4. Bayesian Inference

Bayesian Inference

So far we have followed the frequentist approach:

- \triangleright we have treated unknown parameters as a fixed constants, and
- \triangleright we have imagined repeated sampling from our model in order to evaluate properties of estimators, interpret confidence intervals, calculate p-values, etc.

We now take a different approach: in Bayesian inference, unknown parameters are treated as random variables.

In subjective Bayesian inference, probability is a measure of the strength of belief.

Before any data are available, there is uncertainty about the parameter θ . Suppose uncertainty about θ is expressed as a "prior" pdf (of pmf) for θ .

Then, once data are available, we can use Bayes' theorem to combine our prior beliefs with the data to obtain an updated "posterior" assessment of our beliefs about θ .

Example

Suppose we have a coin which we think might be a bit biased. Let θ be the probability of getting a head when we flip it.

Prior: Beta(5, 5). Data: 7 heads from 10 flips.

theta

Posterior density

theta

Prior: Beta(5, 5). Data: 70 heads from 100 flips.

theta

Posterior density

theta

4.1 Inhoduction

grobability Suppose that, as usual, we have a = likelihood model $f(x | 0)$ for data x . In this section we mite f(x 10) (rather than f(x; 0)) to indicate that x is conditional on O, we have a conditional distribution/density.

Suppose also, before dosering se, we summarise our beliefs about θ in a prior density $\pi(\theta)$. That is, we treat & as a vandom variable.

Once we have observed x , ar updated beliefs about O are contained in the conditional density of O $\pi(\theta | x)$.

Theorem (Bayes' theorem - continuous version)
\nFor continuous random variables
$$
\gamma
$$
 and Z , the
\ncondi tional density $f(z|y)$ of Z given γ
\nsatisfies
\n $f(z|y) = \frac{f(y|z) f(z)}{f(y)}$ (x) .
\n $f(y)$
\n**Proof** By definition of conditional density,
\n $f(z|y) = \frac{f(y,z)}{f(y)}$ and $f(y|z) = \frac{f(y,z)}{f(z)}$ (2)
\n $f(y)$
\nFrom (9) $f(y,z) = f(y|z)f(z)$ and substituting into 0 gives (4). \square

Note: mapping pdf of Y is

\n
$$
f(y) = \int_{-\infty}^{\infty} f(y, z) dz = \int_{-\infty}^{\infty} f(y, z) f(z) dz \quad (*) \cdot
$$
\n(similar expression for $f(x)$).

\nWith z and θ in place of y and z we have

\n
$$
\pi(\theta | z) = \frac{f(z | \theta) \pi(\theta)}{f(z)} \leftarrow
$$
\nwhere $f(z) = \int_{\text{odd}} f(z) \theta \pi(\theta) d\theta$ \leftarrow

\n
$$
\text{where } f(z) = \int_{\text{odd}} f(z) \theta \pi(\theta) d\theta \leftarrow
$$
\nlike(*).

As usual for conditional densities, we treat
$$
\pi(\theta|\underline{x})
$$

as a function of θ , with $\theta \in \mathbb{R}$ fixed.

Since \underline{x} is fixed, $f(\underline{x})$ is just a constant, and so

$$
\pi(\theta|\underline{x}) \propto f(\underline{x}|\theta) \times \pi(\theta)
$$

posterior or likelihood \times prior

Example	Conditionally on θ , suppose $X_1...X_n$ $\frac{1}{10}$ be f(x _i = 1 θ) = 0, $P(x_i = 0 \theta) = 1 - \theta$ \n
\therefore $f(x_i \theta) = \theta^{\alpha_i} (1-\theta)^{1-\alpha_i}$, $x_i = 0, 1$.	
S_0 $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$	
S_0 $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$	
$= \theta^{\alpha_0} (1-\theta)^{n-\alpha_0}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$	
θ $\frac{1}{100}$ $\theta^{\alpha-1} (1-\theta)^{b-1}$, $0 < \theta < 1$	

Here
$$
B(a,b) = \int_{0}^{1} \theta^{a-1} (1-\theta)^{b-1} d\theta
$$
 be
\n
$$
= \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$
\nand $\Gamma(a) = \int_{0}^{\infty} u^{a-1} e^{ax} du$
\n
$$
\Gamma(a+1) = a \Gamma(a) \text{ for } a > 0
$$
\n
$$
\Gamma(n) = (n-1)! \text{ for } n \text{ positive integer.}
$$

We are assuming a, b known, and a>0, b > 0.
\n
$$
\sqrt[n]{\text{chosa to reflect or } \text{pair} \text{ beliefs}}
$$
\n
$$
Now \text{ positive at likelihood } x \text{ prior, so}
$$
\n
$$
\pi(\theta | x) \propto \theta^{\alpha} (1-\theta)^{n-r} \times \theta^{n-1} (1-\theta)^{b-1}
$$
\n
$$
= \theta^{r+a-1} (1-\theta)^{n-r+b-1} \quad (3)
$$
\n
$$
The RHS of Q depends on \theta exactly as \theta and (r+a, n-r+b) density.
$$

Hence the constant of proportionality in ② must be
\n
$$
\frac{1}{B(r+a, n-r+b)}
$$
\nas a Beta (r+a, n-r+b).
\nSo pdf $\pi(\theta | \underline{x}) = \frac{1}{B(r+a, n-r+b)}$
\n $\theta^{(n-1)}(-\theta)^{n-r+b-1}$
\n $0 < \theta < 1$.
\nMole: no need to do any integration.

Example	Conditioned an 9, suppose $X_1 = X_n$ is 10 years.
Suppose prior for 9 cs a German	
$\pi(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} = \frac{-\beta \theta}{\beta}$	$\theta > 0$
where $\alpha > 0$, $\beta > 0$ known.	
posterior α likelihood x point	
$\pi(\theta) = \frac{\alpha}{\pi} = \frac{\alpha}{\pi} = \frac{\alpha}{\pi} = \frac{\alpha}{\pi}$	
$\pi(\theta) = \frac{\alpha}{\pi} = \frac{\alpha}{\pi} = \frac{\alpha}{\pi} = \frac{\alpha}{\pi}$	
$\alpha = \frac{\beta^{r+\alpha-1} - (n+\beta)}{\beta}$	
$\alpha = \frac{\beta^{r+\alpha-1} - (n+\beta)}{\beta}$	

So the posterior distribution is a Gramma, $\pi(\theta | z)$ is a Ganna ($r+\alpha, n+\beta$) pdf [because $\pi(\theta(z))$ depends on θ as for a Gamma $(r+\alpha, n+\beta)$.

Example (MRSA)

[Example from <www.scholarpedia.org>.]

Let θ denote the number of MRSA infections per 10,000 bed-days in a hospital.

Suppose we observe $y = 20$ infections in 40,000 bed-days, i.e. in 10,000 N bed-days where $N = 4$.

- A simple estimate of θ is $y/N = 5$ infections per 10,000 bed-days.
- **IDED** The MLE of θ is also $\hat{\theta} = 5$ if we assume that y is an observation from a Poisson distribution with mean θN , so

$$
f(y | \theta) = (\theta N)^y e^{-\theta N} / y! \, .
$$

However, other evidence about θ may exist.

Suppose this other information, on its own, suggests plausible values of θ of about 10 per 10,000, with 95% of the support for θ lying between 5 and 17.

We can use a prior distribution to describe this. A Gamma pdf is convenient here:

$$
\pi(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta} \quad \text{for } \theta > 0.
$$

Taking $\alpha = 10$, $\beta = 1$ gives approximately the properties above.

- \blacktriangleright The posterior combines the evidence from the data (i.e. the likelihood) and the other (i.e. prior) evidence. We can think of the posterior as a compromise between the likelihood and the prior.
- \triangleright Calculated on board in lectures: the posterior is another Gamma.

Prior density

theta

4.2 Inference

All information about & is contained in the posteror density $\pi(\theta|\mathbf{x})$.

Posterior summaries

Sometimes summaries of $\pi(\theta | x)$ are useful, e.g.

i) the posterior mode (value of 0 at which
$$
\pi(\theta)_{\approx}
$$
) is max)

(ii) the posterior mean
$$
E(\theta | \alpha)
$$

\nRepectral over θ
\n(α is fixed)

(iii) posterior median, m such that $\int_{0}^{m} \pi(0) \alpha) d\theta = \frac{1}{2}$ $\pi(\Theta|_{\mathbf{\Xi}})$ $area$ $\frac{1}{2}$ $(i\vee)$ var $(\theta | x)$ (v) other quantiles of $\pi(\theta | x)$.

Example Conditional or 8, suppose XV Buoniel (n, 0). We mite this as: X | 0 ~ Binomial (n, 0). $Piniv \quad \theta \sim U(0, 1)$ posteiar ac likelihood x prior $\pi(\theta|\mathbf{x}) \propto \binom{n}{\mathbf{x}} \theta^{\mathbf{x}} (-\theta)^{n-\mathbf{x}} \times 1$ $\propto \theta^{x} (-\theta)^{n-x}$ S_0 θ \approx \sim Beta $(x+1, n-x+1)$.

$$
\mathcal{E}(\theta|\mathbf{x}) = \int_{0}^{1} \theta \pi(\theta|\mathbf{x}) d\theta
$$

= $\frac{1}{B(x+1, n-x+1)} \int_{0}^{1} \theta^{x+1} (1-\theta)^{n-x} d\theta$
= $\frac{1}{B(x+1, n-x+1)}$. $B(x+2, n-x+1)$
= $\frac{\Gamma(n+2)}{\Gamma(n+2)\Gamma(n-x+1)}$. $\frac{\Gamma(x+2)\Gamma(n-x+1)}{\Gamma(n+3)}$
= $\frac{x+1}{n+2}$ using $\Gamma(\mathbf{a}+1) = a \Gamma(\mathbf{a})$ twice

Internet	enhuction
Frequentist	confidence interval
Bayesran	credible interval
Let	Ob be the pommetric space.
Definition A 100(1– α)% (posterior) credible set	
for θ is a subset C of θ such that	
$\int \pi(\theta \alpha) d\theta = 1 - \alpha$.	

Note this is just saying
$$
P(B \in C | x_i) = 1 - x
$$

\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$
\n
$$
\pi(e|x)
$$

In words: "He probable lity that 0 lie in C,
given the observed data x, is
$$
1-\alpha
$$
"
Very simple! This is not true of a
confidence internal.

Definition We call Ca highest posterior density (HPD) credible set if $\pi(\theta | x) > \pi(\theta' | x)$ for all DEC and all O'&C. TT (Q | Z) $E.g.$ (θ_1, θ_2) here: An HPD internal has minimal midth among all 1-x credible stands.

Multi-parametric models
0 may be a vector. If so, everything above still apphias, all integrals over 0 mean multiple integrals over all components of 0.
e.g. $\theta = (\psi, \lambda)$, so posterior $\pi(\psi, \lambda) \ge 0$.
All $\sin\theta$ about ψ is contained in the marginal posterior for ψ , which is $\pi(\psi \ge 0) = \int \pi(\psi, \lambda) \ge 0 \, \lambda$
integrate over all λ is found marginal distributions.

Prediction

Let X_{h+1} represent a future observation. Assume, conditional on Θ , that X_{n+1} has density $f(x_{n+1}|\theta)$ independent of $X_1 = X_n$. The density of x_{n+1} given x_{n} called the posterior predictive density, is a conditional density, found by the noual rules of probability: $f(x_{n+1}|\underline{x}) = \int f(x_{n+1}, \theta | \underline{x}) d\theta$ integrate over all O to find maginal dansity $x=(x_1, ..., x_n)$ here

$$
= \int f(x_{n+1} | \theta, x) \pi (\theta | x) d\theta + f(u, v | w)
$$

\n
$$
= f(u | v, w) f(v | w)
$$

\n
$$
= \int f(x_{n+1} | \theta) \pi (\theta | x) d\theta.
$$

\n
$$
= \int f(x_{n+1} | \theta) \pi (\theta | x) d\theta.
$$

4.3 Prior information Hou do we choose a prior $\pi(\theta)$? (i) If substantial prior Knowledge exists, we could ask (ii) If we have little prior knowledge we might want a is this possible? maybe ONUlo, i) for a prior probability (iij We might want to choose a "conjugate" prior for ease of colculation (by hand)

prior lik posterior C.g. Beta + Benorthi -> Beta
Gamma + Poisson -> Gamma Note (iii) can overlage with (i) and (ii).
Example Conditional on O, let X1 ... Xn be independent $N(\theta, \sigma^2)$ where σ^2 known. Let prior be $\theta \sim N(\mu_o, \delta_o^2)$ where μ_o, δ_o^2 known. Then $\pi(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta) \pi(\theta)$ α exp $\left[-\frac{1}{2}\sum_{s=1}^{3}(x_{i}-\theta)^{2}\right]$ exp $\left[-\frac{1}{2}\frac{(\theta-\mu)^{2}}{\sigma_{o}^{2}}\right]$

Now complete the square:
\n
$$
\frac{(\theta-\mu_0)^2}{\sigma_b^2} + \sum \frac{(x_b - \theta)^2}{\sigma^2} = \theta^2 \left(\frac{1}{\sigma_b^2} + \frac{n}{\sigma^2}\right) - 2\theta \left(\frac{\mu_0}{\sigma_b^2} + \frac{n\overline{x}}{\sigma^2}\right)
$$
\n
$$
+ \text{Consider}
$$
\n
$$
= \frac{1}{\sigma_b^2} (\theta - \mu_1)^2 + \text{cosh}^2 + \text{Consider}
$$
\n
$$
\mu_1 = \frac{1}{\sigma_b^2} \mu_0 + \frac{n}{\sigma^2} \overline{x}
$$
\n
$$
\frac{1}{\sigma_b^2} + \frac{n}{\sigma^2}
$$
\n
$$
\frac{1}{\sigma_b^2} + \frac{n}{\sigma^2}
$$
\n
$$
\frac{1}{\sigma_b^2} = \frac{1}{\sigma_b^2} + \frac{n}{\sigma^2}
$$
\n
$$
\frac{1}{\sigma_b^2} = \frac{1}{\sigma_b^2} + \frac{n}{\sigma^2}
$$

Hence
$$
\pi(\theta|\underline{x}) \propto \exp\left(-\frac{1}{2\sigma_i^2}(\theta-\mu_i)^2\right)
$$

\n $\int_{\alpha} N(\mu_i, \sigma_i^2) \mu d\theta$
\nSo $\theta|\underline{x} \sim N(\mu_i, \sigma_i^2)$.
\n $\frac{\mu \omega \mu}{\sigma_o^2}$
\n $\frac{\mu \nu \mu}{\sigma_o^2}$
\n $\frac{\mu \nu \mu}{\sigma_o^2}$
\n $\frac{\mu \nu \mu}{\sigma_o^2}$

Improper priors If $\sigma_0^2 \to \infty$ above then $\pi(\theta | x)$ is approx $N(x, \frac{\sigma^2}{n})$. i.e. the likelihood contribution dominates the prior This corosponds to prior $\pi(0) \propto c$, a constant,
is a "uniform prior". But this π is not a probability distribution since
 $\theta \in (-\infty, \infty)$ and we can't have $\int_{-\infty}^{\infty} d\theta = 1$.

Definition A prior $\pi(0)$ is called proper if $\int \pi(0)d\theta=1$, and is called improper if the integral can't be nomalised to equal 1. An improper pror can lead to a proper posterior
(e.g. uniform prior $\pi(0) \propto c$ for $\theta \in \mathbb{R}$ above) and we can use the posterior for informa. But ne can't use an improper parterier for
meaningful inference.

Prior ignorance

If no reliable prior suformation is available we might want a prior which has minimal effect on our informer. E.g. if $\theta = \{0, ..., 0, \ldots \}$ then $\pi(\theta_i) = \frac{1}{m}$, i=1...m does not favour any value of 8, is "non-informative". But things are not so simple when O is continuous.

 $Example$ If $\Theta = (0,1)$ we might think $Q \sim U(o, I)$ represents ignorance Hovever, if we are ignorant about & then we are also ignorat about $\phi = \log \left(\frac{\theta}{1-\theta} \right)$ log odds O has pdf $\pi(\theta) = 1$, $0 < \theta < 1$. $\frac{\theta}{1+e^{p}}$ S_0 of has gdf $p(s) = \pi (0(s)) \frac{dS}{ds}$ = $1 \times \frac{e^{x}}{(1+e^{x})^{2}}$, $y \in R$.

Ø this does not seem consistent with ignorance about \emptyset .

Jefreys priors The gradium with the β -example above is that the representation of "ignorance" changes if we change parametrisation from 0 to %. Suppose & is a scalar. A solution to the issue is the Jeffreys prior defined by $\pi(\theta) \propto \tau(\theta)^{1/2}$ Lesquer root of expected information If X_1 ... X_n are from $f(x|0)$, this is $\pi(0) \propto i(0)^{1/2}$.

In what sense is Jeffreys prior a "solution"? Suppose $\cancel{\phi} = h(\cancel{\phi})$. Consider: (i) Find π (d) using Teffrags rule, then transform this
pdf to a pdf $p(p)$ for p . (ii) Determine prior for β using $p(\beta) \propto \Gamma(\beta)^{1/2}$. Then (i) and (ii) grive the same prior for $\cancel{\beta}$.

Example Suppose X, _ Xn ~ Benarlti(d). Then $i(0) = 1$ $\theta(1-\theta)$ S_{o} Jeffreys prav CS $\pi(0) \propto 0^{-12} (+0)^{-12}$, Ocold. This is a Beta (2, 2).

Jeffreys priors: a can be improper · can be defined for vector Θ by $\pi(\mathbf{0}) \propto |\mathcal{I}(\mathbf{0})|^{1/2}$ (determinant of I)^{1/2} BUT a simpler approach is more common: final the Jeffreys prior for each 1-dim. component of 8 and take the product to get the whole prior (rè assure prier independence).

4.4 Hspattars to this and Bayes factors
Suppose we want to compare two hypotheses. If a and H ₁ , exactly one of which is the.
The Bayssian approach extends pair problems (H _a), P(H ₁) be H ₀ , H ₁ (where P(H _b)+P(H ₁) = 1).
The parts odds of H _a relative to H ₁ is point adds = $\frac{P(H_0)}{P(H_1)} = \frac{P(H_0)}{1-P(H_0)}$.
Odds of event A = P(A) / (1-P(A))

We can compute posterior probability
$$
P(H_i|\mathbf{x})
$$
, i=0,1
and compare them.
\nBy Bayes theorem,
\n $P(H_i|\mathbf{x}) = \frac{P(\mathbf{x} | H_i) P(H_i)}{P(\mathbf{x} | H_0) P(H_0) + P(\mathbf{x} | H_i) P(H_i)}$
\nNot: $P(H_i|\mathbf{x})$ is the probability of H_i calculated an
data \mathbf{x} , whereas p-values can't be interpreted this way.
\nThe posterior odds of H_0 related to H_1 is
\nposterior adds $= \frac{P(H_0|\mathbf{x})}{P(H_1|\mathbf{x})}$.

$$
\frac{V \sin \theta}{P(H_0 | \underline{x})} = \frac{P(\underline{x} | H_0)}{P(\underline{x} | H_1)} \times \frac{P(H_0)}{P(H_1)}
$$
\n
$$
\frac{V(H_1 | \underline{x})}{V(H_1)}
$$
\n
$$
\frac{V(H_0 | \underline{x})}{V(H_0)}
$$
\n
$$
\frac{V(H_0 | \underline{x})}{V(H_0 | \underline{x})} = \frac{V(\underline{x} | H_0)}{V(\underline{x} | H_0)}
$$
\n
$$
\frac{V(H_0 | \underline{x})}{V(\underline{x} | H_1)}
$$
\n
$$
\frac{V(H_0 | \underline{x})}{V(\underline{x} | H_1)}
$$
\n
$$
\frac{V(H_0 | \underline{x})}{V(\underline{x} | H_1)}
$$

The change from prior odds to posterior odds
depends on x only via the Bayes factor Bor. Bo, tells us hou = shifts our strength of belief in Ho relative to H_1 .

General setup We are assuming we have (i) prior probabilities $P(H_i)$, i=0,1, $P(H_{o})+P(H_{1})=$ (ii) a prior distribution for a_i under A_i ,
is. $\pi (a_i | A_i)$ for $a_i \in \Theta_i$, $i = o, 1$. (iii) a model under Hi for data x given by $f(x|\theta_i, \theta_i)$ The two priors in (ii) could be of different forms
I models in (iii) could be of different forms.

Some thus (see example here)

\n(i) and (ii) might be completed. The given might be
$$
\pi(0)
$$
 for $\theta \in \Theta$

\nwhere

\n\n- $\Theta_0 \cup \Theta_i = \Theta$ and $\Theta_0 \cap \Theta_i = \emptyset$
\n- $\Theta_0 \cup \Theta_i = \emptyset$
\n- $\Theta_0 \cup \Theta_i = \emptyset$
\n- $\Theta_0 \cup \Theta_i = \emptyset$
\n
\nProof:

\n\n- $\theta \in \Theta_i$
\n- $\theta \in \Theta_i$
\n
\nand $\pi(\theta_i | H_i)$ is the conditional density of θ given H_i ,

\n\n- $\pi(\theta_i | H_i) = \frac{\pi(\theta_i)}{\int_{\theta \in \Theta_i} \pi(\theta) d\theta}$
\n

Consider (2): conditions on (2): (law of total pad) replace
$$
P(\approx |
$$
 It.) = $\int f(\approx |0;$ It) $\pi(0;$ It) $d0$:

\n(3):

\n(0):

\n(1):

\n(2):

\n(3):

\n(4):

\n(5):

\n(6):

\n(7):

\n(1):

\n(1):

\n(2):

\n(3):

\n(4):

\n(5):

\n(6):

\n(7):

\n(8):

\n(9):

\n(1):

\n(

This is somewhat similar to the libelihood rate of Sec.3, except for L.R we maximised over Ho, H, to find LR statistic 1. Note: 1. We as beating Ho, H, in the same way,
whereas in Sec 3 we treated Ho, H, asymmetrically. 2. Bayes factor of H, relative to the is just $B_{10} = B_{01}^{-1}$. 3. Bayer facture can only be used with proper priors: from (3) (3) Bordepends on two constants of proportronality (one for
each $\pi(\theta_i|H_i)$) so these constants must be laroun.

Assume an model is
$$
f(z|0)
$$
.
\nIf $H_i: \theta = \theta_i$, $i = 0, 1$, are both simple, then
\n
$$
B_{0i} = \frac{f(z|\theta_0)}{f(z|\theta_1)} \leftarrow
$$
\n
$$
H_i: \theta \in \Theta_{i, i} := 0, 1
$$
, are half. any set t , then
\n
$$
B_{0i} = \frac{\int_{\Theta_0} f(z|\theta) \pi(\theta|H_0) d\theta}{\int_{\Theta_1} f(z|\theta) \pi(\theta|H_1) d\theta}
$$
.

Interpretation of Bayes factor: Evidence for the \mathcal{B}_{\bullet} \leq \perp regative (is. evidence supports H) hardly worth a mention $1 - 3$ positive $3 - 20$ strong $20 - 150$ very strong >150

EXAMPLE 1.1.
$$
E_{\text{Xenpole}}(T_{\text{A}}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2\pi} (x-\theta)^{2}}
$$

\nSo $f(x|\theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2\pi} (x-\theta)^{2}}$
\nLet θ_{B} : $\theta = |\omega_{0}, \theta_{1}; \theta = 130$.
\nSuypose we observe $x = |20$.
\nThen $B_{\text{B1}} = f(120/100) = 0.223$.
\n $f(120/130)$
\n $B_{10} = 1/0.223 = 4.48$, so positive enclose for H.

Let pair polarabilities be
$$
P(H_0) = 0.95
$$
, $P(H_1) = 0.05$.
\nUsing part odds = Bayes factor x pair adds,
\n
$$
\frac{p_0}{1-p_0} = B_{01} \times \frac{0.95}{0.05}
$$
\n
$$
\frac{p_0}{1-p_0} = \frac{19B_{01}}{0.05} = 0.81
$$
\nSo still a high
\nposterior probability of the

т

Example
$$
\frac{(\text{Var}_3 \text{L}t)}{\text{Let H}_0: \theta \le 175, \text{ H}_1: \theta \ge 175}
$$

\nLet H_0: $\theta \le 175, \text{ H}_1: \theta \ge 175$
\n $\text{Pcav}: \theta \sim N(\mu_0, \sigma_0^2), \text{ } \mu_0 = 170, \sigma_0^2 = 5^2$
\n
\n $\text{Pcav } \text{prob}: P(H_0) = P(N(\mu_0, \sigma_0^2) \le 175) = \frac{1}{2} (\frac{175-\mu_0}{\sigma_0}) = 0.84$
\n
\n $\text{Pcav } \text{d}t: P(H_0) = \frac{0.84}{0.16} = 5.3$.
\n
\nObserve $\pi_{1, -1}, \pi_{1, 1}, \text{ } n = 10, \text{ } \pi = 176$.
\n
\n $\text{PostCov } N(\mu_1, \sigma_1^2), \text{ } \mu_1 = ... = 176.8, \text{ } \sigma_1^2 = -0.889$.

Part odds =
$$
\frac{O(14.3 \pm 10^{-195.8})}{0.869} = 0.198.
$$

\nPart odds = $\frac{O(198)}{0.802} = 0.24$

\nSo Range factor $S_{01} =$ post adds = 0.0465.

\nand $S_{10} = B_{01}^{-1} = 21.5$

\nPart possible shows evidence in favor of H₁

Example

[Example from Carlin and Louis (2008).]

Product P_0 – old, standard.

Product P_1 – newer, more expensive.

Assumptions:

- **If** the probability θ that a customer prefers P_1 has prior $\pi(\theta)$ which is $Beta(a, b)$
- In the number of customers X (out of n) that prefer P_1 is $X \sim$ Binomial(n, θ).

Let's say $\theta \geq 0.6$ means that P_1 is a substantial improvement over P_0 . So take

 H_0 : $\theta \ge 0.6$ and H_1 : $\theta < 0.6$.

We consider 3 possibile priors:

- \blacktriangleright Jeffreys' prior: $\theta \sim \text{Beta}(0.5, 0.5)$.
- \triangleright Uniform prior: $\theta \sim \text{Beta}(1, 1)$.
- ► Sceptical prior: $\theta \sim \text{Beta}(2, 2)$, i.e. favours values of θ near $\frac{1}{2}$.

Prior odds = $P(H_0)/P(H_1)$ where

$$
P(H_0) = \int_{0.6}^{1} \frac{1}{B(a, b)} \theta^{a-1} (1 - \theta)^{b-1} d\theta
$$

$$
P(H_1) = \int_{0}^{0.6} \frac{1}{B(a, b)} \theta^{a-1} (1 - \theta)^{b-1} d\theta.
$$

Suppose we have $x = 13$ "successes" from $n = 16$ customers.

Then (Section 4.1) the posterior $\pi(\theta | x)$ is Beta $(x + a, n - x + b)$ with $x = 13$ and $n = 16$.

Posterior odds = $P(H_0 | x)/P(H_1 | x)$ where

$$
P(H_0 \mid x) = \int_{0.6}^{1} \frac{1}{B(x+a, n-x+b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1} d\theta
$$

$$
P(H_1 \mid x) = \int_{0}^{0.6} \frac{1}{B(x+a, n-x+b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1} d\theta.
$$

theta

Conclusion: strong evidence for H_0 .

4.5 Asymptotic normality of posterior distribution from
\nWe have
$$
\pi(\theta) \ge 0 \ll L(\theta) \pi(\theta)
$$

\nLet $\tilde{L}(\theta) = \log \pi(\theta) \ge 0$
\n= constant + $L(\theta) + \log \pi(\theta)$ one term
\n
$$
\sum_{i=1}^{n} \log f(x_i|\theta) \ne \text{in terms,}
$$
\n
$$
\text{expect likelihood combination to dominate}
$$
\n
$$
\text{for base n}
$$

Let
$$
\tilde{\theta}
$$
 be the posterior model, assume $\tilde{\iota}'(\tilde{\theta}) = 0$.
\nThen
\n
$$
\tilde{\iota}(\theta) \approx \tilde{\iota}(\tilde{\theta}) + (\tilde{\theta} - \theta) \tilde{\iota}'(\tilde{\theta}) + \frac{1}{2} (\theta - \tilde{\theta})^2 \tilde{\iota}'(\tilde{\theta})
$$
\n
$$
= \tilde{\iota}(\tilde{\theta}) - \frac{1}{2} (\theta - \tilde{\theta})^2 \tilde{\iota}(\tilde{\theta})
$$
\n
$$
\text{where } \tilde{\iota}(\theta) = -\tilde{\iota}''(\theta)
$$
\n
$$
S_0 = \pi(\theta) \leq 0 \implies \exp\left(\tilde{\iota}(\theta) - \exp\left(-\frac{1}{2} (\theta - \tilde{\theta})^2 \tilde{\iota}(\tilde{\theta})\right)\right)
$$
\n
$$
\hat{\iota} \xi = \theta \mid \tilde{\xi} \approx N \left(\tilde{\theta}, \tilde{\xi}(\theta)^{-1}\right)
$$

θ	\approx N($\overline{\theta}$, $\overline{J(\overline{\theta})}$	D
In large samples <i>He</i> likelihoods has a combination with denimate, reculting in $\overline{\theta}$ and $\overline{J}(\overline{\theta})$ being close to the		
ME θ and observed information $\overline{J(\theta)}$. Hence		
θ $\underline{\alpha}$ \approx N($\hat{\theta}$, $\overline{J}(\hat{\theta})$).		
0, Θ look similar to the corresponding frequentist results, but note: in \overline{O} , $\overline{\theta}$ is a radon variable and $\overline{O}(\underline{\alpha})$, $\overline{\partial}(\underline{\alpha})$ constants whose in frequentist $\overline{O}(\underline{\alpha})$ is a redo variable and \underline{O} cosht.		
Using the asymptotic results:
\n(i) frequently if
$$
\theta \approx N(\theta, T(\theta)^{-1})
$$
 leads to 15% confidence
\nthroughment of $(\hat{\theta} \pm 1.46 \text{ T}(\hat{\theta})^{-1/2})$
\n(ii) Bayesian (a) $\theta \approx N(\hat{\theta}, T(\hat{\theta})^{-1})$ leads to 95%
\ncredit to interval θ $(\hat{\theta} \pm 1.46 \text{ T}(\hat{\theta})^{-1/2})$.
\nThat is, the same interval θ 0-values in both case,
\nbut with different interpretations.

Normal approx to posterior (1)

Prior $\theta \sim U(0, 1)$.

Bernoulli likelihood: $x = 13$ successes out of $n = 16$ trials.

Normal approx to posterior (2)

Prior $\theta \sim U(0, 1)$.

Bernoulli likelihood: $x = 130$ successes out of $n = 160$ trials.

Part B courses double unit,
practicals, R SBI: applied, computational, regresson models SB2.1: statistical informace, frequentist and Bayesian 582.2 : machine learning SB3.1: applied probability SB3.2 : lifetune models