Hypothesis testing and confidence intervals

For the maize data:

- the 95% (equal tail) confidence interval for μ_X μ_Y is (3.34, 38.53) (see Sheet 2, Question 5)
- when testing $\mu_x = \mu_Y$ against $\mu_x \neq \mu_Y$, the *p*-value is 0.021.

So, observe that

- (i) the *p*-value less than 0.05
- (ii) the 95% confidence interval does not contain 0 (= the value of $\mu_X \mu_Y$ under H_0).

(i) and (ii) both being true is not a coincidence – there is a connection between hypothesis tests and confidence intervals.

3.3 Hypothesis testing and confidence intervals
Example
$$X_{1,...,X_{n}} \stackrel{iid}{\sim} N(\mu, \sigma^{2}), \quad \mu, \sigma^{2}$$
 unknown.
(i) A 1- ∞ C.I. for μ is
 $\left(\overline{z} \pm t_{n-1}\left(\frac{\alpha}{2}\right) \cdot \frac{s}{4n}\right)$ (D
(ii) For t -test of $\mu = \mu_{0}$ against $\mu \neq M_{0}$,
 p -value is $p = P\left(|t_{n-1}| \ge t_{0}\right)$
where $t_{0} = |t(\underline{z})| = \left|\frac{\overline{z} - M_{0}}{s/\sqrt{2n}}\right|$.

For C.I.

$$t_{n-1} \begin{pmatrix} x \\ z \end{pmatrix} \xrightarrow{p-vd.} \frac{1}{z} p$$

$$t_{n-1} \begin{pmatrix} x \\ z \end{pmatrix} \xrightarrow{r} t_{0} \qquad t_{0$$

3.4 HypAthesis testing general setup
Let
$$X_{1,...,} X_{n}$$
 be iid from $f(x; 0)$ where
 $\partial \in \Theta$ is a vector or scalar parameter.
Consider testing: - the null hypothesis Ho: $\Theta \in \Theta_{0}$
· against the alternative hypothesis
H₁: $\Theta \in \Theta_{1}$
where $\Theta_{0} \land \Theta_{1} = \emptyset$ and possibly but not
becassaily $\Theta_{0} \cup \Theta_{1} = \Theta$.

Suppose we can construct a test statistic
$$t(\underline{x})$$
 such
that lage values of $t(\underline{x})$ indicate a departure
from Ho in the direction of H₁.
Let tops = $t(\underline{x})$, the value of $t(\underline{x})$ observed.
Then the p-value or significance level is
 $p = P(t(\underline{x}) \ge t_{obs} | H_{o})$.
A small p is an indicator that Ho and the data
are inconsistent.

Warning: The p-value is NOT the probability that Ho is the. Rather: assuming Ho is ma, it is the probability of t(X) taking a value at least as extreme as the value tobs that we actually observed.

A hypothesis which completely determines f is called <u>simple</u>, e.g. $\theta = \theta_0$. Othernise a hypothesis is called <u>composite</u>, e.g. 0700 or $\theta \neq \theta_{o}$. Example Xu., Xn ~ N(µ, 52), µ, 52 unknorm. Ho: M= Mo is composite because it corresponds to $\Theta_0 = \{(\mu, \sigma^2) : \mu = \mu_0, \sigma^2 > 0\} \leftarrow \text{this set}$ contains more than one point Here 52 is called a misance parameter.

Suppose we want to make a definite decision: either reject the or don't reject the. Then we can define a test in terms of a <u>critical</u> region $C \subset \mathbb{R}^n$: · if $x \in C$ then we reject Ho • if x ∉ C thon we don't reject the

Ho the	/	
	\checkmark	type I error
Ho false	type IL error	\checkmark
-		

Consider simple Ho:
$$\theta = \theta_0$$
 versus simple H₁: $\theta = \theta_1$.
The type I error probability α_0 , also called the
size of the test, is defined by
 $\alpha = P(reject H_0 | H_0 true)$
 $= P(X \in C | \theta_0)$
The type II error probability β is defined by
 $\beta = P(don't reject H_0 | H_1 true)$
 $= P(X \notin C | \theta_1)$

$$I - \beta = P(reject H_0 | H_1 + me) \text{ is called the power}$$
of the lest.
Note: power = $I - \beta = P(X \in C | \theta_1)$
= probability of correctly detecting
that the is fake.
If H_0 is composite, $H_0: \theta \in \bigoplus_0 \text{ say, then the size}$
is defined by $\alpha = \sup_{\theta \in \bigoplus_0} P(X \in C | \theta)$
 $\theta \in \bigoplus_0$

If H₁ is composite than we have to define the
power as a function of
$$\Theta$$
: the power function
 $w(\Theta)$ is defined by
 $w(\Theta) = P(\text{reject H}_{0} | \Theta \text{ is the brue value})$
 $= P(X \in C | \Theta)$
Ideally we'd like
 $w(\Theta)$ to be near 1 for H₁-values of Θ .

3.5 The Neymon-Person Lemma
Consider lesting simple Ho:
$$\theta = \theta_0$$
 against (*)
simple H₁: $\theta = \theta_1$.
Suppose we choose a small type I error probability of
(e.g. or = 0.05). Then, among all tests of this
size we could aim to:
fminimise the type I error probability &
(i.e. maximise the power 1-A
This approach freats Ho and Hi asymmetrically.

Theorem 3.1 (N-P Lemma) Let
$$L(0; =)$$
 be the
likelihood. Define the critical region C by
 $C = \left\{ \Xi : \frac{L(0_0; \Xi)}{L(0_1; \Xi)} \le R \right\}$
and suppose constants k and x are such that
 $P(X \in C \mid H_0) = \alpha$. Then among all tests of (\Re) of size $\le \alpha$, the test
with critical region C has maximum power.

Proof (for cts random variables - for discrete replace
$$\int by \Sigma$$
)
Consider any tot of size $\leq \alpha$, with critical region A say.
Then $P(X \in A \mid H_0) \leq \alpha$ D.
(C is an possibility for A).
Define $\mathscr{G}_A(\underline{x}) = \begin{cases} 1 & \text{if } \underline{x} \in A \\ 0 & \text{otherwise} \end{cases}$
and let C and k be as in statement of theorem.
Then $O \leq \{\mathscr{R}_E(\underline{x}) - \mathscr{G}_A(\underline{x})\}, [L(\theta_i; \underline{x}) - \frac{1}{k}L(\theta_{ai}; \underline{x})]$
since $\{\ldots\}$ and $[\ldots]$ are both $\geqslant 0$ if $\underline{x} \in C$
and both ≤ 0 if $\underline{x} \notin C$

So
$$0 \leq \int \{A_{c}(\underline{x}) - A_{A}(\underline{x})\} [L(\theta_{i};\underline{x}) - \frac{1}{k}L(\theta_{o};\underline{x})] d\underline{x}$$

$$= P(\underline{x} \in C | H_{i}) - P(\underline{x} \in A | H_{i}) - \frac{1}{k} [P(\underline{x} \in C | H_{o}) - P(\underline{x} \in A | H_{o})]$$

$$\leq P(\underline{x} \in C | H_{i}) - P(\underline{x} \in A | H_{i}).$$
That is, $P(\underline{x} \in C | H_{i}) \geq P(\underline{x} \in A | H_{i})$.
That is, $P(\underline{x} \in C | H_{i}) \geq P(\underline{x} \in A | H_{i})$.
That is, $P(\underline{x} \in C | H_{i}) \geq P(\underline{x} \in A | H_{i})$.
That is, $P(\underline{x} \in C | H_{i}) \geq P(\underline{x} \in A | H_{i})$.
That is, $P(\underline{x} \in C | H_{i}) \geq P(\underline{x} \in A | H_{i})$.

Example
$$X_{1,...,X_{n}}$$
 ind $N(\mu, \sigma_{0}^{2})$, σ_{0}^{2} known
Find most powerful test of $H_{0}: \mu = 0$ against $H_{1}: \mu = \mu_{1,s}$
where $\mu_{1} > 0$.
Likelihood $L(\mu_{1}; \underline{x}) = (2\pi \sigma_{0}^{2})^{\frac{1}{2}} exp\left[-\frac{1}{2\sigma_{0}^{2}} \sum (\underline{x}; -\mu)^{2}\right]$
 $\frac{Sk_{0} 1}{1}$ Ho, H_{1} both simple, so N-P applies and
most powerful test is of the form
we ject $H_{0} \iff \frac{L(0; \underline{x})}{L(\mu_{1}; \underline{x})} \le R$,
 R, a constant, i.e. doesn't depend on \underline{x} .

 $\langle = \rangle \exp\left[-\frac{1}{2\sigma_{0}^{2}}\sum_{i}^{2}\right] \exp\left[\frac{1}{2\sigma_{0}^{2}}\sum_{i}^{2}(z_{i}-\mu_{i})^{2}\right] \leq k,$

 $= \exp\left[\frac{1}{2\sigma^{2}}\left(-\xi_{x_{1}}^{2}+\xi_{x_{1}}^{2}-2\mu_{1}\xi_{x_{1}}+\mu_{n_{1}}^{2}\right)\right] \leq k_{1}$

 $(=) \frac{1}{25^{2}} (-2\mu_{1}n\bar{z} + n\mu_{1}^{2}) \leq k_{2}$ $(k_2 = \log k_1)$

 $(\Longrightarrow) - M_1 \overline{x} \leq k_3$ $(\Longrightarrow) \overline{x} > c$

where k, k, k, k, c are constants that don't deped an 2 (they can depend on n, or, ...).

$$\frac{Step 2}{\alpha} = \frac{1}{P(r_{1}^{2}ct + H_{0} + H_{0} + H_{0})}$$

$$= \frac{P(r_{1}^{2}ct + H_{0} + H_{0} + H_{0})}{P(\bar{X} \ge c + H_{0})} \quad \text{and under } H_{0}, \quad \bar{X} \sim N(0, \frac{\sigma_{0}^{2}}{h}) (3)$$

$$= \frac{P(\bar{X} \ge c + H_{0})}{\sigma_{0}/4 h_{0}} \ge \frac{c}{\sigma_{0}/5 h_{0}} + H_{0})$$

$$= \frac{P(N(0,1) \ge c}{\sigma_{0}/5 h_{0}} = \frac{2}{\sigma_{0}} + \frac{1}{5} + \frac{1}{$$

Let's also calculate the power function of this test.

$$W(\mu) = P(reject Ho \mid \mu \text{ is the fine value})$$

$$= P(\overline{X} \ge Z_{\alpha} \frac{\sigma_{0}}{4\pi} \mid \mu) \quad \text{if } \mu \text{ is the value}, \overline{X} \sim N(\mu, \frac{\sigma^{2}}{4\pi}))$$

$$= P(\frac{\overline{X} - \mu}{\sigma_{0}/4\pi} \ge Z_{\alpha} - \frac{\mu}{\sigma_{0}/4\pi} \mid \mu)$$

$$= P(N(o, 1) \ge Z_{\alpha} - \frac{\mu}{\sigma_{0}/4\pi}) \quad \text{by (f)}$$

$$= 1 - \overline{P}\left(Z_{\alpha} - \frac{\mu}{\sigma_{0}/4\pi}\right)$$

Last example: X1, ..., Xn n N(M, 502), 002 known. We were testing Ho: M=0 against H.: M=M,, where M, was a single value satisfying M, > 0. Critical region was ZZC, or ZZiZk (where k=nc) Equation linking k and a was $d = P(\Sigma X_i \geqslant k \mid H_0).$ EX: was normel, so any value of a possible by choosing k appropriately. If e.g. the Xi~Poisson, then not all values of a possible as P(ZXi > k | Ho) will decrease in jumps as k increases.

3.6 Uniformly most powerful tests
Causider Ho:
$$\Theta = \Theta_0$$
 versus $H_1: \Theta \in \Theta_1$.
When testing simple $\Theta = \Theta_0$ against simple $\Theta = \Theta_1 \in \Theta_1$ s
the critical region from N-P lemma may be the same
for each $\Theta_1 \in \Theta_1$. Then C is said to be
uniformly nost powerful (UMP) for testing
 $H_0: \Theta = \Theta_0$ against $H_1: \Theta \in \Theta_1$.

Previous example: N(1, 52), 52 known. The critical region C we found for M=0 versus µ=µ, was the same for all µ, > 0. Hence our C is UMP for testing n=0 against 1270. $C = \left\{ z : \overline{z} / Z_{\alpha} \frac{\sigma_{\sigma}}{\sqrt{n}} \right\}$

Insect traps

33 insect traps were set out across sand dunes and the numbers of insects caught in a fixed time were counted (Gilchrist, 1984). The number of traps containing various numbers of the taxa *Staphylinoidea* were as follows.

Suppose $X_1, \ldots, X_{33} \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$.

Consider testing $H_0: \lambda = 1$ against $H_1: \lambda = \lambda_1$, where $\lambda_1 > 1$.

The NP lemma leads to a test of the form

reject
$$H_0 \iff \sum x_i \geqslant c$$
.

If the test has size α , then $\alpha = P(\sum X_i \ge c \mid H_0)$.

Under H_0 , we have $\sum X_i \sim \text{Poisson}(33)$ exactly. However, instead of using this we can use a normal approximation:

$$\alpha = P\left(\frac{\sum X_i - 33}{\sqrt{33}} \ge \frac{c - 33}{\sqrt{33}} \middle| H_0\right)$$

and, by the CLT, if H_0 is true then $\frac{\sum X_i - 33}{\sqrt{33}} \stackrel{\text{D}}{\approx} N(0, 1)$, so

$$\alpha \approx 1 - \Phi\left(\frac{c - 33}{\sqrt{33}}\right).$$

Hence $\frac{c-33}{\sqrt{33}} \approx z_{\alpha}$, so $c \approx 33 + z_{\alpha}\sqrt{33}$.

So we have a critical region

$$C = \{ \mathsf{x} : \sum x_i \ge 33 + z_\alpha \sqrt{33} \}.$$

Note that C does not depend on which value of $\lambda_1 > 1$ we are considering, so we actually have a UMP test of $\lambda = 1$ against $\lambda > 1$.

If $\alpha = 0.01$ then $c \approx 47$; if $\alpha = 0.001$ then $c \approx 51$.

The observed value of $\sum x_i$ is 54.

So in both cases the observed value of 54 is $\ge c$, so in both cases we'd reject H_0 .

An alternative way of thinking about this is to calculate the *p*-value:

$$p = P(\text{we observe a value at least as extreme as } 54 \mid H_0)$$
$$= P(\sum X_i \ge 54 \mid H_0)$$
$$\approx 0.0005$$

which is very strong evidence for rejecting H_0 .

Note that a test of size α rejects H_0 if and only if $\alpha \ge p$. That is, the *p*-value is the smallest value of α for which H_0 would be rejected. (This is true generally, not just in this particular example.)

In practice, no-one tells us a value of α , we have to judge the situation for ourselves. Our conclusion here is that there is very strong evidence for rejecting H_0 .

3.6 Likelihood ratio tests
Now consider testing
$$H_0: \theta \in \Theta_0$$
 against the
general elternative $H_1: \theta \in \Theta$ (where $\Theta_0 \subset \Theta$).
So now the is a special case of H_1 .
He is nested within H_1 .
We leat to see if simplifying to the H_0 -model
is reasonable.

Sometimes ve can calculate the distribution of a function of $\lambda(X)$, more often ne nill approximate the distribution of a function of $\lambda(X)$.

$$\frac{E_{\text{Xample X_1, ..., X_n}} \sim N(\mu, \sigma^2), \quad \mu, \sigma^2 \text{ unknown.}}{\text{Let Ho: } \mu = \mu_0 \quad (and any \sigma^2 ? \circ) \\ H_1: \quad \mu \in (-\infty, \infty) \quad (and any \sigma^2 > \circ). \\ \text{Likelihood } L(\mu, \sigma^2) = (2\pi \sigma^2)^{M/2} \exp\left[-\frac{1}{2}\sigma^2 \sum (\chi_1 - \mu)^2\right]. \\ \text{For TOP of } 0: \quad \max \ L \text{ over } \sigma^2 \text{ with } \mu = \mu_0 \text{ fixed.} \\ Max \text{ is at } \sigma^2 = \widehat{\sigma}_0^2 = \frac{1}{n} \sum (\chi_1 - \mu_0)^2. \\ \text{For BOTTOM of } 0: \quad \max \ L \text{ over } \mu \text{ and } \sigma^2. \\ Max \text{ is et } \mu = \widehat{\mu} = \overline{\chi}, \quad \sigma^2 = \widehat{\sigma}^2 = \frac{1}{n} \sum (\chi_1 - \overline{\chi})^2. \\ \end{array}$$

Substitute into D to get

$$\lambda(\underline{x}) = \frac{L(\mu_0, \hat{\sigma}^2)}{L(\hat{\mu}, \hat{\sigma}^2)} \leftarrow (2\pi\hat{\sigma}^2)^{\frac{n}{2}} \exp\left[\frac{1}{2}\sum_{i=1}^{n}\sum_{i$$

Now note
$$\Sigma(x_{c}, \mu_{0})^{2} = \overline{\Sigma}(x_{c}, -\overline{x})^{2} + n(\overline{x}, -\mu_{0})^{2}$$
.
Substitute into $\Lambda(x)$ to find
 $\Lambda(x) = \left[1 + \frac{n(\overline{x}, -\mu_{0})^{2}}{\overline{\Sigma}(x_{c}, -\overline{x})^{2}}\right]^{-n/2}$.
So LRT is reject the $(x) \leq k$
 $(x) = \frac{\overline{x} - \mu_{0}}{\overline{\Sigma}(x_{c}, -\overline{x})^{2}} \neq k_{1}$.
This is the t-test, so take $k_{1} = t_{n-1}(\frac{n}{2})$ for a test of
sized. is we know the exact diskdoution of a fr. of $\Lambda(x)$.

Likelihood ratio statistic $\Lambda(\chi) = -2\log \lambda(\chi)$ is called the likelihood ratio statistic. The critical region {z: $\lambda(z) \leq k$ } becomes $\{ \underline{x} : \Lambda(\underline{x}) \not \rangle c \}.$ If Ho is the then, under regularity conditions, as $n \rightarrow \infty$, we have $\Lambda(\underline{X}) \xrightarrow{\mathcal{P}} \chi^2_{\mathfrak{p}}$ (3) where p = dim H, - dim Ho.

Why is @ brue? Sketch proof for scalar 0, so Ho: 0=00 versus $H_1: 0 \in \Theta$ with dim $\Theta = 1$. So here $p = \dim \Theta - \dim \Theta_0 = 1 - 0 = 1$. Taylor expansion: $l(0_0) \approx l(\hat{0}) + (\hat{0} - 0_0) l(\hat{0})$ $+\frac{1}{2}(\hat{o}-o_{0})^{2}l''(\hat{o})$ $= l(\hat{a}) - \frac{1}{2}(\hat{a} - \theta_{0})^{2} J(\hat{a}) \quad (3)$ assuming $l'(\hat{o}) = 0$.

So
$$\Lambda(\chi) = -2 \log \left(\frac{L(\theta_0)}{L(\theta)} \right)$$

 $= 2 \left[l(\theta) - \lambda(\theta_0) \right]$
 $\approx (\hat{\theta} - \theta_0)^2 I(\theta_0). \frac{J(\hat{\theta})}{I(\theta_0)}$ Using (3)
 $\approx \left[N(\theta_0) \right]^2 \approx 1$ under Ho,
for large n
 $\approx \chi^2_1.$

We now write the LR statistic as

$$\Lambda = -2 \log \lambda = -2 \log \left(\frac{\sup L}{\frac{H_0}{\sup L}}\right)$$
(1)

Goodner of fit tests
•

Hardy-Weinberg equilibrium

In a sample from the Chinese population of Hong Kong, blood types occurred with the following frequencies (Rice, 1995):

	BI			
	М	MN	Ν	Total
Frequency	342	500	187	1029

If gene frequencies are in Hardy–Weinberg equilibrium, then the probability of an individual having blood type M, MN, or N should be

$$P(M) = (1 - \theta)^2$$

 $P(MN) = 2\theta(1 - \theta)$
 $P(N) = \theta^2.$

Consider n independent abservations, each in one of categories 1, ..., k. Let ni = # observations in category i (frequency), so $\sum_{i=1}^{k} n_i = n$ $T_{i} = \operatorname{probability}_{i} \text{ of an observation being}$ in category i, so $\sum_{i=1}^{k} T_{i} = 1$. Let $\pi = (\pi_1, \dots, \pi_k)$

Likelihood
$$L(\pi) = \frac{n!}{n_1! \dots n_k!} \xrightarrow{n_1 \dots n_k} \frac{n_k}{m_1! \dots m_k!}$$

Log-lik $l(\pi) = \sum n_i \log \pi_i + constant$
Consider Ho: $\pi_i = \pi_i(\theta)$ for $i=1,...,k$, where $\theta \in \Theta$
(e.g. $\pi_1 = (1-\theta)^2$, $\pi_2 = 2\Theta(1-\theta)$, $\pi_3 = \theta^2$, $\theta \in (0,1)$)
versus $H_1: \pi_i$ unrestricted except for $\Sigma \pi_i = 1$.
Then dim $H_1 = k-1$,
and suppose dim Ho = $q_i < k-1$.

$$A = -2 \log \left(\frac{y_{H_{0}}}{y_{H_{1}}} \right)$$
The degrees of freedom for A ase:

$$p = dim H_{1} - dim H_{0} = (k-1) - q_{1}$$
(i) For TOP in D: maximise over ϑ to get MLE $\vartheta = \hat{\vartheta}$
(ii) For BOTTOM in D: maximise $f(\pi) = \sum ni \log \pi i$
subject to the constraint $g(\pi) = \sum \pi i - 1 = 0$.

With Lagrange multiplier
$$\lambda$$
, we need

$$\frac{\partial f}{\partial \pi_{i}} = \lambda \frac{\partial g}{\partial \pi_{i}} \qquad i = 1 \dots k$$

$$\frac{\partial e}{\partial \pi_{i}} = \lambda \cdot 1$$

$$\frac{\partial e}{\partial \pi_{i}} = \frac{n \cdot i}{\lambda} \quad \text{and then } 1 = \sum \pi_{i} = \frac{\sum n \cdot i}{\lambda} = \frac{n}{\lambda}$$
and so $\lambda = n$.
So the MLEs under H_{1} are $\frac{\Lambda}{\pi_{i}} = \frac{n \cdot i}{\lambda}$.

So
$$\Lambda = -2 \log \left(\frac{L(\pi(\hat{b}))}{L(\hat{\pi})} \right)$$

$$= 2 \left[l(\hat{\pi}) - l(\pi(\hat{\partial})) \right]$$

$$= 2 \left[\sum n \log \hat{\pi}_{i} - \sum n \log \pi_{i}(\hat{\partial}) \right]$$

$$= 2 \sum_{i=1}^{k} n i \log \left(\frac{ni}{n \pi_{i}(\hat{\partial})} \right) \qquad \text{Since } \hat{\pi}_{i} = \frac{ni}{n}.$$
Compare this Λ to a χ_{p}^{2} where $p = k - l - q$ to carry out the test.

Pearson's chi-squared statistic

$$\Lambda = 2 \sum_{i=1}^{k} o_i \log \left(\frac{o_i}{e_i}\right)$$
where $o_i = n$: observed
 $e_i = n \cdot T_i(\hat{\Theta})$ expected under the
Using $x \log \frac{x}{a} \approx x - a + \frac{(x - a)^2}{2a}$ gives

$$\Lambda \approx 2 \sum_{i=1}^{k} \left[o_i - e_i + \frac{(o_i - e_i)^2}{2e_i}\right]$$

$$= \sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i} = P$$
 Pearson's Z' shelight

Hardy-Weinberg equilibrium

In a sample from the Chinese population of Hong Kong, blood types occurred with the following frequencies (Rice, 1995):

	BI			
	М	MN	Ν	Total
Frequency	342	500	187	1029

If gene frequencies are in Hardy–Weinberg equilibrium, then the probability of an individual having blood type M, MN, or N should be

$$P(M) = (1 - \theta)^2$$

 $P(MN) = 2\theta(1 - \theta)$
 $P(N) = \theta^2.$

The observed frequencies are $(n_1, n_2, n_3) = (342, 500, 187)$, with total $n = n_1 + n_2 + n_3 = 1029$.

The likelihood is

$$L(heta) \propto [(1- heta)^2]^{n_1} imes [heta(1- heta)]^{n_2} imes [heta^2]^{n_3}$$

so the log-likelihood is

$$\ell(heta) = (2n_1 + n_2)\log(1 - heta) + (n_2 + 2n_3)\log heta + ext{constant}$$

from which we obtain

$$\widehat{\theta} = \frac{n_2 + 2n_3}{2n} = 0.425.$$

So
$$\pi_1(\widehat{\theta}) = (1 - \widehat{\theta})^2$$
, $\pi_2(\widehat{\theta}) = 2\widehat{\theta}(1 - \widehat{\theta})$, $\pi_3(\widehat{\theta}) = \widehat{\theta}^2$ and

$$\Lambda = 2\sum_i n_i \log\left(\frac{n_i}{n\pi_i(\widehat{\theta})}\right) = 0.032.$$

We compare Λ to a χ_p^2 where $p = \dim \Theta - \dim \Theta_0 = (3 - 1) - 1 = 1$. The value $\Lambda = 0.032$ is much less than $E(\chi_1^2) = 1$. The *p*-value is $P(\chi_1^2 \ge 0.032) = 0.86$, so there is no reason to doubt the Hardy–Weinberg model.

Pearson's chi-squared statistic leads to the same conclusion

$$P = \sum \frac{[n_i - n\pi_i(\widehat{\theta})]^2}{n\pi_i(\widehat{\theta})} = 0.0319.$$

Insect counts (Bliss and Fisher, 1953)

[Example from Rice (1995).] From each of 6 apple trees in an orchard that had been sprayed, 25 leaves were selected. On each of the leaves, the number of adult female red mites was counted.

 Number per leaf
 0
 1
 2
 3
 4
 5
 6
 7
 8+

 Observed frequency
 70
 38
 17
 10
 9
 3
 2
 1
 0

Does a Poisson(θ) model fit these data?

As usual for a Poisson, $\widehat{\theta} = \overline{x} = 1.147$, and

$$\pi_i(\widehat{\theta}) = \widehat{\theta}^i e^{-\widehat{\theta}} / i!, \quad i = 0, 1, \dots, 7$$

$$\pi_8(\widehat{\theta}) = 1 - \sum_{i=0}^7 \pi_i(\widehat{\theta}).$$

The expected frequency in cell *i* is $n\pi_i(\hat{\theta})$.

Some expected frequencies are very small:

# per leaf	0	1	2	3	4	5	6	7	8+
Observed	70	38	17	10	9	3	2	1	0
Expected	47.7	54.6	31.3	12.0	3.4	0.8	0.2	0.02	0.004

The χ^2 approximation for the distribution of Λ applies when there are large counts.

The usual rule-of-thumb is that the χ^2 approximation is good when the expected frequency in each cell is at least 5.

To ensure this, we should pool some cells before calculating Λ or P.

After pooling cells \geq 3:

# per leaf	0	1	2	≥ 3
Observed	70	38	17	25
Expected	47.7	54.6	31.3	16.4

Then $\Lambda = 2 \sum O_i \log \left(\frac{O_i}{E_i}\right) = 26.60$, and $P = \sum (O_i - E_i)^2 / E_i = 26.65$.

These are to be compared with a χ^2 with (4-1)-1=2 degrees of freedom.

The *p*-value is $p = P(\chi_2^2 \ge 26.6) \approx 10^{-6}$, so there is clear evidence that a Poisson model is not suitable.

Two-way contingency tables

Hair and Eye Colour

The hair and eye colour of 592 statistics students at the University of Delaware were recorded (Snee, 1974) – dataset HairEyeColor in R.

	Eye colour							
Hair colour	Brown	Blue	Hazel	Green				
Black	68	20	15	5				
Brown	119	84	54	29				
Red	26	17	14	14				
Blond	7	94	10	16				

Are hair colour and eye colour independent?

		1	(ey	je	color	s)				TOW
		١	2	~	•	~	•	~	C	Sum
his)	nı	•	٠	-		•		nic	n,+
(hair)	•	,							1	
	۲								•	¢
	(•							ſ	(
	r	nri	-		-	-		•	hrc	Nrt

Let
$$n_{ij} = frequency of (i, j)$$

 $T_{ij} = probability an individual
falls into cell (i, j)
Lipelihood $L(\pi) = n! \frac{T}{TT} \frac{T}{TT} \frac{T_{ij}}{n_{ij}!}$
 $Log-like l(\pi) = \sum_{i=1}^{n} \sum_{j=1}^{n} \log T_{ij} + constant$$

Consider: Ho: the two classifications are independent (e.g. hair colour and eye colour are independent) i.e. $\pi_{ij} = \alpha_i \beta_j$ where Zaci=1 and ZB;=1 $H_1: \pi_{ij}$ unrestricted except for $\sum_{i,j} \pi_{ij} = 1$.

(i) Max under Ho (Sheet 3):
$$\hat{\alpha}_{i} = \frac{n_{i+1}}{n}$$
, $\hat{\beta}_{j} = \frac{n_{+j}}{n}$
(ii) Max under H₁ (done already): $\hat{\pi}_{ij} = \frac{n_{ij}}{n}$.
We find $\Lambda = 2 \sum_{i,j} \frac{n_{ij} \log \left(\frac{n_{ij}}{n_{i+1}}, n\right)}{\left(\frac{n_{i+1}}{n_{i+1}}, n\right)}$
 $\approx \sum_{i,j} \frac{\left(\frac{o_{ij} - e_{ij}}{e_{ij}}\right)^{2}}{e_{ij}}$
where $o_{ij} = n_{ij}$ observed
 $e_{ij} = n \hat{\alpha}_{i} \hat{\beta}_{j}$ expected # in (i,j) under Ho

Degrees of feedow of this A
dim
$$H_1 = rc - 1$$
 probabilities $T_{11}, ..., T_{rc}$
mith $\sum_{s \in i} T_{s i} = 1$.
dim $H_0 = (r-i) + (c-i)$ $r-1$ for $\alpha_1 ... \alpha_r$ with $Z\alpha_c = 1$
 $c-1$ for $\beta_1 ... \beta_c$ with $Z\beta_i = 1$
So $p = dim H_1 - dim H_0 = (r-i)(c-1)$

Hair and Eye Colour

The hair and eye colour of 592 statistics students at the University of Delaware were recorded (Snee, 1974) – dataset HairEyeColor in R.

	Eye colour							
Hair colour	Brown	Blue	Hazel	Green				
Black	68	20	15	5				
Brown	119	84	54	29				
Red	26	17	14	14				
Blond	7	94	10	16				

Are hair colour and eye colour independent?

Relation between hair and eye colour

Eye

$$\Lambda = 2\sum_{i=1}^{r} \sum_{j=1}^{c} n_{ij} \log\left(\frac{n_{ij}n}{n_{i+}n_{+j}}\right) = 146.4$$

dim $H_1 = 16 - 1 = 15$
dim $H_0 = (4 - 1) + (4 - 1) = 6$

Hence we compare Λ to a χ^2_p where p = 15 - 6 = 9.

The *p*-value is $P(\chi_9^2 \ge 146.4) \approx 0$.

So there is overwhelming evidence of an association between hair colour and eye colour (i.e. overwhelming evidence that they are not independent).

[Pearson's chi-squared statistic is P = 138.3.]