
Part A Statistics HT 2021

Problem Sheet 1

1. (a) SupposeX1, . . . , Xn are independent Bernoulli(p) random variables. Use the delta method
to find the asymptotic distribution of p̂/(1− p̂) where p̂ is the maximum likelihood esti-
mator of p. (The quantity p/(1− p) is the odds of a success.)

(b) Suppose X1, . . . , Xn are independent Poisson(λ) random variables. Find a function g(X)
such that the asymptotic variance of g(X) does not depend on λ.

2. Let X1, . . . , Xn be a random sample from a uniform distribution with probability density
function

f(x) =

{
1 if 0 < x < 1

0 otherwise.

Show that if X(r) is the rth order statistic, then

E(X(r)) =
r

n+ 1
, var(X(r)) =

r

(n+ 1)(n+ 2)

(
1− r

n+ 1

)
.

Define the median of the random sample, distinguishing between the two cases n odd and
n even. Show that the median has expected value 1

2 if the random sample is drawn from
a uniform distribution on (0, 1). Find its variance in the case when n is odd. What is the
expected value of the median if the random sample is drawn from a uniform distribution
on (a, b)?

[Hint: remember that pdfs integrate to 1, there’s no need to actually do any integration in
this question.]

3. Let X be a continuous random variable with cumulative distribution function F which is
strictly increasing. If Y = F (X), show that Y is uniformly distributed on the interval (0, 1).

The Weibull distribution with parameters α > 0 and λ > 0 has cumulative distribution
function

F (x) =

{
0 if x < 0

1− exp(−(x/λ)α) if x > 0.

It is typically used in industrial reliability studies in situations where failure of a system
comprising many similar components occurs when the weakest component fails; it is also
used in modelling survival times.

Explain why a probability plot for the Weibull distribution may be based on plotting the
logarithm of the rth order statistic against log[− log(1− r

n+1)] and give the slope and intercept
of such a plot.

4. Find the expected information for θ, where 0 < θ < 1, based on a random sample X1, . . . , Xn

from:

(a) the geometric distribution f(x; θ) = θ(1− θ)x−1, x = 1, 2, . . .

(b) the Bernoulli distribution f(x; θ) = θx(1− θ)1−x, x = 0, 1.

A statistician has a choice between observing random samples from the geometric or Bernoulli
distributions with the same θ. Which will give the more precise inference about θ?



5. Suppose a random sample Y1, . . . , Yn from an exponential distribution with parameter λ is

rounded down to the nearest δ, giving Z1, . . . , Zn where Zj = δ
⌊
Yj
δ

⌋
. Show that the likelihood

contribution from the jth rounded observation can be written (1 − e−λδ)e−λzj , and deduce
that the expected information for λ based on the entire sample is

nδ2e−λδ

(1− e−λδ)2
.

Show that this has limit n/λ2 as δ → 0, and that if λ = 1, the loss of information when data
are rounded down to the nearest integer rather than recorded exactly, is less than 10%. Find
the loss of information when δ = 0.1, and comment briefly.

6. When T1 and T2 are estimators of a parameter θ, the asymptotic efficiency of T1 relative
to T2 is given by limn→∞ avar(T2)/ avar(T1), where avar(Tj) denotes the asymptotic variance
of the approximating normal distribution of Tj , j = 1, 2.

Suppose X1, . . . , Xn are independent and exponential with parameter θ. Let #A denote the
number of elements of a set A, and consider the two estimators

p̃ =
#{i : Xi > 1}

n
and p̂ = X.

Find the asymptotic efficiency of T1 = − log p̃ relative to T2 = 1/p̂. Find the numerical value
of the asymptotic efficiency when θ = 0.6, 1.6, 5.6. Comment on the implications for using T1
instead of T2 to estimate θ.

7. The figure below shows normal Q-Q plots for randomly generated samples of size 100 from
four different densities: from a N(0, 1) density, an exponential density, a uniform density,
and a Cauchy density. (The Cauchy density is f(x) = [π(1 + x2)]−1 for x ∈ R.)

Which Q-Q plot goes with which density?

Using R, you can try plots like these for yourself using commands like the following.

x1 <- rnorm(100)

qqnorm(x1)

x2 <- rexp(100)

qqnorm(x2)

x3 <- runif(100)

qqnorm(x3)

x4 <- rt(100, df = 1)

qqnorm(x4)

The symbol <- is the assignment operator in R, so x1 <- rnorm(100) sets x1 equal to a
randomly generated sample of size 100 from a N(0, 1) density. (For x4, note that the Cauchy
distribution is the same as the t-distribution with one degree of freedom.)
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Figure 1. Normal Q-Q plots for four different samples, one from each of the following densi-
ties: N(0, 1), exponential, uniform, Cauchy. Which is which?

8. Read through the short document “Getting started with R” (available on the course webpage)
and hopefully install R/RStudio and run the commands in that document yourself.

The R questions on these problem sheets need only a very small knowledge of R. R code will
be supplied in questions. Each sheet will also be accompanied by a file containing further R
code and more help, see the file sheet1.R for this sheet. There will be code you can cut and
paste into R, and this code will also appear at the end of each sheet.

We can gain understanding from using R, for example:

(i) How typical is each of the Q-Q plots shown in Figure 1? Note that each time we
generate a sample (e.g. using rnorm, rexp, ...) we get a different sample, so we can
investigate how typical each one is by doing repeated Q-Q plots.

(ii) How much does Figure 1 change if the sample size is smaller (or larger) than 100?

To investigate (i) and (ii), run the R code in the previous question multiple times, and with
different sample sizes. See sheet1.R for more.

You can download sheet1.R (use “download” on RHS of course webpage), then view it in
RStudio or R. If you try to view it directly in a browser you may get an error.

The contents of sheet1.R are also pasted in below.



9. (See sheet1.R for more.) To generate a sample of size 100 from a N(0, 1) density and
compare the sample with an exponential distribution, try the following:

n <- 100

x <- rnorm(n)

k <- 1:n

plot(-log(1 - k/(n+1)), sort(x), main = "Exponential Q-Q Plot",

ylab = "Ordered data", xlab = "-log[1 - k/(n+1)]")

Can you explain the shape of this exponential Q-Q plot? What happens (and why) if you
repeat but with the line x <- rnorm(n) replaced by x <- rexp(n)?

Try repeating using the data on insurance claim interarrival times:

x <- scan("http://www.stats.ox.ac.uk/~laws/partA-stats/data/interarrivals.txt")

n <- length(x)

k <- 1:n

followed by the plot command above. Try also using the data on insurance claim amounts:

x <- scan("http://www.stats.ox.ac.uk/~laws/partA-stats/data/amounts.txt")

n <- length(x)

k <- 1:n

Can you also do a Pareto Q-Q plot for each dataset? What do you conclude?



#############

## Sheet 1 ##

#############

#### question 7

x1 <- rnorm(100)

qqnorm(x1)

x2 <- rexp(100)

qqnorm(x2)

x3 <- runif(100)

qqnorm(x3)

x4 <- rt(100, df = 1)

qqnorm(x4)

#### question 8

# to see all four plots at once,

# i.e. to arrange the plots in a 2 x 2 array,

# use par(mfrow = c(2, 2)) and then the qqnorm commands

par(mfrow = c(2, 2))

# from now on plots will be in a 2 x 2 array

x1 <- rnorm(100)

qqnorm(x1, main = "Normal Q-Q plot: normal data")

x2 <- rexp(100)

qqnorm(x2, main = "Normal Q-Q plot: exponential data")

x3 <- runif(100)

qqnorm(x3, main = "Normal Q-Q plot: uniform data")

x4 <- rt(100, df = 1)

qqnorm(x4, main = "Normal Q-Q plot: Cauchy data")

# to get back to a 1 x 1 array of plots you would use

# par(mfrow = c(1, 1))

# try multiple plots to see how much variation there is

# from one sample to another

# normal data, n = 100, try running this a few times

for (i in 1:4) {

x <- rnorm(100)

qqnorm(x)

}

# and repeat but with x <- rexp(100)

# and with x <- runif(100)

# and with x <- rt(100, df = 1)

# next, vary the sample size

# normal data, n = 10



for (i in 1:4) {

x <- rnorm(10)

qqnorm(x)

}

# useful to also try n = 20, 50

# useful to also try exponential data (using rexp),

# and uniform data (using runif),

# and Cauchy, or t, data (using rt)

# e.g. uniform distribution, n = 20

for (i in 1:4) {

x <- runif(20)

qqnorm(x)

}

# can also look at t-distributions with different numbers

# of degrees of freedom

# e.g. t-distribution with 5 dgrees of freedom, n = 10

for (i in 1:4) {

x <- rt(10, df = 5)

qqnorm(x)

}

#### question 9

n <- 100

x <- rnorm(n)

k <- 1:n

plot(-log(1 - k/(n+1)), sort(x), main = "Exponential Q-Q Plot",

ylab = "Ordered data", xlab = "-log[1 - k/(n+1)]")

# now try replacing x <- rnorm(n) by x <- rexp(n)

x <- rexp(n)

plot(-log(1 - k/(n+1)), sort(x), main = "Exponential Q-Q Plot",

ylab = "Ordered data", xlab = "-log[1 - k/(n+1)]")

# are interarrival times exponential?

# exponential Q-Q plot with data on insurance claim interarrival times

x <- scan("http://www.stats.ox.ac.uk/~laws/partA-stats/data/interarrivals.txt")

n <- length(x)

k <- 1:n

plot(-log(1 - k/(n+1)), sort(x), main = "Exponential Q-Q Plot",

ylab = "Ordered data", xlab = "-log[1 - k/(n+1)]")

# are claim amounts exponential?

# exponential Q-Q plot with data on insurance claim amounts

x <- scan("http://www.stats.ox.ac.uk/~laws/partA-stats/data/amounts.txt")

n <- length(x)

k <- 1:n

plot(-log(1 - k/(n+1)), sort(x), main = "Exponential Q-Q Plot",



ylab = "Ordered data", xlab = "-log[1 - k/(n+1)]")

# are interarrival times Pareto?

# Pareto Q-Q plot for interarrival times

x <- scan("http://www.stats.ox.ac.uk/~laws/partA-stats/data/interarrivals.txt")

n <- length(x)

k <- 1:n

plot(-log(1 - k/(n+1)), sort(log(x)),

main = "Pareto Q-Q Plot: interarrivals",

ylab = "log(Ordered data)", xlab = "-log[1 - k/(n+1)]")

# are claim amounts Pareto?

# Pareto Q-Q plot for claim amounts

x <- scan("http://www.stats.ox.ac.uk/~laws/partA-stats/data/amounts.txt")

n <- length(x)

k <- 1:n

plot(-log(1 - k/(n+1)), sort(log(x)),

main = "Pareto Q-Q Plot: amounts",

ylab = "log(Ordered data)", xlab = "-log[1 - k/(n+1)]")



Part A Statistics HT 2021

Problem Sheet 2

1. What is the connection between Fisher’s information and the asymptotic distribution of the
maximum likelihood estimator?

Assume the individuals in a sample of size n = 1029 are independent and that each individual
has blood type M with probability (1 − θ)2, type MN with probability 2θ(1 − θ), and
type N with probability θ2. For the following data (Rice, 2007) find the maximum likelihood
estimate θ̂ and use the asymptotic distribution of the MLE to find an approximate 95%
confidence interval for θ.

Blood Type M MN N
Frequency 342 500 187

2. Let X1, . . . , Xn be independent N(µ, σ2) random variables. Suppose that µ is known, σ is
unknown and that we want to estimate ψ = log σ.

(a) Find the maximum likelihood estimator σ̂ and the asymptotic normal approximation to
the distribution of σ̂.

(b) Use the delta method to find the asymptotic distribution of ψ̂ and hence find an approx-
imate 95% confidence interval for ψ.

(c) Explain how the interval in (b) can be used to find an approximate confidence interval
for σ.

3. The following data are time intervals in days between earthquakes which either registered
magnitudes greater than 7.5 on the Richter scale or produced over 1,000 fatalities. Recording
starts on 16 December, 1902 and ends on 4 March, 1977, a total period of 27,107 days. There
were 63 earthquakes in all, and therefore 62 recorded time intervals.

840 1901 40 139 246 157 695 1336 780 1617
145 294 335 203 638 44 562 1354 436 937
33 721 454 30 735 121 76 36 384 38

150 710 667 129 365 280 46 40 9 92
434 402 209 82 736 194 99 599 220 584
759 556 304 83 887 319 375 832 263 460
567 328

Assuming the data to be a random sample X1, . . . , Xn from an exponential distribution with
parameter λ, obtain the maximum likelihood estimator λ̂ of λ and calculate the maximum
likelihood estimate.

Given that the moment generating function of a gamma distribution with parameters (n, λ)
is

Mn(t) =

(
λ

λ− t

)n
show that Y =

∑n
i=1Xi has a gamma distribution. Show that(

a

nx
,
b

nx

)



is an exact 95% central confidence interval for λ if∫ a

0

yn−1e−y

Γ(n)
dy =

∫ ∞
b

yn−1e−y

Γ(n)
dy = 0.025.

Obtain Fisher’s information for λ and use it to find an approximate 95% confidence interval
for λ. The interval given by the exact method above is (0.0018, 0.0029). Verify numerically
that your approximate interval is close to this.

4. Let X1, . . . , Xn be a random sample from a normal distribution with known mean µ and
unknown variance σ2. Three possible confidence intervals for σ2 are

(a)

(
n∑
i=1

(Xi −X)2

a1
,

n∑
i=1

(Xi −X)2

a2

)

(b)

(
n∑
i=1

(Xi − µ)2

b1
,

n∑
i=1

(Xi − µ)2

b2

)

(c)

(
n(X − µ)2

c1
,
n(X − µ)2

c2

)
where a1, a2, b1, b2, c1, c2 are constants.

Find values of these six constants which give confidence level 0.90 for each of the three
intervals when n = 10 and compare the expected widths of the three intervals in this case.

With σ2 = 1, what value of n is required to achieve a 90% confidence interval of expected
width less than 2 in cases (b) and (c) above?

[For a χ2 with e.g. 6 degrees of freedom, you can use qchisq(0.05, 6) to find the 0.05
quantile.]

5. Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples from normal distributions
N(µ1, σ

2) and N(µ2, σ
2), respectively, where the parameters µ1, µ2, σ

2 are unknown. Let

S2 = (m+ n− 2)−1
( m∑
i=1

(Xi −X)2 +

n∑
j=1

(Yj − Y )2
)
.

Determine the distributions of both

(m+ n− 2)S2/σ2 and
X − Y − (µ1 − µ2)√

S2( 1
m + 1

n)
.

Show how to construct a confidence interval for µ1 − µ2.

6. Ten students were asked to guess the width of a lecture room. Their guesses (in metres)
were: 10, 11, 12, 13, 15, 16, 17, 18, 19, 25. The actual width of the room was 13.1 m.

(i) Assuming the data arise from a normal distribution, how would you test whether this
distribution has the correct mean? State the appropriate null and alternative hypothe-
ses, and any assumptions you need to make for the hypothesis test to be appropriate.

(ii) Carry out the test you suggested in (i) and state your conclusions.

(iii) Modify your test to test whether the data are from a distribution with a mean value
higher than the true value and re-state your conclusions.



7. (Code in sheet2.R.) Read in the earthquake data from question 3 and try an exponential
Q-Q plot:

x <- scan("http://www.stats.ox.ac.uk/~laws/partA-stats/data/quakes.txt")

n <- length(x)

k <- 1:n

plot(-log(1 - k/(n+1)), sort(x), main = "Exponential Q-Q Plot",

ylab = "Ordered data", xlab = "-log[1 - k/(n+1)]")

Is an exponential model a reasonable assumption for this dataset?

The 2.5% and 97.5% quantiles for a gamma distribution with parameters (n, 1) can be cal-
culated as follows.

a <- qgamma(0.025, n)

b <- qgamma(0.975, n)

That is, the function qgamma(p, n) calculates the pth quantile of a gamma distribution with
shape parameter n and rate parameter 1.

Now calculate the exact confidence interval of question 3:

c(a, b) / sum(x)

Also use R to check that the approximate 95% confidence interval for λ obtained using
Fisher’s information is as given in question 3 – you might have obtained one of two possible
approx intervals, see sheet2.R for both.

8. (Code in sheet2.R.) For data that are exponential with parameter λ, there are three possible
confidence intervals for λ in question 3 – one based on the gamma distribution plus two
approximation possibilities. These three are all different, but numerically they are almost
the same in question 3, where n = 62.

Use the code in sheet2.R to investigate how the three differ when n is small, e.g. n = 10.

What do you conclude?

9. (See sheet2.R for more.) To do question 6 you will need the sample mean x and sample
standard deviation s:

x <- c(10, 11, 12, 13, 15, 16, 17, 18, 19, 25)

mean(x)

sd(x)

The functions qt and pt allow you to determine the significance (or otherwise) of your test
statistic(s) in question 6. Use qt and/or pt to find the quantiles and/or probabilities that
you need in question 6.

The pth quantile of a tr-distribution can be calculated using qt(p, r), so e.g. the 97.5%
quantile of a t4-distribution can be found using

qt(0.975, 4)

Alternatively, the cdf of a tr-distribution at y can be calculated using pt(y, r), so e.g. the
probability that a t4 random variable is less than 1.96 is given by

pt(1.96, 4)



#############

## Sheet 2 ##

#############

#### question 7

x <- scan("http://www.stats.ox.ac.uk/~laws/partA-stats/data/quakes.txt")

n <- length(x)

k <- 1:n

plot(-log(1 - k/(n+1)), sort(x), main = "Exponential Q-Q Plot",

ylab = "Ordered data", xlab = "-log[1 - k/(n+1)]")

abline(0, mean(x))

# abline above plots a line with intercept = 0 and gradient = mean(x)

# - from lecture notes the exponential Q-Q plot should have intercept 0

# and gradient mu if the data are exponential with mean mu

# use ?abline to see the help page for abline

a <- qgamma(0.025, n)

b <- qgamma(0.975, n)

# interval using the gamma distribution

c(a, b) / sum(x)

xbar <- mean(x)

# approx interval using lambda.hat +/- 1.96*I(lambda.hat)^{-1/2}

c(1 - 1.96/sqrt(n), 1 + 1.96/sqrt(n)) / xbar

# second approx interval from substituting I(lambda) = n/lambda^2

# and then solving the inequalities

# i.e. not replacing lambda by lambda.hat in order to estimate a variance

c(1/(1 + 1.96/sqrt(n)), 1/(1 - 1.96/sqrt(n))) / xbar

#### question 8

# above we have three slightly different intervals

# interval1 from gamma, interval2 from first approx method

# and interval3 from second approx

# n = 62 for the above data and the large sample properties are evident,

# the three intervals are almost the same

# now investigate how the three intervals perform in small samples,

# e.g. n = 10, using data generated from an exponential, parameter 1

# generate the sample, calculate and plot the three intervals

# repeat m times, e.g. m = 33 giving 99 intervals in total

# cut-and-paste the following chunk into R, you don’t need to work out

# the details of what all the plotting commands are doing

# ---begin chunk---



n <- 10

a <- qgamma(0.025, n)

b <- qgamma(0.975, n)

m <- 33

plot(1, 1, type = "n", yaxt = "n", xlim = c(0, 5), ylim = c(0, 4*m),

xlab = "lambda", ylab = "",

main = paste("95% CIs: samples of size", n, "from exponential, parameter 1"))

abline(v = 1)

legend("topright", c("interval1", "interval2", "interval3"),

lty = 1, lwd = 2, col = c(1, "orange2", "steelblue2"))

for (i in 1:m) {

x <- rexp(n)

ci1 <- c(a, b) / sum(x)

ci2 <- c(1 - 1.96/sqrt(n), 1 + 1.96/sqrt(n)) / mean(x)

ci3 <- c(1/(1 + 1.96/sqrt(n)), 1/(1 - 1.96/sqrt(n))) / mean(x)

lines(ci1, rep(4*i-1, 2), lwd = 2)

lines(ci2, rep(4*i-2, 2), lwd = 2, col = "orange2")

lines(ci3, rep(4*i-3, 2), lwd = 2, col = "steelblue2")

}

# ---end chunk---

# x <- rexp(n) generates a sample of size n

# use ?rexp to see the help page for rexp - when no rate parameter is

# given, rate = 1 is the default, hence vertical line on the plot at

# the true value lambda = 1

# the three intervals behave differently in small samples

# try repeating with larger n, e.g. n = 20, 50

# - you only need to change the first line n <- 10 to a different value

# at n = 50 the three intervals are close, especially intervals 1 & 2

# (and n = 62 for the data in question 3)

#### question 9

x <- c(10, 11, 12, 13, 15, 16, 17, 18, 19, 25)

# test statistic

tobs <- sqrt(10)*(mean(x) - 13.1)/sd(x)

# two-sided p-value

2*(1 - pt(tobs, df = 9))

# one-sided p-value

1 - pt(tobs, df = 9)

# can check using t.test

# see ?t.test, by default it assumes two-sided, and also uses a method for

# unequal variances hence we want var.equal = TRUE

t.test(x, mu = 13.1, var.equal = TRUE)



# one-sided

t.test(x, mu = 13.1, alternative = "greater", var.equal = TRUE)

# or could compare tobs to the quantiles

qt(0.975, df = 9)

qt(0.95, df = 9)



Part A Statistics HT 2021

Problem Sheet 3

1. The heart rate (beats per minute) of 10 children was measured in two situations: (i) at rest,
and (ii) in anticipation of them doing a minute’s exercise. The data are given below.

Rest, x 72 116 79 97 90 67 115 82 95 82
Anticipation, y 76 120 84 99 93 75 116 83 98 87

The sample means and variances are x = 89.5, s2x = 274.9, y = 93.1, s2y = 238.8.

(a) Assuming the data are normally distributed, carry out a two-sample t-test of the null
hypothesis that the mean heart rate for the two situations is the same, against the
alternative that it is different. What further assumptions are required for the test to be
valid?

How would you modify the test if the alternative is that the mean heart rate is higher in
situation (ii)? Explain which alternative you think is more appropriate here.

(b) Suggest a more appropriate test than that in (a). Carry out this test and explain why
you prefer it.

2. Let X1, . . . , Xn be independent N(θ, σ20) random variables, where σ20 is known. Find the
most powerful test of size α of H0 : θ = θ0 against H1 : θ = θ1, where θ1 > θ0.

Show that the power function w(θ) of this test is given by

w(θ) = 1− Φ

(√
n

σ0
(θ0 − θ) + zα

)
where Φ is the cumulative distribution function of the standard normal distribution
and Φ(zα) = 1− α.

If θ0 = 0, θ1 = 0.5 and σ0 = 1, how large must n be if α = 0.05 and the power at θ1 is to
be 0.975? [If Φ is the N(0, 1) cdf, then Φ(1.645) = 0.95 and Φ(1.96) = 0.975.]

3. A telephone receptionist for a large partnership of financial advisers is responsible for de-
termining the precise nature of each incoming enquiry and connecting the client with an
appropriate adviser. The number of inappropriate connections on any given day may be
modelled by a random variable X which has a Poisson distribution with mean µ. If Z is the
number of inappropriate connections made over a period of n days, determine the distribution
of Z and find its expected value.

Uhura, who has been such a receptionist for many years, has been found to have a mean rate
of µU = 0.47 inappropriate connections per day. For several months she has been training
Spock, a new receptionist, with corresponding mean rate µS . At a meeting of senior partners,
it was conjectured that Spock was already as proficient as Uhura; accordingly they resolved
to keep a daily record of the number of inappropriate connections made by him over his next
10 working days. Find a critical region of size 5% for a test of the hypothesis that Spock is
as proficient as Uhura versus the alternative that he is less proficient.

For what values of µS does the probability of type II error fall below 10%?

[Note that if ϕµ(k) =
∑k

x=0 µ
xe−µ/x!, then ϕ4.7(8) = 0.95, ϕ13(8) = 0.1.]



4. When studying the sex ratio in a population using a sample of size n, it is usually assumed
that, indpendently, each child is male with probability p. Renkonen (1956) observed 19,711
male births out of a total of 38,562 births in American families with two children each. Use
the likelihood ratio statistic Λ to test the hypothesis H0 : p = 1

2 against a suitable alternative
which you should specify.

Renkonen also found 17,703 males out of 35,042 similar births in Finland. Use the generalised
likelihood ratio test to test the hypothesis that p has the same value in each country versus
a suitable alternative.

5. (a) A random variable X has a distribution given by

P (X = i) = πi, i = 1, . . . , k

where
∑k

i=1 πi = 1. In a sample of size n from a population with distribution X, the

frequency of outcome i is ni, where ni > 0 and
∑k

i=1 ni = n. Find the maximum
likelihood estimates of π1, . . . , πk.

(b) The leaves of the plant Pharbitis nil can be variegated or unvariegated and, at the same
time, faded or unfaded. In an experiment reported by Bailey (1961), of 290 plants which
were observed, 31 had variegated faded leaves, 37 had variegated unfaded leaves, 35 had
unvariegated faded leaves and 187 had unvariegated unfaded leaves.

If the properties of variegated appearance and faded appearance are assumed indepen-
dent, then a model for the above observations has respective probabilities 1

16 ,
3
16 ,

3
16 ,

9
16 .

The general alternative is that the probabilities πi, i = 1, . . . , 4, are restricted only by
the constraint

∑
πi = 1. Use a χ2 goodness-of-fit test to show that the data offer strong

evidence that the independence model is inappropriate.

(c) A genetic theory which allows for an effect called genetic linkage assumes a probability
model for the above observations with respective probabilities

1

16
+ θ,

3

16
− θ, 3

16
− θ, 9

16
+ θ.

Find the equation satisfied by the maximum likelihood estimate θ̂ of θ.

You may assume that θ̂ = 0.058.

Let H0 be the null hypothesis that the genetic linkage model is appropriate, and let H1

be the general alternative. If L0 is the supremum of the likelihood under H0 and if L1 is
the supremum of the likelihood under H1, show that

Λ = 2
4∑
i=1

ni log

(
ni

nπi(θ̂)

)
where Λ = −2(logL0 − logL1). Write down the approximate distribution of Λ.

What can you infer about the plausibility of the genetic linkage model?



6. The ordered pairs of random variables (Xk, Yk), k = 1, . . . , n, are independent and

P
(
(Xk, Yk) = (i, j)

)
= πij , i = 1, . . . , r, j = 1, . . . , c

where
∑

i,j πij = 1. The frequency of the outcome (i, j) is nij , where nij > 0.

Find the maximum likelihood estimates of the πij assuming that

(i) πij = αiβj for i = 1, . . . , r and j = 1, . . . , c, where
∑

i αi =
∑

j βj = 1, and

(ii) without this assumption.

Hence find test statistics for testing the null hypothesis that the Xk and the Yk are indepen-
dent using

(a) the likelihood ratio method,

(b) Pearson’s χ2 statistic.

What can you say about the distributions of these two statistics for large values of n?

The data below (Agresti, 2007) cross-classifies gender and political party identification in the
USA: 2757 individuals indicated whether they identified more strongly with the Democratic
or Republican party or as Independents. Is there an association between gender and political
party identification?

Party Identification

Democrat Independent Republican

Female 762 327 468
Male 484 239 477

7. (See sheet3.R for more.) Can you carry out all of the numerical calculations required for
this sheet using R? See sheet3.R for more help and for code that you can cut and paste into
R – this will help with the numerical calculations on this sheet.

To find quantiles or values of the cdf of t-distributions, we can use the functions qt and pt as
described at the end of Sheet 2. To do the same for the N(0, 1) distribution use the similar
functions qnorm and pnorm, and for chi-squared distributions use qchisq and pchisq.

For example, the 0.95 quantile of N(0, 1), and Φ(1.96), can be found using

qnorm(0.95)

pnorm(1.96)

For the chi-squared case we need to supply the number of degrees of freedom: the 0.95
quantile of a χ2

10 distribution, and the probability that a χ2
10 is less than 13 can be found

using

qchisq(0.95, df = 10)

pchisq(13, df = 10)



#############

## Sheet 3 ##

#############

#### question 1

x <- c(72, 116, 79, 97, 90, 67, 115, 82, 95, 82)

y <- c(76, 120, 84, 99, 93, 75, 116, 83, 98, 87)

m <- 10

n <- 10

xbar <- mean(x)

ssqx <- var(x)

ybar <- mean(y)

ssqy <- var(y)

ss <- ((m-1)*ssqx + (n-1)*ssqy) / (m+n-2)

s <- sqrt(ss)

tobs <- (xbar - ybar) / (s*sqrt(1/m + 1/n))

# since tobs is negative

2 * pt(tobs, df = 18)

pt(tobs, df = 18)

qt(0.1, df = 18)

# as a check

t.test(x, y, var.equal = TRUE)

# now paired

d <- y - x

t1 <- mean(d)/sqrt(var(d)/10)

1 - pt(t1, df = 9)

# as a check

t.test(d)

#### question 2

pnorm(1.96)

pnorm(1.645)

#### question 3

ppois(8, lambda = 4.7)

ppois(8, lambda = 13)

#### question 4

x1 <- 19711

n1 <- 38562

p1hat <- x1/n1

Lambda <- 2 * ( n1*log(2) + x1*log(p1hat) + (n1-x1)*log(1-p1hat) )

1 - pchisq(Lambda, df = 1)



x2 <- 17703

n2 <- 35042

p2hat <- x2/n2

phat <- (x1 + x2)/(n1 + n2)

term1 <- (phat/p1hat)^x1 * ((1-phat)/(1-p1hat))^(n1-x1)

term2 <- (phat/p2hat)^x2 * ((1-phat)/(1-p2hat))^(n2-x2)

ratio <- term1*term2

Lambda1 <- -2*log(ratio)

1 - pchisq(Lambda1, df = 1)

# same as Lambda1

Lambda2 <- -2 * ((x1+x2)*log(phat) + (n1+n2-x1-x2)*log(1-phat)

- x1*log(p1hat) - (n1-x1)*log(1-p1hat)

- x2*log(p2hat) - (n2-x2)*log(1-p2hat))

#### question 5

obs <- c(31, 37, 35, 187)

expect <- 290*c(1/16, 3/16, 3/16, 9/16)

L1 <- 2 * sum(obs * log(obs/expect))

P1 <- sum((obs - expect)^2/expect)

1 - pchisq(L1, df = 3)

1 - pchisq(P1, df = 3)

n1 <- 31

n2 <- 37

n3 <- 35

n4 <- 187

a <- - 16^2*n1 - 16^2*(n2+n3) - 16^2*n4

b <- - 96*n1 - 160*(n2+n3) + 32*n4

c <- 27*n1 - 9*(n2+n3) + 3*n4

theta1 <- (-b + sqrt(b^2-4*a*c))/(2*a)

theta2 <- (-b - sqrt(b^2-4*a*c))/(2*a)

# theta1 not a valid value of theta

c(1/16+theta1, 3/16-theta1, 3/16-theta1, 9/16+theta1)

# theta2 is a valid value

c(1/16+theta2, 3/16-theta2, 3/16-theta2, 9/16+theta2)

# the log-likelihood is maximised at theta2 - picture

theta <- seq(-0.05, 0.18, length.out=50)

plot(theta, n1*log(1+16*theta) + (n2+n3)*log(3-16*theta)

+ n4*log(9+16*theta), type = "l", ylab = "g(theta)")

abline(v = theta2, lty = 2)

expect2 <- 290*c(1/16+theta2, 3/16-theta2, 3/16-theta2, 9/16+theta2)

L2 <- 2 * sum(obs * log(obs/expect2))

P2 <- sum((obs - expect2)^2/expect2)

1 - pchisq(L2, df = 2)

1 - pchisq(P2, df = 2)



#### question 6

x <- matrix(c(762, 484, 327, 239, 468, 477), ncol = 3)

n <- sum(x)

alpha <- rowSums(x)/n

beta <- colSums(x)/n

# under the null, the expected number in cell (i,j) is n*alpha[i]*beta[j]

# an outer product, denoted by %o%, does exactly what we need

# e.g try

num <- 1:12

num %o% num

# so evaluate the expected numbers under the null by

expect <- n * alpha %o% beta

obs <- x

Lambda <- 2 * sum(obs * log(obs/expect))

Pearson <- sum((obs-expect)^2 / expect)

1 - pchisq(Lambda, df = 2)

1 - pchisq(Pearson, df = 2)

## as a check

chisq.test(x)
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1. Suppose that X1, . . . , Xn each have a geometric distribution with probability mass func-
tion f(x | θ) = (1− θ)xθ for x = 0, 1, . . . . Suppose that the prior for θ is a Beta(a, b) density.
Find the posterior distribution of θ.

2. Let θ > 0 be an unknown parameter and let c > 0 be a known constant. Conditional on θ,
suppose X1, . . . , Xn are independent each with probability density function

f(x|θ) = θcθx−(θ+1), x > c

and suppose the prior for θ is a Gamma(α, β) density. Find the posterior distribution of θ.

3. Let r > 1 be a known integer and let θ ∈ [0, 1] be an unknown parameter. The negative
binomial distribution with index r and parameter θ has probability mass function

f(x | θ) =

(
x+ r − 1

x

)
(1− θ)xθr for x = 0, 1, . . . .

Let θ have a Beta(a, b) prior density and suppose, given θ, that X1, . . . , Xn are independent
each with the above negative binomial distribution.

(a) Show that the posterior density is also a Beta density.

(b) Explain how to construct a 100(1 − α)% equal-tailed credible interval for θ. Will this
interval be a highest posterior density interval?

4. Suppose that X has a N(θ, φ) distribution, where φ is known, Suppose also that the prior
distribution for θ is N(θ0, φ0), where θ0 and φ0 are known.

(a) Find the posterior distribution of θ given X = x.

(b) Show that the posterior mean of θ always lies between the prior mean and the observed
value x.

(c) Construct a 100(1− α)% highest posterior density interval for θ.

(d) Let φ = 2, θ0 = 0 and φ0 = 2.

(i) Suppose the observed value is x = 4. What are the mean and variance of the
resulting posterior distribution? Sketch the prior, likelihood, and posterior on a
single set of coordinate axes.

(ii) Repeat (i) assuming φ0 = 18. Explain any resulting differences. Which of these
two priors would likely have more appeal for a frequentist statistician?

5. Let X be the number of heads when a coin with probability θ of heads is flipped n times.

(a) When the prior is π(θ), the prior predictive distribution for X (the predictive distribution
before observing any data) is given by

P (X = k) =

∫ 1

0
P (X = k|θ)π(θ) dθ, k = 0, 1, . . . , n.

Find the prior predictive distribution when π(θ) is uniform on (0, 1).

(b) Suppose you assign a Beta(a, b) prior for θ, and then you observe x heads out of n flips.
Show that the posterior mean of θ is always lies between your prior mean, a/(a+ b), and
the observed relative frequency of heads, x/n.



(c) Show that, if the prior distribution on θ is uniform, then the posterior variance is always
less than the prior variance.

(d) Give an example of a Beta(a, b) prior distribution and values of x, n for which the pos-
terior variance is larger than the prior variance. (Try x = n = 1.)

6. A coin, with probability θ of heads, is flipped n times and r heads are observed.

(a) If the prior for θ is a uniform distribution on (0, 1), what is the probability that the next
flip is a head?

(b) Can you generalise to the case where θ has a Beta(a, b) prior and where we wish to find
the probability of getting k heads from m further flips?

7. (a) Let X ∼ N(θ, σ20), where σ20 is known. Find the Jeffreys’ prior for θ.

(b) Let X ∼ N(µ0, σ
2), where µ0 is known. Find the Jeffreys’ prior for σ.

(c) Let X be Poisson with parameter λ. Find the Jeffreys’ prior for λ. Check that the
posterior distribution of θ given X = x is proper, but that the Jeffreys’ prior is not.

8. Suppose X is the number of successes in a binomial experiment with n trials and probability
of success θ. Either H0 : θ = 1

2 or H1 : θ = 3
4 is true. Show that the posterior probability

that H0 is true is greater than the prior probability for H0 if and only if

x log 3 < n log 2.

9. Let X ∼ Binomial(n, θ), where the prior for θ is uniform on (0, 1). Suppose that we wish to
compare the hypotheses H0 : θ 6 1

2 and H1 : θ > 1
2 .

What are the prior odds of H0 relative to H1?

Find an expression for the posterior odds of H0 relative to H1.

If we observe X = n, find the Bayes factor B of H0 relative to H1.

Check that B → 0 as n→∞. Why is this expected?

10. Suppose we have a random sample X1, . . . , Xn from a Poisson distribution with mean θ.
Suppose we wish to test the hypothesis H0 : θ = θ0 against H1 : θ 6= θ0 and that, under H1,
the prior distribution π(θ|H1) for θ is given by

π(θ|H1) =
βα

Γ(α)
θα−1e−βθ, θ > 0.

Calculate the Bayes factor of H0 relative to H1.

When n = 6,
∑
xi = 19, θ0 = 2, find the numerical value of the Bayes factor (i) when α = 4

and β = 2
3 , and (ii) when α = 36 and β = 6. Compare and interpret the values of the Bayes

factor in cases (i) and (ii).


