
Numerical Analysis

Sheet 4 — HT21

Solving initial value problems

1. Consider the scalar IVP y′ = sin(x2)y, y(0) = 1. Compute the approximation of y(0.1)

obtained using one step of the (i) explicit Euler method, (ii) implicit Euler method, and

(iii) implicit Midpoint rule.

FYI below is a plot of the approximate solutions along with the exact one.
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2. Consider the autonomous ODE y′ = f(y) and compute the consistency order of the

explicit Euler method.

3. Write the formula of the stages k1,k2,k3,k4 and express yn+1 in terms of yn, h and ki

for the following Runge-Kutta method

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 2/6 2/6 1/6

.

Provide an upper bound of its consistency order.

4. Write the Butcher table of the Runge-Kutta method defined by

yn+1 = yn +
h

2
f(xn,yn) +

h

2
f(xn + h,yn+1) .

and determine its order of convergence.
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5. (a) Derive the formula of the stability function of the explicit Euler, implicit Euler,

and the implicit midpoint rules.

(b) Show that the implicit midpoint rule is A-stable. [Hint: You could use the maxi-

mum principle for holomorphic functions.]

(c) Show that the implicit Euler method is L-stable.

6. (a) Write the first and second characteristic polynomials of the explicit Euler, implicit

Euler, and implicit trapezium rules.

(b) Show that these methods are zero-stable.

(c) Show that the implicit Euler and implicit trapezium rules are A-stable using the

definition of stability domain of multistep methods.

7. Let a, b ∈ R be some fixed parameters. Show that the multistep methods described by

ρ(z) = (z − 1)(az + 1− a) , σ(z) = (z − 1)2b+ (z − 1)a+ (z + 1)/2

are of order 2, and show that they are zero-stable if and only if a ≥ 1/2.

8. (Optional)

(a) Prove that the stability function of any explicit s-stage Runge-Kutta method is a

polynomial of degree at most s.

[Hint: show by induction that the i-th stage ki(z) is a polynomial in z of degree at

most i.]

(b) Prove that the stability function of any explicit s-stage Runge-Kutta method of

order s is exactly S(z) =
∑s

j=0
zj

j!
.

9. (Optional) Show that hD = − log(I−∆)(I−∆)E and that

hD =

(
∆− 1

2
∆2 − 1

6
∆3 + . . .

)
E ,

and write the formulas of the first and the second characteristic polynomials of the 1-

step and 2-step methods associated to this series. Are these methods zero-stable?
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