
Numerical Analysis Hilary Term 2021

Lecture 15–16: Multistep methods

Linear multi-step methods

Runge-Kutta methods deliver an approximate solution to

y′ = f(x,y) , y(x0) = y0 , (1)

but tacitly assume that it is possible to evaluate the right-hand side f(x,y) anywhere (and

use a lot of such function evaluations). Instead, linear multi-step methods require values

of f at grid points only.

Definition 1. Let X > x0 be a final time, N, k ∈ N, N ≥ k, h := (X − x0)/N , and xn :=

x0 + hn. A linear k-step method is an iterative method that computes the approximation

yn+k to y(xn+k) by solving

k∑
j=0

αjyn+j = h

k∑
j=0

βjf(xn+j,yn+j) , (2)

where {αj}kj=0 and {βj}kj=0 are real coefficients. To avoid degenerate cases, we assume that

αk 6= 0 and that α2
0 + β2

0 6= 0.

Note that if βk = 0, the method is explicit.

It is also possible to construct multi-step methods on nonequidistant grids, and good

timestepping software does so for you.

In the same way Runge-Kutta methods are summarized with Butcher tables, linear

multi-step methods can be summarized with two polynomials.

Definition 2. For the k-step method defined by (2),

ρ(z) =
k∑

j=0

αjz
j and σ(z) =

k∑
j=0

βjz
j (3)

are called the first and second characteristic polynomials.

Example 3. A simple linear 3-step method can be constructed using Simpson’s quadrature

rule. Indeed,

y(xn+1)= y(xn−1) +
∫ xn+1

xn−1
f(x,y(x)) dx

≈ y(xn−1) + 2h
6

(f(xn−1,y(xn−1)) + 4f(xn,y(xn)) + f(xn+1,y(xn+1))) .

This motivates the following linear 2-step method

yn+2 − yn = h

(
2

6
f(xn,yn) +

8

6
f(xn+1,yn+1) +

2

6
f(xn+2,yn+2)

)
(4)

Its first and second characteristic polynomials are

ρ(z) = z2 − 1 and σ(z) =
2

6
(z2 + 4z + 1) . (5)
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There is a formal calculus that can be used to construct families of multi-step methods.

Definition 4. For a fixed small h > 0, we define:

� the shift operator E : y(x) 7→ y(x+ h),

� its inverse E−1 : y(x) 7→ y(x− h),

� the difference operator ∆ : y(x) 7→ y(x)− y(x− h),

� the identity operator I : y(x) 7→ y(x),

� and the differential operator D : y(x) 7→ y′(x).

Lemma 5. Suppose that y(x) is analytic (hence infinitely differentiable) at x. Then for-

mally, hD = − log(I−∆).

Proof. First, using Taylor expansion, we can show that

Ey(x)= y(x) + hy′(x) + h2

2
y′′(x) + . . .

= y(x) + hDy(x) + h2

2
D2y(x) + . . . = exp(hD)y(x) ,

and thus, E = exp(hD). This implies that hD = log(E).

Then, using the definition, we see that E−1 = I−∆, and thus E = (I−∆)−1.

Therefore, hD = log(E) = log((I−∆)−1) = − log(I−∆). 2

Example 6. We can construct a multi-step method using the previous lemma. Indeed, by

Taylor expansion of the logarithm log(1− x) = −
∑∞

i=1 x
i/i,

hD = − log(I−∆) =

(
∆ +

1

2
∆2 +

1

3
∆3 + . . .

)
, (6)

and thus

hf(xn,y(xn)) =

(
∆ +

1

2
∆2 +

1

3
∆3 + . . .

)
y(xn) . (7)

To construct a family of multi-step methods, we truncate the infinite series at different

orders and replace y(xn) with yn. These methods are called backward differentiation for-

mulas, and their simplest instances are

yn − yn−1= hf(xn,yn) , (implicit Euler)
3
2
yn − 2yn−1 + 1

2
yn−2= hf(xn,yn) ,

11
6

yn − 3yn−1 + 3
2
yn−2 − 1

3
yn−3= hf(xn,yn) .

Example 7. Explicit Euler’s method arises from truncating the series

hD =

(
∆− 1

2
∆2 − 1

6
∆3 + . . .

)
E , (8)

which can be derived similarly.
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Example 8. Another two important families are the Adams-Moulton methods and the

Adams-Bashforth methods, which originate from the formal equalities

E∆= h
(
I− 1

2
∆− 1

12
∆2 − 1

24
∆3 − 19

720
∆4 + . . .

)
D ,

E∆= h
(
I + 1

2
∆ + 5

12
∆2 + 3

8
∆3 + 251

720
∆4 + . . .

)
D ,

respectively.

For example, writing fn+i = fn+i(xn+i,yn+i) for simplicity, the three-step Adams–

Moulton method is (an implicit method)

yn+3 = yn+2 +
1

24
h (9fn+3 + 19fn+2 − 5fn+1 − 9fn) ,

and the four-step Adams-Bashforth method is (explicit)

yn+4 = yn+3 +
1

24
h (55fn+3 − 59fn+2 + 37fn+1 − 9fn)

To compute yk with a linear k-step method, we need the values y0, . . . ,yk−1. These

(except y0) must be approximated with either a one-step method or another multi-step

method that uses fewer steps. At any rate, they will contain numerical errors. Clearly,

a meaningful multistep method should be robust with respect to small perturbations of

these initial values.

Definition 9. A linear k-step method is said to be zero-stable if there is a constant K > 0

such that for every N ∈ N sufficiently large and for any two different sets of initial data

y0, . . . ,yk−1 and ỹ0, . . . , ỹk−1, the two sequences {yn}Nn=0 and {ỹn}Nn=0 that stem from the

linear k-step method with h = (X − x0)/N satisfy

max
0≤n≤N

‖yn − ỹn‖ ≤ K max
j≤k−1

‖yj − ỹj‖ . (9)

Zero-stability of a k-step method can be verified algebraically with the following property,

which is known as the root condition.

Definition 10. A linear k-step method satisfies the root condition if all zeros of its first

characteristic polynomial ρ(z) lie inside the closed unit disc, and every zero that lies on

the unit circle is simple.

Theorem 11. A linear multi-step method is zero-stable for any ODE y′(x) = f(x,y)

with Lipschitz right-hand side, if and only if the linear multi-step method satisfies the root

condition.

This theorem implies that zero-stability of a multi-step method can be determined by

merely considering its behavior when applied to the trivial differential equation y′ = 0; it

is for this reason that it is called zero-stability.

Consistency and convergence
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Definition 12. The consistency error of a linear k-step method with σ(1) 6= 0 is

τ (h) =

∑k
j=0 αjy(xj)− h

∑k
j=0 βjy

′(xj)

h
∑k

j=0 βj
, (10)

where y is a smooth function.

Definition 13. A linear multi-step method has (consistency) order p if τ (h) = O(hp).

By adequate Taylor expansion, we can obtain the following theorem.

Theorem 14. A linear multi-step method has consistency order p if and only if σ(1) 6= 0

and
k∑

j=0

αj = 0 and
k∑

j=0

αjj
q = q

k∑
j=0

βjj
q−1 for q = 1, . . . , p . (11)

Definition 15. A multi-step method is said to be consistent if these conditions are satisfied

at least for p = 1.

Theorem 16. A linear multi-step method is consistent iff

ρ(1) = 0 and ρ′(1) = σ(1) 6= 0. (12)

In general, these conditions can be reformulated more elegantly.

Theorem 17. Equation (11) is equivalent to ρ(eh)− hσ(eh) = O(hp+1).

To define the concept of convergence for linear k-step methods, we need to specify some

criteria about the choice of the starting conditions.

Definition 18. A set of starting conditions yi = ηi(h), i = 0, . . . , k− 1 is consistent with

the initial value y0 if ηs(h)→ y0 as h→ 0 for every s = 0, . . . , k − 1.

Definition 19. A linear k-step method is convergent if, for every initial value problem

y = f(x,y), y(x0) = y0 (that satisfies the assumptions of Picard’s theorem) and for any

choice of consistent starting conditions

y0 = η0(h), . . . ,yk−1 = ηk−1(h) , (13)

we have that

lim
h→0

yN = y(X) (with N = (X − x0)/h) (14)

Theorem 20 (Dahlquist’s Equivalence Theorem). For consistent linear k-step method

with consistent starting values, zero-stability is necessary and sufficient for convergence.

Moreover, if τ (h) = O(hp) and ‖y(xs) − ηs(h)‖ = O(hp) for s = 0, . . . , k − 1, then

max0≤n≤N ‖y(xn)− yn‖ = O(hp).
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For Runge–Kutta methods, we showed that one can construct s-stage methods of order

2s. Unfortunately, it is not possible to construct linear k-step methods of order 2k without

violating the zero-stability requirement.

Theorem 21 (The first Dahlquist-barrier). The order p of a zero-stable linear k-step

method satisfies

� p ≤ k + 2 if k is even,

� p ≤ k + 1 if k is odd,

� p ≤ k if βk/αk ≤ 0 (in particular if the method is explicit).

Stability of linear multi-step methods Similar to one-step methods, stability is in-

vestigated by applying a linear multi-step method to the Dahlquist test equation y′ = zy,

z ∈ C, y(0) = 1, and h = 1. Recall that the solution to this ODE is y(x) = exp(zx), that

|y(x)| → 0 as t → ∞ whenever Re(z) < 0, and that we call its numerical approximation

{yn}n∈N (absolutely) stable if yn → 0 as n→∞ when Re(z) < 0.

Our goal is to investigate when the sequence {yn}n∈N computed with a linear k-step

method is stable. First of all, note that the n-th iterate yn satisfies

k∑
j=0

αjyn+j =
k∑

j=0

βjzyn+j , or equivalently,
k∑

j=0

(αj − zβj)yn+j = 0 . (15)

With the following lemma from the theory of difference equations, we know that yn is of

the form

yn = p1(n)rn1 + . . .+ p`(n)rn` , (16)

where the rjs are the roots of the polynomial π(x) =
∑k

j=0(αj− zβj)xj, and the pj(n)s are

polynomials of degree mj − 1, where mj is the multiplicity of rj.

Lemma 22. Let {γi}ki=0 be real coefficients and let {xi}k−1i=0 be initial values. Let {xn}n∈N
be the sequence defined by the kth order linear difference equation

k∑
i=0

γixn+i = 0 . (17)

Then, xn is of the form

xn = p1(n)rn1 + . . .+ p`(n)rn` , (18)

where r1, . . ., r` are the roots of the polynomial π(x) =
∑k

i=0 γix
i and p1, . . ., p` are

polynomials of degree m1 − 1, . . ., m` − 1, where mi is the multiplicity of ri.

With (16), we can fully analyze the asymptotic behavior of {yn}n∈N. Indeed:

� if π(x) has a zero rj outside the unit disc, than yn grows as |rj|n,

� if an rj is on the unit circle and has multiplicity mj > 1, then yn ∼ nmj−1,
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� otherwise, yn → 0 geometrically as n→∞.

This computation shows that the polynomial π plays a crucial role in this stability

analysis. Therefore, similarly to one-step methods, we introduce the following definitions.

Definition 23. The stability polynomial of a linear k-step method is

π(x) = π(x; z) :=
k∑

j=0

(αj − zβj)xj = ρ(x)− zσ(x) . (19)

Definition 24. The stability domain of a linear multistep method is

S := {z ∈ C : if π(x; z) = 0, then |x| ≤ 1; multiple zeros satisfy |x| < 1} . (20)

Note that 0 ∈ S if the method is zero-stable (as π(x; 0) = ρ(x)).

Dahlquist’s second barrier theorem places sharp limits on the stability domains of linear

multi-step methods.

Theorem 25 (Dahlquist’s second barrier). An A-stable linear multi-step method must

be implicit and of order p ≤ 2. The trapezium rule is the second-order A-stable linear multi-

step method with the smallest error constant.

It is possible to break the Dahlquist barrier by hybridising between multi-stage and multi-

step methods. Such methods are called general linear methods1.

Example 26. We conclude with an example illustrating some of the results. Consider

the scalar IVP y′ = sin(x2)y, y(0) = 1. We use explicit Euler, implicit Euler, implicit

midpoint, explicit 4-stage Runge-Kutta, and 4th order Adam-Bashforth method to solve it.

Here are the solutions.

0 1 2 3 4 5 6 7 8

x

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

y

Explicit Euler

Implicit Euler

Midpoint

Exact

We now look at the error y(xn) − yn, shown in Figure 1. There we also examine the

multistep method

yn+2 = −4yn+1 + 5yn + h(4f(xn+1,yn+1)− 2f(xn,yn)) (21)
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Figure 1: Errors with stable methods (left) and an unstable method (21)

which has consistency order 3, but is not zero-stable; we thus expect it to not converge. In

fact the solution blows up and the error diverges to ∞—it hardly gets any worse than that!

Finally, we can vary the step size h and examine the convergence as h → 0. Higher-

order methods should have better accuracy especially for small h. We confirm this in the

figure (note the loglog scale).
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(MATLAB code is lec16 demo.m)

This concludes this course—for further courses related to numerical analysis, check out

e.g.

� Numerical Solution of Differential Equations (Part B)

� Approximation of Functions (Part C)

� Numerical Linear Algebra (Part C)

� Finite Element Method for PDEs (Part C)

� Continuous Optimisation (Part C)

1See General linear methods, J. C. Butcher, Acta Numerica (2006).
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