Hypothesis testing and confidence intervals

For the maize data:

- ► the 95% (equal tail) confidence interval for $\mu_X \mu_Y$ is (3.34, 38.53) (see Sheet 2, Question 5)
- ightharpoonup when testing $\mu_x = \mu_y$ against $\mu_x \neq \mu_y$, the p-value is 0.021.

So, observe that

- (i) the p-value less than 0.05
- (ii) the 95% confidence interval does not contain $0 (=$ the value of $\mu_X - \mu_Y$ under H_0).

(i) and (ii) both being true is not a coincidence – there is a connection between hypothesis tests and confidence intervals.

3.3 Hypotlastis testing and confidence intervals
Example X _{1,..,} X ₁ , ¹⁶ M(M,5 ²) , M,5 ² unknown.
(i) A 1- \propto C. I. for M is
$(\overline{z} \pm b_{n-1}(\underline{x}) \cdot \frac{s}{\sqrt{n}})$
(ii) For t-test of M=M ₀ against M \ne M ₀ , p-value is $p = P(b_{n-1} \ge b_{o})$
where $b_0 = b(\overline{x}) = \overline{x} - M_0 $.

For C.T.
\n
$$
\frac{\alpha_2}{t_{n-1}} = \frac{1}{2}
$$
\n
$$
\frac{1}{2}e
$$
\nSo $p < \alpha \iff t_0 > t_{n-1}(\frac{\alpha}{2})$
\n
$$
\iff t_{(2)} > t_{n-1}(\frac{\alpha}{2})
$$
 or $t_{(2)} < -t_{n-1}(\frac{\alpha}{2})$
\n
$$
\iff \mu_0 < \overline{x} - t_{n-1}(\frac{\alpha}{2})\frac{s}{\sqrt{n}}
$$
 or
$$
\mu_0 > \overline{x} + t_{n-1}(\frac{\alpha}{2})\frac{s}{\sqrt{n}}
$$
\nThat is: $p < \alpha \iff$ $(\overline{x}) < -1$. On does not contain μ_0 .

T

3.4 Hypothesis testing general setup
\nLet X₁,..., X_n be iid from
$$
f(x; 0)
$$
 where
\n $0 \in \mathbb{O}$ is a vector or scalar parameter.
\nConsider letting: - the null hypothesis $H_0: 0 \in \mathbb{O}_0$
\n• against the alternative hypothesis
\n $H_1: 0 \in \mathbb{O}_0$
\nwhere $\mathbb{O}_0 \cap \mathbb{O}_1 = \emptyset$ and possibly but not
\nbeassign $\mathbb{O}_0 \cup \mathbb{O}_1 = \mathbb{O}$.

Suppose *re* can construct a fact thatiste
$$
E(X)
$$
 such
that large values of $E(X)$ indicate a departure
from *the* in the direction of H_1 .
Let $t_{obs} = E(\underline{x})$, the value of $E(X)$ observed.
Then *the* p-value or significance level or
 $p = P(E(X) \ge t_{obs} | H_0)$.
A small *p* is an indicator that *H_b* and the data
we inconsistent.

Warning: The p-value is NOT the probability that Ho is twe. Rather: assuming Ho is the, it is the probability of $t(x)$ taking a value at least as extreme as the volve b_{obs} that we actually observed.

A hypothesis which completely determines f is called simple, e.g. $\theta = \theta_0$. Othernise a hypothesis is called composite, e.g. 070 or $\theta \neq \theta_o$. Example X_v., Xn ~ N(p, o2), p, o2 unknown. Ho: M= Mo is compasite because it corresponds $\theta_{0} = \{(\mu, \sigma^{2}) : \mu = \mu_{0}, \sigma^{2} > \sigma\} \leftarrow \text{this set}$ contains more than one point

Suppose we want to make a definite decision:
eitho reject tto
or don't reject tto. Then we can define a test in tems of a <u>critical</u> . if $x \in C$ than we reject the \bullet if $x \notin C$ than we don't reject the

Consider simple H₀:
$$
\theta = \theta_0
$$
 versus simple H₁: $\theta = \theta_1$.

\nThe type Totheshift α_0 also called the
\nsize of the list, is defined by

\n
$$
\alpha = P(reject + h_0) + h_0
$$
\n
$$
= P(\times \in C \mid \theta_0)
$$
\nThe type II enor problemality β is defined by

\n
$$
\beta = P(dow't reject H_0) + h_1
$$
\n
$$
= P(\times \notin C \mid \theta_1)
$$

$$
1 - \beta = P(reject H_{o} | H_{1} + n_{1}e) \text{ is called the power}
$$

\n $Q_{0} + \text{the test.}$
\n $Notx:$ power = $1 - \beta = P(\angle 6C | 0_{1})$
\n= probability q_{0} correctly detecting
\nthat H_{0} is fake.
\n $1 \beta + \text{the is composite, } H_{0}: \theta \in \Theta_{0}$ say, then the size
\nis defined by $\alpha = \sup_{\theta \in \Theta_{0}} P(\angle 6C | 0)$
\n $\theta \in \Theta_{0}$

If H₁ is consists the than we have to define the
\npower as a function of
$$
\theta
$$
: the power function
\n $w(\theta)$ is defined by
\n $w(\theta) = P(mject H_0 | \theta)$ is the true value)
\n $= P(\times \epsilon \in | \theta)$
\nIoleally well like
\n $w(\theta)$ be been at for H₁-values of θ
\n $w(\theta)$ be the near 1 for H₁-values of θ .

3.5 The Neyman-Pearson Lemma
\nConsider testing simply
$$
H_0: \theta = \theta_0
$$
 against
\nSimpls $H_1: \theta = \theta_1$.
\nSuppose we choose a small type I error probability of
\n($e.g. \alpha = 0.05$). Then, among all to be the
\nSize we could aim b:
\n
$$
\begin{cases}\n\text{minimise the type II error probability }\beta \\
\text{if maximise the power } 1-\beta\n\end{cases}
$$
\nThis approach heat the and H, asymptotically.

Theorem 3.1 (N-P Lemma) Let
$$
L(\theta; \alpha)
$$
 be the
likelihood. Define the critical region C by
 $C = \{\alpha : \frac{L(\theta_{0}; \alpha)}{L(\theta_{1}; \alpha)} \leq R\}$
and suppose constants R and α are such that
 $P(\chi \in C | H_{0}) = \alpha$. \leftarrow "C has size α "
Then among all tests of (*) of size $\leq \alpha$, the test
with critical region C has maximum power.

Proof (for cts random varielles-for disorete replace \int by Σ) Consider any test of size so, with critical region A say. Then $P(X \in A | H_0) \leq \alpha$ (D. (C is one possibility for A). Define $\phi_A^2(z) = \begin{cases} 1 \\ 0 \end{cases}$ $F \times G$ Stherwse and let C and k be as in statement of theorem. $0 \leq \{ \frac{\phi_{c}(x) - \phi_{n}(x)}{\pi}, \left[L(\theta_{i}; \Sigma) - \frac{1}{k} L(\theta_{i}; \Sigma) \right]$ Then since {...} and [...] are both 2,0 $if \geq \epsilon C$ and both \leq 0 $if \leq \notin C$

$$
S_{0} \cup S \int \{A_{c}(\underline{x}) - A_{A}(\underline{x})\} [L(\theta_{i}, \underline{x}) - \frac{1}{k}L(\theta_{0}, \underline{x})] dx
$$
\n
$$
= P(\underline{x} \in C | H_{i}) - P(\underline{x} \in A | H_{i}) - \frac{1}{k} [P(\underline{x} \in C | H_{o}) - P(\underline{x} \in A | H_{o})]
$$
\n
$$
< P(\underline{x} \in C | H_{i}) - P(\underline{x} \in A | H_{i})
$$
\n
$$
= \frac{P(\underline{x} \in C | H_{i}) - P(\underline{x} \in A | H_{i})}{P(\underline{x} \in A | H_{i})}
$$
\n
$$
= \frac{P(\underline{x} \in C | H_{i}) \ge P(\underline{x} \in A | H_{i})}{P(\underline{x} \in A | H_{i})}
$$
\n
$$
= \frac{P(\underline{x} \in C | H_{i}) \ge P(\underline{x} \in A | H_{i})}{P(\underline{x} \in A | H_{i})}
$$
\n
$$
= \frac{P(\underline{x} \in C | H_{i}) \ge P(\underline{x} \in A | H_{i})}{P(\underline{x} \in A | H_{i})}
$$

Example
$$
X_{1,1}, \, \frac{1}{2}
$$
 and $N(\mu, \sigma_0^2)$, σ_0^2 known.

\nFind $N(\mu, \sigma_0^2)$, σ_0^2 known.

\nFind most properly let σ_0^2 by $M = 0$ against $H_1: \mu = \mu_1$,

\nwhere $\mu_1 > 0$.

\nLikalibual $L(\mu, \pm) = (2\pi \sigma_0^2)^{-1/2}$ with $\frac{1}{2}\sigma_0^2 \sum (x_i - \mu)^2$.

\nStep 1. Ho, H_1 both simple, so $N-P$ applies and most powerful toot is $\frac{N}{2}$ the form

\nreject $H_0 \iff \frac{L(0, \pm)}{L(\mu_1, \pm)} \leq R$,

\nk, a constant, ce down't depend on \pm .

 $\langle \Rightarrow e_{\kappa \gamma} \left[-\frac{1}{2\sigma_b^2} \sum x_i^2 \right] e_{\kappa \gamma} \left[\frac{1}{2\sigma_b^2} \sum (x_i - \mu_i)^2 \right] \le k,$ \Rightarrow exp $\left[\frac{1}{2\sigma^{2}}(-\Sigma x_{1}^{2} + \Sigma x_{1}^{2} - 2\mu_{1}\Sigma x_{1} + \mu_{1}n_{1}^{2})\right]$ < R, $\Rightarrow \frac{1}{25^{2}}(-2\mu_{1}n\bar{x}+n\mu_{1}^{2})$ s k₂ $(k_{2}=logk_{1})$ $\Leftrightarrow -M_{1}\bar{x}$ < R_{3}

where k_1 , k_2 , k_3 , c are constants that don't deped an 3

Step 2	Chose c s. that the test has size α .
$\alpha = P(reject Ho Ho$ the one)	
$= P(\overline{X} < c Ho)$ and under Ho, $\overline{X} \sim N(o, \frac{\sigma_0^2}{h})$	
$= P(\frac{\overline{X}}{\sigma_0/fin} > \frac{c}{\sigma_0/fin} Ho)$	
$= \frac{P(N(o_i))}{\sigma_0/fin} = \frac{c}{\sigma_0/fin}$ by ②	
Hence $\frac{c}{\sigma_0/fin} = z_{\alpha}$. So most popular initial region	
\therefore C = $\{\overline{z}: \overline{x} > \frac{z_{\alpha}}{in} \}$.	

T

Let's also calculate the power function of this test.
\n
$$
W(n) = P(reject H_0 | n \text{ is the line value})
$$
\n
$$
= P(\overline{\gamma} \geq Z_n \frac{\sigma_0}{4\pi} | n) \quad \text{if } n \text{ is the value, } \overline{\gamma} \sim N(\mu, \frac{\sigma_0^2}{\pi}) \oplus
$$
\n
$$
= P(\frac{\overline{\gamma} - \mu}{\sigma_0/4\pi} \geq Z_n - \frac{\mu}{\sigma_0/4\pi} | \mu)
$$
\n
$$
= P(N(\sigma_0) \geq Z_n - \frac{\mu}{\sigma_0/4\pi})
$$
\n
$$
= 1 - \Phi(z_n - \frac{\mu}{\sigma_0/4\pi})
$$

Last example: X1, --, Xn "d" N(M, 5%), og2 known. We were testing H_0 : $\mu = 0$ against H_i : $\mu = \mu_i$, where M. Was a single value satisfying M.> 0. Critical vogion vus IVC, or Exille (where k=nc) Equation linking k and a was $\alpha = P(\sum x_i \ge k | H_0).$ Eti was normel, so any value of a possible by choosing k appropriately. If e.g. the X: "Poisson, then not all values of a possible
as P (Ex: > k | Ho) mill decrease in jumps as k increases.

3.6 University most powerful facts
\nCasider H₀:
$$
\theta = \theta_0
$$
 versus H₁: $\theta \in \Theta$.
\nWhen taking simple $\theta = \theta_0$ against simple $\theta = \theta_1$ s
\nthe circle region from N-P leh (since $\theta = \theta_1$ s
\nthe each $\theta_1 \in \Theta_1$. Then C is said to be
\n $\frac{\text{unifomly most powerful (UMP) for features}}{\text{the}: \theta = \theta_0$ against H₁: $\theta \in \Theta_1$.

Presions example: $N(\mu_{0}\sigma^{2})$, σ_{0}^{2} known. The critical region C we found for M=0 versus M=MI Was the same for all M, >O. Hence our C is UMP for testing pr=0 against pr>0. $C = \left\{ z : \bar{x} \geq 2_{\alpha} \frac{\sigma_{o}}{\sqrt{n}} \right\}$

Insect traps

33 insect traps were set out across sand dunes and the numbers of insects caught in a fixed time were counted (Gilchrist, 1984). The number of traps containing various numbers of the taxa Staphylinoidea were as follows.

Count 0 1 2 3 4 5 6 ≥ 7 Frequency 10 9 5 5 1 2 1 0 Suppose $X_1,\ldots,X_{33}\stackrel{\text{iid}}{\sim}\mathsf{Poisson}(\lambda).$ Consider testing H_0 : $\lambda = 1$ against H_1 : $\lambda = \lambda_1$, where $\lambda_1 > 1$. The NP lemma leads to a test of the form

$$
\text{reject } H_0 \iff \sum x_i \geqslant c.
$$

If the test has size α , then $\alpha = P(\sum X_i \geq c \mid H_0)$.

Under H_0 , we have $\sum X_i$ ∼ Poisson(33) exactly. However, instead of using this we can use a normal approximation:

$$
\alpha = P\left(\frac{\sum X_i - 33}{\sqrt{33}} \geqslant \frac{c - 33}{\sqrt{33}} \middle| H_0 \right)
$$

and, by the CLT, if H_0 is true then $\frac{\sum X_i-33}{\sqrt{33}}$ $\stackrel{\text{D}}{\approx}$ $\mathcal{N}(0,1)$, so

$$
\alpha \approx 1 - \Phi\bigg(\frac{c - 33}{\sqrt{33}}\bigg).
$$

Hence $\frac{c-33}{\sqrt{33}} \approx z_\alpha$, so $c \approx 33 + z_\alpha$ √ 33. So we have a critical region

$$
C = \{x : \sum x_i \geqslant 33 + z_\alpha \sqrt{33}\}.
$$

Note that C does not depend on which value of $\lambda_1 > 1$ we are considering, so we actually have a UMP test of $\lambda = 1$ against $\lambda > 1$.

If $\alpha = 0.01$ then $c \approx 47$; if $\alpha = 0.001$ then $c \approx 51$.

The observed value of $\sum x_i$ is 54.

So in both cases the observed value of 54 is \geqslant c, so in both cases we'd reject H_0 .

An alternative way of thinking about this is to calculate the p -value:

$$
p = P(\text{we observe a value at least as extreme as } 54 | H_0)
$$

= $P(\sum X_i \ge 54 | H_0)$
 ≈ 0.0005

which is very strong evidence for rejecting H_0 .

Note that a test of size α rejects H_0 if and only if $\alpha \geqslant p$. That is, the p-value is the smallest value of α for which H_0 would be rejected. (This is true generally, not just in this particular example.)

In practice, no-one tells us a value of α , we have to judge the situation for ourselves. Our conclusion here is that there is very strong evidence for rejecting H_0 .

3.6 Likelihood ratio test
\nNon1 cannot testing
$$
H_6: \theta \in \Theta
$$
 aqaink the
\ngenrad although the 1: $\theta \in \Theta$ (where $\Theta_6 \in \Theta$).
\nSo non the 1: a special case $\theta_1 H_1$.
\n H_6 is "nested within" H_1 .
\nWe let b see if simplifying b the H_6-model
\nis reasonable.

The likelihood ratio
$$
\lambda(\underline{x})
$$
 is defined by
\n
$$
\lambda(\underline{x}) = \frac{\text{sup}}{\text{sup}} \angle(\delta; \underline{x})
$$
\n
$$
= \frac{\text{sup}}{\text{sup}} \angle(\delta; \underline{x})
$$
\n
$$
\delta \in \Theta
$$
\n
$$
\text{sup } \angle(\delta; \underline{x})
$$
\n
$$
\delta \in \Theta
$$
\n
$$
\text{A (generalized) likelihood ratio } \underline{[a,b]} \quad \text{has}
$$
\n
$$
\text{critical region of the form}
$$
\n
$$
C = \{ \underline{x} : \lambda(\underline{x}) \leq k \}.
$$

Sometimes we can calculate the distribution of a function of $\lambda(x)$, more often we will approximate the distribution of a function of $\lambda(\underline{x})$.

Example $X_{1,1}$	$X_{2,2}$	$X_{3,3}$	$M(\mu, \sigma^{2}), \mu, \sigma^{2}$	M, σ^{2}
Let $H_{0}: \mu \in \mu_{0}$ (and any $\sigma^{2} > 0$)				
$H_{1}: \mu \in (-\infty, \infty)$ (and any $\sigma^{2} > 0$).				
Libelishual $L(\mu, \sigma^{2}) = (2\pi\sigma^{2})^{-1/2}$ exp $[-\frac{1}{2\sigma^{2}}\sum(x_{i}-\mu)^{2}]$.				
For TOP of O: max L over σ^{2} with $\mu \in \mu_{0}$ find.				
Max is at $\sigma^{2} = \sigma^{2} = \frac{1}{2} \sum (x_{i}-\mu_{0})^{2}$.				
For BOTTOM of O: max L over μ and σ^{2} .				
Max is at $\mu = \hat{\mu} = \bar{x}$, $\sigma^{2} = \frac{\lambda}{\sigma^{2}} = \frac{1}{\kappa} \sum (x_{i}-\bar{x})^{2}$.				

Substituting the values 0 to get
\n
$$
\lambda(\mathbf{x}) = \frac{L(\mu_0, \hat{\sigma}^2)}{L(\hat{\mu}, \hat{\sigma}^2)} \leftarrow (2\pi\hat{\sigma}^2)^{-\frac{n}{2}} \exp\left(\frac{1}{2\hat{\sigma}^2}\sum_{k=1}^{n}(\mathbf{x}_k - \hat{\mu})^2\right)
$$
\n
$$
= \frac{2\pi}{\hat{\mu}}\sum_{k=1}^{n}(\mathbf{x}_k - \mu_0)^2 \int_{-\infty}^{-n/2} e^{-n/2}
$$
\n
$$
= \left[\frac{2\pi}{\hat{\mu}}\sum_{k=1}^{n}(\mathbf{x}_k - \overline{\mathbf{x}})^2\right]^{-n/2} e^{-n/2}
$$

Now note
$$
\Sigma(x_c - \mu_0)^2 = \Sigma(x_i - \bar{x})^2 + n(\bar{x} - \mu_0)^2
$$
.
\nSubstitute *i*th $\lambda(x)$ to *f*end
\n
$$
\lambda(x) = \left[1 + \frac{n(\bar{x} - \mu_0)^2}{\sum(x_c - \bar{x})^2}\right]^{-n/2}
$$
\n
$$
S_0 \text{ LRT} \quad \text{is rejected } H_0 \iff \lambda(\bar{x}) \leq k
$$
\n
$$
\iff \frac{\bar{x} - \mu_0}{\sum(\bar{x} - \bar{x})^2} \geq k_1.
$$
\nThus is the t-tait, so the $k_1 = k_{n-1} (m_2) \quad \text{for a list of } k$.\n
$$
\text{Siad.} \quad \text{is. } x \text{ is the number of } k_1 \neq k_2.
$$

Litetitural ratio statistic $\Lambda(x) = -2log\lambda(x)$ is called the Likelihood ratio statistic. The critical region {x: $\lambda(x)$ < k} becomes $\{x:\Lambda(x) > c\}.$ If He is lone then, under regularity conditions, as $n \to \infty$, we have $\Lambda(\underline{y}) \xrightarrow{p} \chi_{\underline{p}}^2$ (3) where $p = \dim H_1 - \dim H_0$.

dim H₁ = # independent parameters in (H)
\ndim H₀ = - - - - - - - - H₀.
\nSince
$$
\Lambda(\chi) \approx \chi_p^2
$$
 for large n, under H₀, we get
\nan approx test of size or by choosing c such that
\n $P(\chi_p^2 > c) = \alpha$.

Why is 2 brue? Sketch proof for scalar Θ , so $H_0: \Theta = \Theta_0$ rerans $H_i: \Theta \in \Theta$ with dim $\Theta = 1$. So here $p = dim(\Theta - dim(\Theta_0 = 1 - 0 = 1))$. Taylor expansion: $L(B_0) \approx L(\tilde{\theta}) + (\hat{\theta} - \theta_0) L'(\hat{\theta})$ $+\frac{1}{2}(\partial - \theta_0)^2 t''(\partial)$ = $l(\hat{\theta}) - \frac{1}{2} (\hat{\theta} - \theta_0)^2 \mathcal{T}(\hat{\theta})$ (3) assuming $\iota'(\hat{\theta})=0.$

$$
S_{\bullet} \quad \Lambda(\chi) = -2 \log \left(\frac{L(\theta_{0})}{L(\hat{\theta})} \right)
$$

= 2 [1(\hat{\theta}) - 1(\theta_{0})]

$$
\approx (\hat{\theta} - \theta_{0})^{2} I(\theta_{0}). \quad \frac{J(\hat{\theta})}{I(\theta_{0})} \quad \text{using} \quad \textcircled{3}
$$

$$
\approx [N(\theta_{1})]^{2} \quad \approx 1 \quad \text{under } \text{H}_{\gamma}
$$

$$
\approx \chi^{2}_{1}.
$$

We now write the LR shthishe as
\n
$$
\Lambda = -2 \log \lambda = -2 \log \left(\frac{s_{up} L}{\frac{s_{up} L}{\mu_{h}}} \right)
$$

Hardy–Weinberg equilibrium

In a sample from the Chinese population of Hong Kong, blood types occurred with the following frequencies (Rice, 1995):

If gene frequencies are in Hardy–Weinberg equilibrium, then the probability of an individual having blood type M , MN , or N should be

$$
P(M) = (1 - \theta)^2
$$

$$
P(MN) = 2\theta(1 - \theta)
$$

$$
P(N) = \theta^2.
$$

Consider n independent abservations, each in one Let ni = # deservations in category i (frequency), s_{o} $\sum_{i=1}^{k} n_{i} = n$ π_i = probability of an observation being
in category i, so $\sum_{i=j}^k \pi_i = 1$. Let $\pi = (\pi_1, ..., \pi_k)$

Libalihood
$$
L(\pi) = \frac{n!}{n_1! \dots n_m!} \pi_1 \dots \pi_k
$$
 multiplication
\n $L_{\infty} - k!k$ $L(\pi) = \sum n_i \log \pi_i + \text{constant}$
\nConsider $H_0: \pi_i = \pi_i(0) \text{ for } i=1, ..., k$, where $0 \in \Theta$
\n(*e.g.* $\pi_1 = (1-\theta)^2$, $\pi_2 = 2\theta(1-\theta)$, $\pi_3 = \theta^2$, $\theta \in (0, 1)$
\nversus $H_1: \pi_i$ unrebrick except for $\sum \pi_i = 1$.
\nThen dim $H_1 = k-1$,
\nand suppose dim $H_0 = q_k < k-1$.

$$
\lambda = -2\log\left(\frac{S_{\mu}p L}{\mu_{i}}\right)
$$
\n
\nThe degrees of freedom for Λ are:
\n $p = \dim H_{i} - \dim H_{0} = (k-1) - q$,
\n(i) For $T\theta$ in Ω : maximise over θ to get $MLE = \theta = \hat{\theta}$
\n(ii) For TST on in Ω : maximise $f(\pi) = \sum n_{i} log \pi_{i}$
\nsubject to the the can show that $g(\pi) = \sum \pi_{i} - 1 = 0$.

With Lagrange multiplier
$$
\lambda
$$
, we need

\n
$$
\frac{\partial f}{\partial \pi_i} = \frac{\lambda \frac{\partial g}{\partial \pi_i}}{\lambda \pi_i}
$$
\ni.e. $\frac{n_i}{\pi_i} = \frac{n_i}{\lambda}$

\nSo $\pi_i = \frac{n_i}{\lambda}$ and then $| = \sum \pi_i = \frac{\sum n_i}{\lambda} = \frac{n_i}{\lambda}$

\nand so $\lambda = n$.

\nSo the MLEs under H_1 are $\frac{\lambda}{\pi_i} = \frac{n_i}{n}$.

т

$$
S_{o} \quad \Lambda = -2 \log \left(\frac{L(\pi(\hat{s}))}{L(\hat{\pi})} \right)
$$
\n
$$
= 2[L(\hat{\pi}) - L(\pi(\hat{s}))]
$$
\n
$$
= 2[\sum n c \log \hat{\pi}_{i} - \sum n c \log \pi_{i}(\hat{s})]
$$
\n
$$
= 2 \sum_{i=1}^{k} n c \log \left(\frac{n c}{n \pi_{i}(\hat{s})} \right) \qquad \text{since } \hat{\pi}_{c} = \frac{n c}{n}.
$$
\n
$$
\text{Compute this } \Lambda \text{ is a } \chi_{p}^{2} \text{ where } p = k - 1 - p \text{ is any}
$$
\n
$$
\text{out the fact.}
$$

$$
\frac{Pearson's \, dh-squared \, stakingize}{\Lambda = 2 \sum_{i=1}^{R} o_i \, \lg \left(\frac{o_i}{e_i}\right)}
$$
\n
$$
\frac{P}{\text{where } o_i = n : \qquad \text{observed}
$$
\n
$$
e_i = n \cdot \pi_i(\hat{a}) \qquad \text{expected under } \hat{h}_0
$$
\n
$$
Using \, \pi \, \log \frac{x}{a} \approx x - a + \frac{(x-a)^2}{2a} \quad \text{gives}
$$
\n
$$
\Lambda \approx 2 \sum_{i=1}^{n} \left[o_i - e_i + \frac{(o_i - e_i)^2}{2e_i} \right]
$$
\n
$$
= \sum_{i=1}^{n} \frac{(o_i - e_i)^2}{e_i} = P \quad P_{\text{equation}} \, s \, \chi^2 \, s h \, h_i \, h_i
$$

Hardy–Weinberg equilibrium

In a sample from the Chinese population of Hong Kong, blood types occurred with the following frequencies (Rice, 1995):

If gene frequencies are in Hardy–Weinberg equilibrium, then the probability of an individual having blood type M , MN , or N should be

$$
P(M) = (1 - \theta)^2
$$

$$
P(MN) = 2\theta(1 - \theta)
$$

$$
P(N) = \theta^2.
$$

The observed frequencies are $(n_1, n_2, n_3) = (342, 500, 187)$, with total $n = n_1 + n_2 + n_3 = 1029.$

The likelihood is

$$
L(\theta) \propto [(1-\theta)^2]^{n_1} \times [\theta(1-\theta)]^{n_2} \times [\theta^2]^{n_3}
$$

so the log-likelihood is

$$
\ell(\theta) = (2n_1 + n_2) \log(1 - \theta) + (n_2 + 2n_3) \log \theta + \text{constant}
$$

from which we obtain

$$
\widehat{\theta}=\frac{n_2+2n_3}{2n}=0.425.
$$

So
$$
\pi_1(\widehat{\theta}) = (1 - \widehat{\theta})^2
$$
, $\pi_2(\widehat{\theta}) = 2\widehat{\theta}(1 - \widehat{\theta})$, $\pi_3(\widehat{\theta}) = \widehat{\theta}^2$ and

$$
\Lambda = 2 \sum_i n_i \log \left(\frac{n_i}{n \pi_i(\widehat{\theta})} \right) = 0.032.
$$

We compare Λ to a χ^2_ρ where $\rho=\dim\Theta-\dim\Theta_0=(3-1)-1=1$. The value $\Lambda = 0.032$ is much less than $E(\chi_1^2) = 1$. The p-value is $P(\chi^2_1 \geqslant 0.032) = 0.86$, so there is no reason to doubt the Hardy–Weinberg model.

Pearson's chi-squared statistic leads to the same conclusion

$$
P = \sum \frac{[n_i - n\pi_i(\widehat{\theta})]^2}{n\pi_i(\widehat{\theta})} = 0.0319.
$$

Insect counts (Bliss and Fisher, 1953)

[Example from Rice (1995).] From each of 6 apple trees in an orchard that had been sprayed, 25 leaves were selected. On each of the leaves, the number of adult female red mites was counted.

Number per leaf 0 1 2 3 4 5 6 7 8+ Observed frequency 70 38 17 10 9 3 2 1 0

Does a Poisson(θ) model fit these data?

As usual for a Poisson, $\hat{\theta} = \overline{x} = 1.147$, and

$$
\pi_i(\widehat{\theta}) = \widehat{\theta}^i e^{-\widehat{\theta}} / i!, \quad i = 0, 1, ..., 7
$$

$$
\pi_8(\widehat{\theta}) = 1 - \sum_{i=0}^7 \pi_i(\widehat{\theta}).
$$

The expected frequency in cell *i* is $n\pi_i(\widehat{\theta})$.

Some expected frequencies are very small:

The χ^2 approximation for the distribution of Λ applies when there are large counts.

The usual rule-of-thumb is that the χ^2 approximation is good when the expected frequency in each cell is at least 5.

To ensure this, we should pool some cells before calculating Λ or P.

After pooling cells ≥ 3 :

Then $\Lambda = 2 \sum O_i \log \left(\frac{O_i}{E_i} \right) = 26.60$, and $P = \sum (O_i - E_i)^2 / E_i = 26.65$.

These are to be compared with a χ^2 with $(4-1)-1=2$ degrees of freedom.

The p -value is $p=P(\chi^2_2\geqslant26.6)\approx10^{-6}$, so there is clear evidence that a Poisson model is not suitable.

Two-way contingency tables

Hair and Eye Colour

The hair and eye colour of 592 statistics students at the University of Delaware were recorded (Snee, 1974) – dataset HairEyeColor in R.

Are hair colour and eye colour independent?

Let
$$
n_{cj} = \text{frequency of } (c, j)
$$
 $\sum_{cj} x_{cj} = n$
\n
$$
\pi_{cj} = \text{probability on individual}
$$
\n
$$
\sum_{i} \sum_{j} \pi_{ij} = 1
$$
\n
$$
\text{falls into cell } (c_{ij})
$$
\n
$$
\text{Lilekhood } L(\pi) = n! \prod_{i=1}^{n} \prod_{j=1}^{n} \frac{\pi_{ij}^{n} \ddot{\theta}}{n_{ij}!}
$$
\n
$$
\text{Log-like } L(\pi) = \sum_{i} \sum_{j} n_{ij} \log \pi_{ij} + \text{constant}
$$

Consider: Ho: the two classifications are independent (e.g. hair colour and eye colour are independent) i.e. $\pi_{ij} = \alpha_i \beta_j$ where $\sum_{i=1}^{n} \alpha_{i} = 1$ and $\sum_{i=1}^{n} \beta_{i} = 1$ $H_1: \pi_{ij}$ unrestricted except for $\sum_i T_{ij} = 1$.

(i) Max under H_o (Sheat 3):
$$
\alpha_{i} = \frac{n_{i+1}}{n}
$$
, $\beta_{j} = \frac{n_{+j}}{n}$
\n(ii) Max under H₁ (done already): $\hat{\pi}_{ij} = \frac{n_{ij}}{n}$.
\nWe find $\Lambda = 2 \sum_{i,j} n_{ij} log(\frac{n_{ij} n}{n_{i+1} n_{+j}})$
\n $\approx \sum_{i,j} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$
\nwhere $o_{ij} = n_{ij}$ observed
\n $e_{ij} = n \hat{\alpha}_{i} \hat{\beta}_{j}$ expected # in (i,j) under H_o

Degues of freedom of this A

\n
$$
\dim H_{1} = r c - 1
$$
\nphabilities $T_{11}, \ldots, T_{r c}$

\n
$$
\text{with } \sum_{c_{ij}} \pi_{cj} = 1.
$$
\n
$$
\dim H_{0} = (r - i) + (c - i)
$$
\n
$$
r - 1 \text{ for } \alpha_{1} \ldots \alpha_{r} \text{ and } \sum_{c_{ij}} \beta_{c_{ij}} = 1
$$
\n
$$
c - 1 \text{ for } \beta_{1} \ldots \beta_{c} \text{ with } \sum_{j} \beta_{j} = 1
$$
\n
$$
\text{So } p = \dim H_{1} - \dim H_{0} = (r - i)(c - i)
$$

Hair and Eye Colour

The hair and eye colour of 592 statistics students at the University of Delaware were recorded (Snee, 1974) – dataset HairEyeColor in R.

Are hair colour and eye colour independent?

Relation between hair and eye colour

Eye

$$
\Lambda = 2 \sum_{i=1}^{r} \sum_{j=1}^{c} n_{ij} \log \left(\frac{n_{ij}n}{n_{i+}n_{+j}} \right) = 146.4
$$

dim H₁ = 16 - 1 = 15
dim H₀ = (4 - 1) + (4 - 1) = 6

Hence we compare Λ to a χ^2_ρ where $\rho=15-6=9.1$

The *p*-value is $P(\chi^2_{9} \geq 146.4) \approx 0$.

So there is overwhelming evidence of an association between hair colour and eye colour (i.e. overwhelming evidence that they are not independent).

[Pearson's chi-squared statistic is $P = 138.3$.]