) reduces to

ω2 =

(
(ρ1 − ρ2)g + Tk2

)
k

ρ1 + ρ2
. (5.62)

If ρ1 > ρ2 then the right-hand side of (5.62) is positive, so there are two equal and opposite
values of ω, corresponding to waves propagating at speed c = ω/k in either direction. However,
if ρ1 < ρ2, ω

2 is negative for some values of k, namely

k <

√
(ρ2 − ρ1)g

T
. (5.63)

For these wavenumbers, ω is pure imaginary, so the disturbance grows exponentially. Hence the
situation with the denser fluid above the lighter fluid is (not surprisingly) unstable; this is known
as the Rayleigh–Taylor instability.

Example 5.2 reminds us that the frequency ω is a function of the wavenumber k so
that, in general, ω may be complex only for certain values of the wavenumber. This
implies that the system is unstable only to waves of certain wavelengths. In Example 5.2,
equation (5.63) implies that only waves with wavelength λ such that

λ > 2π

√
T

(ρ2 − ρ1)g
(5.64)

are unstable. At a water-air interface, we would have T ≈ 0.07Nm−1, ρair ≈ 1.2 kgm−3,
ρwater ≈ 1000 kgm−3, g ≈ 9.8Nkg−1, so that only waves longer than roughly 1.7 cm are
unstable. If the system is too narrow to allow waves this long, then the instability will
be eliminated. This explains why a glass of water may be tipped upside-down without
the water spilling out if a sufficiently fine mesh is stretched over the end.

Example 5.3 Kelvin–Helmholtz instability
When U is nonzero, the solution of the quadratic equation (5.60) is given by

ω =
ρ2Uk ±

√
∆

ρ1 + ρ2
, (5.65)
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Figure 5.6: The right-hand side of (5.67) versus wavenumber k.

where ∆ is the discriminant

∆ = (ρ1 + ρ2) k
(
(ρ1 − ρ2)g + Tk2

)
− ρ1ρ2U

2k2. (5.66)

We see that ω is complex (so the flow is unstable) when ∆ is negative, that is when

U2 >

(
ρ1 + ρ2
ρ1ρ2

)(
(ρ1 − ρ2)g

k
+ Tk

)
. (5.67)

Assuming ρ1 > ρ2 (so the lighter fluid is on top), the right-hand side of (5.67) tends to
infinity as k → 0 and as k → ∞, with a minimum at k = k∗ =

√
(ρ1 − ρ2)g/γ, as shown in

Figure 5.6. This corresponds to a critical value of U , given by

U2
∗ =

2(ρ1 + ρ2)

ρ1ρ2

√
γ(ρ1 − ρ2)g. (5.68)

If U > U∗, then there is a band of values of k for which (5.67) is satisfied and for which ω is
therefore complex. In other words the flow is unstable if the velocity of the upper fluid exceeds
this critical value. This Kelvin–Helmholtz instability is responsible for the formation of waves
by wind blowing over the sea.

5.5 Introduction to group velocity

We have seen that dispersive waves have the property that waves with different wave-
lengths propagate at different speeds. A localised disturbance, for example caused by
dropping a pebble into a pond, will in general give rise to a spectrum of many different
wavenumbers. As the waves spread out from the initial disturbance, the dispersion will
cause them to be sorted according to their wavenumber. For deep water, we recall from
equation (5.21) that the wave-speed c is related to the wavenumber k by c2 = g/k, so
that long waves travel more quickly than short waves. We would therefore expect the
spreading disturbance to have longer ripples at the front and shorter ones at the back,
as illustrated in Figure 5.7.

Now suppose at some time t after the initial disturbance, we detect waves with
wavenumber k at a distance x from the source. We would expect these to be related
through the wave-speed c by x/t = c =

√
g/k. However, it turns out that this prediction
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Figure 5.7: Schematic of a spreading train of ripples caused by a localised disturbance.

is out by a factor of 2. This occurs because the wave-speed c is the speed at which the
crests (or troughs) propagate in a pure sinusoidal wave, not in a realistic free surface
profile containing a combination of many different wavenumbers.

A profile like that illustrated in Figure 5.7 can be represented as

η(x, t) = A(x, t) cos
(
α(x, t)

)
, (5.69)

in terms of a rapidly-varying phase α and a slowly-varying amplitude A. In the vicinity
of a fixed position x = x0 and time t = t0, we can Taylor-expand the phase to get

α(x, t) ≈ α (x0, t0) + (x− x0)
∂α

∂x
(x0, t0) + (t− t0)

∂α

∂t
(x0, t0) . (5.70)

Hence, the profile (5.69) is locally approximated by the harmonic travelling wave

η(x, t) ≈ A0 cos
(
k0x− ω0t− β0

)
, (5.71)

where

A0 = A (x0, t0) , β0 = α (x0, t0)− k0x0 + ω0t0, (5.72a)

k0 =
∂α

∂x
(x0, t0) , ω0 = −∂α

∂t
(x0, t0) . (5.72b)

It is therefore natural to define the local wavenumber and frequency at position x and
time t by

k(x, t) =
∂α

∂x
, ω(x, t) = −∂α

∂t
. (5.73)

It immediately follows from (5.73) that k and ω satisfy the equation

∂k

∂t
+

∂ω

∂x
= 0. (5.74)

For a pure harmonic wave, there is a dispersion relation ω = ω(k) specifying the
frequency as a function of the wavenumber. We assume that the same relation holds here,



5–14 OCIAM Mathematical Institute University of Oxford

η η

xx

(a) (b)

increasing
t

increasing
t

Figure 5.8: Schematic of a moving wave packet with (a) cg < c, (b) cg > c. One wave
crest is highlighted to illustrate how it moves relative to the packet.

since the free surface profile is locally approximately sinusoidal. Thus (5.74) becomes a
partial differential equation for the wavenumber k, namely

∂k

∂t
+ cg(k)

∂k

∂x
= 0, (5.75)

where

cg(k) =
dω

dk
(5.76)

is called the group velocity.
We deduce from equation (5.75) that k is constant along straight lines in the (x, t)-

plane satisfying dx/dt = cg. Indeed, the general solution of (5.75) is

k = F
(
x− cg(k)t

)
. (5.77)

It follows that waves with wavenumber k propagate with speed cg(k), and not at the
wave-speed c(k) as might have been expected.

For waves on deep water, with the dispersion relation (5.21), the wave-speed and
group velocity are given respectively by

c =
ω

k
=

√
g

k
, cg =

dω

dk
=

1

2

√
g

k
=

c

2
. (5.78)

At first glance, this may appear to be a contradiction: how can the wave crests propagate
twice as quickly as the waves themselves? The answer is that the waves separate into
wave packets corresponding to different wavenumbers. Within each wave packet, the
waves move at speed c, but the packet as a whole moves at speed cg. This phenomenon
is illustrated in Figure 5.8(a) for a single wave packet travelling from left to right at
speed cg. The wave crests move through the packet at speed c = 2cg, seeming to appear
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at the back and disappear at the front. This behaviour can be observed in the radiating
ripples caused by throwing a stone into a pond.

It is also possible for the group velocity to exceed the wave-speed; for example, it can
be shown that cg ≈ 2c for short capillary waves on very shallow water. If this happens,
then the wave crests appear to move backwards relative to a radiating wave packet, as
illustrated in Figure 5.8(b). This counterintuitive behaviour can sometimes be observed
in small ripples on a puddle.


