


Bayesian Inference

So far we have followed the frequentist approach:

I we have treated unknown parameters as a fixed constants, and

I we have imagined repeated sampling from our model in order to
evaluate properties of estimators, interpret confidence intervals,
calculate p-values, etc.

We now take a different approach: in Bayesian inference, unknown
parameters are treated as random variables.



In subjective Bayesian inference, probability is a measure of the strength
of belief.

Before any data are available, there is uncertainty about the parameter θ.
Suppose uncertainty about θ is expressed as a “prior” pdf (of pmf) for θ.

Then, once data are available, we can use Bayes’ theorem to combine our
prior beliefs with the data to obtain an updated “posterior” assessment
of our beliefs about θ.



Example

Suppose we have a coin which we think might be a bit biased.

Let θ be the probability of getting a head when we flip it.



Prior: Beta(5, 5). Data: 7 heads from 10 flips.
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Prior: Beta(5, 5). Data: 70 heads from 100 flips.
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Example (MRSA)

[Example from www.scholarpedia.org.]

Let θ denote the number of MRSA infections per 10,000 bed-days in a
hospital.

Suppose we observe y = 20 infections in 40,000 bed-days, i.e. in 10,000N
bed-days where N = 4.

I A simple estimate of θ is y/N = 5 infections per 10,000 bed-days.

I The MLE of θ is also θ̂ = 5 if we assume that y is an observation
from a Poisson distribution with mean θN, so

f (y | θ) = (θN)ye−θN/y ! .

www.scholarpedia.org


However, other evidence about θ may exist.

Suppose this other information, on its own, suggests plausible values of θ
of about 10 per 10,000, with 95% of the support for θ lying between 5
and 17.

We can use a prior distribution to describe this. A Gamma pdf is
convenient here:

π(θ) =
βα

Γ(α)
θα−1e−βθ for θ > 0.

Taking α = 10, β = 1 gives approximately the properties above.

I The posterior combines the evidence from the data (i.e. the
likelihood) and the other (i.e. prior) evidence. We can think of the
posterior as a compromise between the likelihood and the prior.

I Calculated on board in lectures: the posterior is another Gamma.
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Example

[Example from Carlin and Louis (2008).]

Product P0 – old, standard.

Product P1 – newer, more expensive.

Assumptions:

I the probability θ that a customer prefers P1 has prior π(θ) which is
Beta(a, b)

I the number of customers X (out of n) that prefer P1 is
X ∼ Binomial(n, θ).

Let’s say θ > 0.6 means that P1 is a substantial improvement over P0.
So take

H0 : θ > 0.6 and H1 : θ < 0.6.



We consider 3 possibile priors:

I Jeffreys’ prior: θ ∼ Beta(0.5, 0.5).

I Uniform prior: θ ∼ Beta(1, 1).

I Sceptical prior: θ ∼ Beta(2, 2), i.e. favours values of θ near 1
2 .
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Prior odds = P(H0)/P(H1) where

P(H0) =

∫ 1

0.6

1

B(a, b)
θa−1(1− θ)b−1 dθ

P(H1) =

∫ 0.6

0

1

B(a, b)
θa−1(1− θ)b−1 dθ.



Suppose we have x = 13 “successes” from n = 16 customers.

Then (Section 4.1) the posterior π(θ | x) is Beta(x + a, n − x + b) with
x = 13 and n = 16.

Posterior odds = P(H0 | x)/P(H1 | x) where

P(H0 | x) =

∫ 1

0.6

1

B(x + a, n − x + b)
θx+a−1(1− θ)n−x+b−1 dθ

P(H1 | x) =

∫ 0.6

0

1

B(x + a, n − x + b)
θx+a−1(1− θ)n−x+b−1 dθ.
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Prior Prior odds Posterior odds Bayes factor

Beta(0.5, 0.5) 0.773 26.6 34.4
Beta(1, 1) 0.667 20.5 30.8
Beta(2, 2) 0.543 13.4 24.6

Conclusion: strong evidence for H0.











Normal approx to posterior (1)

Prior θ ∼ U(0, 1).

Bernoulli likelihood: x = 13 successes out of n = 16 trials.
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Normal approx to posterior (2)

Prior θ ∼ U(0, 1).

Bernoulli likelihood: x = 130 successes out of n = 160 trials.
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