2. Confidence Intervals Let $\alpha \in (0,1)$. A 1-a confidence interval is an interval C=(a,b), where a = a (X) and b = b (X) such that $P(\theta \in C) = 1 - \alpha$ Note: a (X), b (X) are not allowed to depend on Q. In words: (a,b) traps & with probability I-a Warning: C is random and O is fixed

Most common is ~= 0.05, ie 95% C.I confidence interval Interpretation: if we repeat an experiment many times, and construct a C.I. each time, then approx 95% of our intervals will contain the true value of O (repeated sampling).

Example
$$X_{1}, ..., X_{n} \stackrel{\text{id}}{\sim} N(\theta, 1)$$

and $(\bar{X} \pm \frac{1.96}{\sqrt{n}})$ is a 95% C.T. for θ .
We'll usually want a central (equal tail)
interval as above.
[One-sided intervals of the form (a, ∞) or $(-\infty, b)$
are possible.]

2.1 CIs using CLT

Plenty of examples in Prelims, and similar to the next section.

$$\frac{2\cdot 2}{\sqrt{15}} \frac{2\cdot 2}{\sqrt{15}} \frac{1}{\sqrt{15}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{15}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{15}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{15}} \frac{1$$

In general I(0) depends on 0 so (as in Prelims) replace I(0) by I($\hat{0}$) to get approx I-or C.I. of $\begin{pmatrix} \hat{\Theta} \pm Z_{\alpha_{1_{2}}} \\ \overline{\sqrt{I(\hat{\Theta})}} \end{pmatrix}.$

Why does replacing I(0) by I(0) work? We are assuming $\hat{\theta} \xrightarrow{P} \theta$ and that $I(\theta)$ is continuous, hence $\left(\frac{I(\hat{\theta})}{I(\theta)}\right)^{\frac{1}{2}} \xrightarrow{P} 1$. $S_{0} \quad I(\widehat{\Theta})^{\frac{1}{2}} \cdot (\widehat{\Theta} - \Theta) = \left(\frac{I(\widehat{\Theta})}{I(\Theta)}\right)^{\frac{1}{2}} \cdot I(\Theta)^{\frac{1}{2}} (\widehat{\Theta} - \Theta)$ $\frac{P}{\rightarrow}1$ $\xrightarrow{D} N(o,i).$ Hence by Slutzky (ii), $I(\hat{\sigma})^{1/2}(\hat{\sigma}-\sigma) \xrightarrow{\mathcal{D}} N(\sigma, i),$

So D holds with I(0) replaced by I(ô) 1/2 and then the same rearrangement as above leads to C.I. (2).

Example
$$X_{1} \dots X_{n} \stackrel{\text{id}}{\sim} \text{Bernoullillo}$$
. Then $\hat{\Theta} = \overline{X}$ and
 $I(\Theta) = \frac{n}{\Theta(1-\Theta)}$ and interval $\widehat{\Theta}$ is
 $\left(\widehat{\Theta} \pm z_{\text{eff}} \int \frac{\widehat{\Theta}(1-\widehat{\Theta})}{n}\right)$.
If $n=30$, $\widehat{\Sigma}_{\text{xi}} = 5$, 99% interval of: (-0.008, 0.742).
But we know $\Theta > 0$!

We can avoid negative values by reparametrising
as follows.
Let
$$\psi = g(0) = \log \frac{\theta}{1-\theta}$$
 "log odds" (of success)
Since $\Theta \in (0, 1)$ we have $\psi \in (-\infty, \infty)$ so using a
normal distribution can't produce impossible ψ values
Note $\hat{\Theta} \approx N(\theta, \frac{\Theta(1-\theta)}{n})$ and delto method
gives $\hat{\psi} \approx N(\psi, \frac{\Theta(1-\theta)}{n}g'(\theta)^2)$. (3)

Use 3 b find approx 1-x C.I. for 4, say (4, 42). $1-\alpha \approx P(\Psi_1 < \Psi < \Psi_2)$ $= P\left(\frac{e^{\eta}}{1+e^{\eta}} < 0 < \frac{e^{\eta}}{1+e^{\eta}}\right) \qquad \text{Since } 0 = \frac{e^{\eta}}{1+e^{\eta}}.$ This 1-or C.I. for 8 définitely von't contain negative values.

2.3 Distributions related to N(0,1) Definition Let Z1,..., Zr ~ N(0,1). We say that Y=Z,²+...+Z,² has the <u>chi-squared</u> distribution with r degrees of freedom. Write Y~ Zr. In fact $\chi_r^2 \sim \text{Gamma}(\frac{r}{2}, \frac{1}{2})$. If $Y \sim \chi_r^2$ then E(Y) = r and vor(Y) = 2r. If $Y_1 \sim \chi_r^2$ and $Y_2 \sim \chi_s^2$ are independent, then $Y_1 + Y_2 \sim \chi^2_{r+s}$.

Example $X_{1,...,}X_{n} \stackrel{iid}{\sim} N(0,\sigma^{2}).$ Then $X_{i} \sim N(0,1)$, hence $\sum_{r=1}^{r} \chi_{r}^{2}$. Hence $P(c_1 < \Sigma \chi_i^2 < c_2) = 1 - \alpha$ where c_{1}, c_{2} are such that $P(\chi_{n}^{2} < c_{1}) = P(\chi_{n}^{2} > c_{2}) = \frac{\alpha}{2}$ So $P\left(\frac{\Sigma \chi_i^2}{c_2} < \sigma^2 < \frac{\Sigma \chi_i^2}{c_1}\right) = 1 - \alpha$ and we've found a 1-x CI for 5².

Definition Let Z~N(0,1) and Y~ 22 be independent. We say that T = ZJY/r has a (Student) t-distribution with r degrees of freedom Write T~ tr. We have tr -> N(0,1) as r->00.

Chi-squared pdfs

у

t distribution pdfs

t

2.4 Independence of X and S² for normal samples Suppose X1,..., Xn ~ N(M, J2). sample mean Consider $\overline{X} = \frac{1}{n} \overset{n}{\Sigma} X_i$ $S^2 = \prod_{n=1}^{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$ sample variance Theorem 2.1 X and S² are independent and their maginal distributions are (i) $\hat{X} \sim N(\mu, \sigma^2)$ $(ii) \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$

Proof Let
$$Z_i = \frac{X_i - \mu}{\sigma}$$
. Then $Z_1 - Z_n \xrightarrow{X_i + h} N(o, 1)$
and so have joint pdf $-\frac{Z_i^2}{2} - \frac{1}{2} \sum \frac{Z_i^2}{2}$
 $f(Z_i) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \sum \frac{Z_i^2}{2}} = (2\pi)^2 e^{-\frac{1}{2} \sum \frac{Z_i^2}{2}}$
Now consider a transformation from $Z = \begin{pmatrix} Z_1 \\ \vdots \\ Z_n \end{pmatrix}$ by $Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$
Let $Y = A Z$ where A is an orthogonal nyn metrix
with first row $(\frac{1}{\sqrt{2\pi}}, - \frac{1}{\sqrt{2\pi}})$.
Orthogonal: $\overline{A}^T A = I$, so $(\det A)^2 = 1$.

If y = Az then $z = A^T y$ so $z_i = \sum_{k=1}^{n} a_{ki} y_k$ and $\frac{\partial z_i}{\partial y_i} = a_j i$. Hence the Jacobian $J = J(y_1, y_n) = det(A^T)$, so |J| = 1Also $\hat{z}_{y_i}^{\dagger} = y_y^{\dagger} = z^{T} A z = z^{T} z = \hat{z}_{z_i}^{\dagger}$ Hence the pdf of Y is g(y) = f(z(y)). |J| $= (2\pi)^{n/2} e^{-\frac{1}{2}\sum_{i=1}^{2} \frac{1}{2}}$ Using (), (), () Hence Y,... Yn ~ N(0,1).

Now
$$Y_{i} = (\text{fint now of } A) \cdot \overline{Z} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \overline{Z}_{i}^{2}$$

and $\sum_{i=1}^{n} (Z_{i} - \overline{Z})^{2} = \sum_{i=1}^{n} Z_{i}^{2} - 2\overline{Z} Z Z_{i}^{2} + n \overline{Z}^{2}$
 $= \sum_{i=1}^{n} Z_{i}^{2} - n \overline{Z}^{2}$
 $= \sum_{i=1}^{n} Y_{i}^{2} - Y_{i}^{2}$
 $= \sum_{i=1}^{n} Y_{i}^{2}$

So \overline{Z} is a function of Y_1 only $\overline{Z}(Z_1-\overline{Z})^2 - Y_2,...,Y_n$ only and the Y: are indep, hence Z and Z (Z:-Z)² are indep. Then \overline{X} and S^2 are indep because $\overline{X} = \sigma \overline{Z} + \mu$ and $S^2 = \frac{\sigma^2}{h-1} \frac{\overline{Z}}{1} (\overline{Z_i} - \overline{Z})^2$.

Finally: (i) $Y_1 \sim N(o, 1)$ so $\overline{X} = \sigma \overline{Z} + \mu = \frac{\sigma}{\sqrt{n}} Y_1 + \mu \sim N(\mu, \frac{\sigma^2}{n})$ (of couse!) $(ii) (n-1)S^{2} = \tilde{\sum}_{i}^{n} (Z_{i} - \overline{Z})^{2} = \tilde{\sum}_{i}^{n} Y_{i}^{2} \sim Y_{n-1}^{2}$

So we have
$$\frac{\overline{X}-\mu}{\sigma/5\pi} \sim N(o,1)$$
 and $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$
and these two random variables are independent
From the definition of a t_{n-1} distribution this
gives $\frac{\overline{X}-\mu}{S/\sqrt{5\pi}} \sim t_{n-1}$
(the σ in numerator $*$ denominator cancels).

The quantity
$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$
 is called a pirotal quantity
or pirot, meaning that it is a function of X
and $\Theta = (\mu, \sigma^2)$ whose distribution also not
depend on Θ .
Similarly $(n-1)S^2$ is another pirot.

Example X1,...,Xn ~ N(M,02), M,02 unknorn. Let's find a C.I. for M. Then $P\left(-t_{n-1}\begin{pmatrix}\alpha\\z\end{pmatrix} < \frac{\overline{X}-\mu}{S/\Gamma_n} < t_{n-1}\begin{pmatrix}\alpha\\z\end{pmatrix}\right) = 1-\alpha$ where $t_{n-1} \begin{pmatrix} \alpha \\ 2 \end{pmatrix}$ is such that $P(t_{n-1} > t_{n-1}(\frac{\alpha}{2})) = \frac{\alpha}{2}.$ ά'

Hence

$$P\left(\overline{X} - t_{n-1}\left(\frac{x}{2}\right) \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{n-1}\left(\frac{x}{2}\right) \frac{S}{\sqrt{n}}\right) = 1 - \alpha$$
and we have $\alpha = 1 - \alpha - C \cdot \overline{I}$. for μ .
When $\sigma = \delta_0$ is known, the corresponding interval from Preling
is
$$\left(\overline{X} \pm z \frac{\alpha}{x} \cdot \frac{\sigma_0}{\sqrt{n}}\right).$$

Т

Student's Sleep data

"Student" = W.S. Gosset

Below is half of Student's sleep data (1908):

 $0.7, \ -1.6, \ -0.2, \ -1.2, \ -0.1, \ 3.4, \ 3.7, \ 0.8, \ 0.0, \ 2.0.$

The data give the number of hours of sleep gained, by 10 patients, following a low dose of a drug.

[The other half of the data give the sleep gained following a normal dose of the drug.]

A point estimate of the sleep gained is $\overline{x} = 0.75$ hours.

Treating the sample as iid $N(\mu, \sigma^2)$, with μ and σ^2 unknown, a 95% CI for μ is

$$\left(\overline{x} \pm t_{n-1}(\frac{\alpha}{2})\frac{s}{\sqrt{n}}\right) = (-0.53, 2.03)$$

using $\overline{x} = 0.75$, $s^2 = 3.2$, n = 10, $\alpha = 0.05$, $t_9(0.025) = 2.262$.

The value of $t_9(0.025)$ comes from statistical tables, or from R.

Here, it would be *incorrect* to use a N(0, 1) distribution instead of a t_9 . E.g. Suppose we "assume" $\sigma^2 = s^2 = 3.2$ (the sample variance) and calculate the interval

$$\left(\overline{x} \pm 1.96\sqrt{\frac{3.2}{10}}\right) = (-0.36, 1.86).$$

The interval (-0.53, 2.03) obtained using the t_9 distribution is wider than the interval (-0.36, 1.86).

The interval from the t_9 distribution is the correct one here. Since σ^2 is unknown, we need to estimate it (our estimate is s^2). Since we are estimating σ^2 , there is more uncertainty than if σ^2 were known, and the t_9 distribution correctly takes this uncertainty into account.

Number of hours of sleep gained, by 10 patients:

 $0.7, \ -1.6, \ -0.2, \ -1.2, \ -0.1, \ 3.4, \ 3.7, \ 0.8, \ 0.0, \ 2.0.$

Do the data support the conclusion that a low dose of the drug makes people sleep more, or not?

- We will start from the default position that the drug has no effect,
- and we will only reject this default position if the data contain "sufficient evidence" for us to reject it.

So we would like to consider

- (i) the "null hypothesis" that the drug has no effect, and
- (ii) the "alternative hypothesis" that the drug makes people sleep more.

We will denote the "null hypothesis" by H_0 , and the "alternative hypothesis" by H_1 .

The other half of the sleep data is the number of hours of sleep gained, by the same 10 patients, following a normal dose of the drug:

 $1.9, \ 0.8, \ 1.1, \ 0.1, \ -0.1, \ 4.4, \ 5.5, \ 1.6, \ 4.6, \ 3.4.$

Is there evidence that a normal dose of the drug makes people sleep more than not taking a drug at all, or not?

Let
$$t_{obs} = t(\underline{x}) = \overline{\underline{x}} - \underline{M}_{o}$$
 and let $t(\underline{x}) = \overline{\underline{x}} - \underline{M}_{o}$.
The idea is:
• a small/moderate value of t_{obs} is consistent with H_{o}
 $t_{including}$ regative
• whereas a very large value of t_{obs} is not consistent
with H_{o} and instead suggests H_{1} .

For sleep data (low dose)
$$t_{obs} = 1.326$$
.
Is this t_{obs} large?
If Ho is true then $t(X) \sim t_{n-1}$ and the
probability of observing a value $\geq t_{obs}$ is
 $p = P(t(X) \geq t_{obs}) = P(t_q \geq 1.326) = 0.109$.
This p is called the p-value or significance
lavel.

Т

Usually we say "don't reject Ho" (retain Ho) or "reject Ho" or say data are "consistent with Ho" or "not consistent with Ho" (rather than "accept Hs" or "accept Hi")

2nd example (sleep data, full dose)

$$t_{obs} = 3.68$$

This time p-value = $P(t(X) \neq 3.68) = P(t_q \neq 3.68)$
 $= 0.0025$.
This is very small, we'd see $t(X) \neq 3.68$ only
 0.25% of the time if the time, very rare.
We conclude that there is very strong evidence to
reject the in favour of H_1 .

How small is small for a p-value? We might say something like: very strong eridence against Ho p< 0.01 0.01 <p < 0.05 strong - - - weak -----0.05 < p < 0.1 little or no ----. 0.1 < p

 $X_{1,...,} X_{n} \stackrel{icd}{\sim} N(\mu_{1}\sigma^{2})$ M, 5 both unknown null Ho: $\mu = \mu_o$ alternative H: 1 7 110 -when Ho brue $T = T(X) = \frac{\overline{X} - M_0}{S/\sqrt{n}}$ ~ tn-, The further \bar{x} above no, the more evidence to reject Hs. the further t(x) above zero

One-sided and two-sided alternative hypotheses

$$H_i: \mu > \mu_0$$
 is a one-sided alternative. The larger
tobs the more evidence to reject H_0 .
Similarly $H_i: \mu < \mu_0$ is also one-sided. The p-value
would be $p = P(t_{n-1} \le t_{obs})$.
A different type of alternative is $H_i: \mu \neq \mu_0$. This is
a two-sided alternative.

H:
$$\mu \neq \mu_{0}$$
 two-sided
For this H:
if tobs is very large (is very positive) then we have
evidence to reject Ho
AND also
if tobs is very small (is very negative) then we have
evidence to reject Ho
Let to = $|t_{0}|_{0} = \frac{\overline{x} - \mu_{0}}{s/\sqrt{n}}$

The p-value is the probability
$$t(x)$$
 takes a value
"at least as extreme" as t_{obs} :
 $p = P(|t(x)| \ge t_o)$
 $= P(t(x) \ge t_o) + P(t(x) \le -t_o)$
 $= 2P(t(x) \ge t_o).$
This p-value, and all others, are calculated under the
assumption that Ho is true. From now on we mate
 $p = P(t(x) \ge t_{obs}) H_o)$ or $p = P(|t(x)| \ge t_o| H_o)$ to indicate
 $this$.

3.2 Tests for normally distributed samples
Example (z-test)
$$X_{1,...,}X_{n} \stackrel{iid}{\sim} N(\mu, \sigma^{2})$$
 with
 μ unknown and $\sigma^{2} = \sigma_{o}^{2}$ known.
To test Ho: $\mu = \mu_{0}$ against $H_{1}: \mu > \mu_{0}$ we use the
test statistic $Z = \overline{X} - \mu_{0}$
 $\overline{\sigma}/\sqrt{n}$

If Ho is the then
$$Z \sim N(o, 1)$$
.
 $p-value \quad p = P(Z \not\equiv z_{obs} \mid H_{o}) = P(N(o, 1) \not\equiv z_{obs})$
 $= 1 - \overline{\Phi}(z_{obs})$
For Ho versus $H'_{1}: M < \mu_{o}$
 $p-value \quad p' = P(Z \leq z_{obs} \mid H_{o}) = \overline{\Phi}(z_{obs})$
For Ho versus $H''_{1}: \mu \neq \mu_{o}$
 $p-value \quad p'' = P(1Z \mid \not\equiv z_{o} \mid H_{o}) = 2(1 - \overline{\Phi}(z_{o}))$
 $value \quad p''' = P(1Z \mid \not\equiv z_{o} \mid H_{o}) = 2(1 - \overline{\Phi}(z_{o}))$

T

<u>Example</u> (t-test) X₁,..., X_n ~ N(p, o²) mith mand o² unknown. There are similar expressions for pralues like p, p', p'' above, after replacing: • Z by $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$ • $\overline{\Phi}$ by cdf of t_{n-1} .

t-test (one sample)

[Example from Dalgaard (2008).] Data on the daily energy intake (in kJ) of 11 women:

5260, 5470, 5640, 6180, 6390, 6515, 6805, 7515, 7515, 8230, 8770.

Do these values deviate from a recommended value of 7725 kJ?

We consider testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$, where $\mu_0 = 7725$, and we make the standard assumptions for a *t*-test.

We have
$$t_{obs} = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} = -2.821.$$

The *p*-value is $p = 2P(t_{10} \ge |t_{obs}|) = 0.018$. So we conclude that there is good evidence to reject the null hypothesis that the mean intake is 7725 kJ.

Testing $H_0: \mu = 7725$ against $H_1^-: \mu < 7725$, the *p*-value is $p^- = P(t_{10} \leq t_{obs}) = 0.009$.

Conclusion: there is good evidence to reject H_0 in favour of H_1^- .

Testing $H_0: \mu = 7725$ against $H_1^+: \mu > 7725$, the *p*-value is $p^+ = P(t_{10} \ge t_{obs}) = 0.991$.

Conclusion: there is no evidence to reject H_0 in favour of H_1^+ .

t-test (two sample)

Darwin's Zea mays data - heights of young maize plants.

Height (eights of an inch)				
Crossed		Self-fe	Self-fertilized	
188	146	139	132	
96	173	163	144	
168	186	160	130	
176	168	160	144	
153	177	147	102	
172	184	149	124	
177	96	149	144	
163		122		

11 · 1 · (· 1 · C · 1)

Are the heights of the two types of plant the same?

[In fact, the plants were in pairs – one cross- and one self-fertilized in each pair - we ignore this pairing for now. We'll see how to deal with pairing later.]

Туре

Assume we have two independent samples $X_1, \ldots, X_m \stackrel{\text{iid}}{\sim} N(\mu_X, \sigma^2)$, and $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} N(\mu_Y, \sigma^2)$, where σ^2 is unknown.

Suppose we would like to test $H_0: \mu_X = \mu_Y$ against $H_1: \mu_X \neq \mu_Y$. Let

$$T = \frac{X - Y}{S\sqrt{\frac{1}{m} + \frac{1}{n}}}$$

where $S^2 = \frac{1}{m+n-2} \left[\sum (X_i - \overline{X})^2 + \sum (Y_i - \overline{Y})^2 \right].$

Assuming H_0 is true, we have $T \sim t_{m+n-2}$.

For the maize data, the observed value of T is

$$t = \frac{\overline{x} - \overline{y}}{s\sqrt{\frac{1}{m} + \frac{1}{n}}} = 2.437.$$

The alternative hypothesis ($\mu_X \neq \mu_Y$) is two-sided, so the *p*-value of this test is

$$p = 2P(t_{28} \ge 2.437) = 0.021.$$

Conclusion: there is good evidence to reject the null hypothesis $\mu_X = \mu_Y$.

t-test (paired)

Suppose we have pairs of RVs (X_i, Y_i) , i = 1..., n. Let $D_i = X_i - Y_i$.

Suppose $D_1, \ldots, D_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, with σ^2 unknown, and that we want to test a hypothesis about μ . We can use the test statistic

$$\frac{\overline{D} - \mu_0}{S_D / \sqrt{n}}$$

which has a t_{n-1} distribution under $H_0: \mu = \mu_0$. (Here, S_D^2 is the sample variance of the D_i .)

The kind of situation where a paired test is used is when there are two measurements on the same "experimental unit", e.g. in the sleep data, low and normal doses were given to the same 10 patients.

Two sample t and paired t

Is the amount of sleep gained with a low dose the same as the amount gained with a high dose?

- Two sample *t*-test of H₀ : μ_X = μ_Y against H₁ : μ_X ≠ μ_Y: the *p*-value is 0.079.
- Paired t-test (of µ₀ = 0), based on the differences D_i: the p-value is 0.0028.

The paired test uses the information that the observations are paired: i.e. we have one low and one high dose observation per patient. The two sample test ignores this information. Prefer the paired test here.

Could consider one-sided alternatives here.