
Numerical Analysis Hilary Term 2021

Lecture 1: Lagrange Interpolation

Numerical analysis is the study of computational algorithms for solving problems in sci-

entific computing. It combines mathematical beauty, rigor and numerous applications; we

hope you’ll enjoy it! In this course we will cover the basics of three key fields in the subject:

� Approximation Theory (lectures 1, 9–11); recommended reading: L. N. Trefethen,

Approximation Theory and Approximation Practice, and E. Süli and D. F. Mayers,

An Introduction to Numerical Analysis.

� Numerical Linear Algebra (lectures 2–8); recommended reading: L. N. Trefethen and

D. Bau, Numerical Linear Algebra.

� Numerical Solution of Differential Equations (lectures 12–16); recommended reading:

E. Süli and D. F. Mayers, An Introduction to Numerical Analysis.

This first lecture comes from Chapter 6 of Süli and Mayers.

Notation: Πn = {real polynomials of degree ≤ n}
Setup: Given data fi at distinct xi, i = 0, 1, . . . , n, with x0 < x1 < · · · < xn, can we

find a polynomial pn such that pn(xi) = fi? Such a polynomial is said to interpolate the

data, and (as we shall see) can approximate f at other values of x if f is smooth enough.

This is the most basic question in approximation theory.

E.g.:

constant n = 0 linear n = 1 quadratic n = 2

Theorem. ∃pn ∈ Πn such that pn(xi) = fi for i = 0, 1, . . . , n.

Proof. Consider, for k = 0, 1, . . . , n, the “cardinal polynomial”

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
∈ Πn. (1)

Then Ln,k(xi) = δik, that is,

Ln,k(xi) = 0 for i = 0, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1.

So now define

pn(x) =
n∑

k=0

fkLn,k(x) ∈ Πn (2)

Lecture 1 pg 1 of 4

=⇒
pn(xi) =

n∑
k=0

fkLn,k(xi) = fi for i = 0, 1, . . . , n. 2

The polynomial (2) is the Lagrange interpolating polynomial.

Theorem. The interpolating polynomial of degree ≤ n is unique.

Proof. Consider two interpolating polynomials pn, qn ∈ Πn. Their difference dn = pn−qn ∈
Πn satisfies dn(xk) = 0 for k = 0, 1, . . . , n. i.e., dn is a polynomial of degree at most n but

has at least n+ 1 distinct roots. Algebra =⇒ dn ≡ 0 =⇒ pn = qn. 2

Matlab:

>> help lagrange

LAGRANGE Plots the Lagrange polynomial interpolant for the

given DATA at the given KNOTS

>> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]);

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

0

0.5

1

1.5

2

2.5

3

3.5

4

>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]);

Lecture 1 pg 2 of 4

0 1 2 3 4 5 6
−40

−30

−20

−10

0

10

20

30

40

50

60

Data from an underlying smooth function: Suppose that f(x) has at least n + 1

smooth derivatives in the interval (x0, xn). Let fk = f(xk) for k = 0, 1, . . . , n, and let pn
be the Lagrange interpolating polynomial for the data (xk, fk), k = 0, 1, . . . , n.

Error: How large can the error f(x)− pn(x) be on the interval [x0, xn]?

Theorem. For every x ∈ [x0, xn] there exists ξ = ξ(x) ∈ (x0, xn) such that

e(x)
def
= f(x)− pn(x) = (x− x0)(x− x1) · · · (x− xn)

f (n+1)(ξ)

(n+ 1)!
, (3)

where f (n+1) is the (n+ 1)-st derivative of f .

Proof. Trivial for x = xk, k = 0, 1, . . . , n as e(x) = 0 by construction. So suppose x 6= xk.

Let

φ(t)
def
= e(t)− e(x)

π(x)
π(t),

where
π(t)

def
= (t− x0)(t− x1) · · · (t− xn)

= tn+1 −
(

n∑
i=0

xi

)
tn + · · · (−1)n+1x0x1 · · · xn

∈ Πn+1.

Now note that φ vanishes at n + 2 points x and xk, k = 0, 1, . . . , n. =⇒ φ′ vanishes at

n + 1 points ξ0, . . . , ξn between these points =⇒ φ′′ vanishes at n points between these

new points, and so on until φ(n+1) vanishes at an (unknown) point ξ in (x0, xn). But

φ(n+1)(t) = e(n+1)(t)− e(x)

π(x)
π(n+1)(t) = f (n+1)(t)− e(x)

π(x)
(n+ 1)!

since p(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n+1. The result then

follows immediately from this identity since φ(n+1)(ξ) = 0.

2

Example: f(x) = log(1 +x) on [0, 1]. Here, |f (n+1)(ξ)| = n!/(1 + ξ)n+1 < n! on (0, 1). So

|e(x)| < |π(x)|n!/(n+ 1)! ≤ 1/(n+ 1) since |x− xk| ≤ 1 for each x, xk, k = 0, 1, . . . , n, in

Lecture 1 pg 3 of 4

[0, 1] =⇒ |π(x)| ≤ 1. This is probably pessimistic for many x, e.g. for x = 1
2
, π(1

2
) ≤ 2−(n+1)

as | 1
2
− xk| ≤ 1

2
.

This shows the important fact that the error can be large at the end points when

samples {xk} are equispaced points, an effect known as the “Runge phenomena” (Carl

Runge, 1901), which we return to in lecture 4.

Generalisation: Given data fi and gi at distinct xi, i = 0, 1, . . . , n, with x0 < x1 <

· · · < xn, can we find a polynomial p such that p(xi) = fi and p′(xi) = gi? (i.e., interpolate

derivatives in addition to values)

Theorem. There is a unique polynomial p2n+1 ∈ Π2n+1 such that p2n+1(xi) = fi and

p′2n+1(xi) = gi for i = 0, 1, . . . , n.

Construction: Given Ln,k(x) in (1), let

Hn,k(x) = [Ln,k(x)]2(1− 2(x− xk)L′n,k(xk))

and Kn,k(x) = [Ln,k(x)]2(x− xk).

Then

p2n+1(x) =
n∑

k=0

[fkHn,k(x) + gkKn,k(x)] (4)

interpolates the data as required. The polynomial (4) is called the Hermite interpolating

polynomial. Note that Hn,k(xi) = δik and H ′n,k(xi) = 0, and Kn,k(xi) = 0, K ′n,k(xi) = δik.

Theorem. Let p2n+1 be the Hermite interpolating polynomial in the case where fi = f(xi)

and gi = f ′(xi) and f has at least 2n+2 smooth derivatives. Then, for every x ∈ [x0, xn],

f(x)− p2n+1(x) = [(x− x0)(x− x1) · · · (x− xn)]2
f (2n+2)(ξ)

(2n+ 2)!
,

where ξ ∈ (x0, xn) and f (2n+2) is the (2n+ 2)nd derivative of f .

Proof (non-examinable): see Süli and Mayers, Theorem 6.4. 2

We note that as xk → 0 in (3), we essentialy recover Taylor’s theorem with pn(x)

equal to the first n + 1 terms in Taylor’s expansion. Taylor’s theorem can be regarded as

a special case of Lagrange interpolation where we interpolate high-order derivatives at a

single point.

Lecture 1 pg 4 of 4

Numerical Analysis Hilary Term 2021

Lecture 2: Gaussian Elimination and LU factorisation

In lecture 1 we treated Lagrange interpolation. A traditional, more straightforward

approach (worse for computation!) would be to express the interpolating polynomial as

pn(x) =
∑n

i=0 cix
i and find the coefficients ci by a linear system of equations:

1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
.

...

1 xn x2n · · · xnn

c0
c1
...

cn

 =

f0
f1
...

fn

 .

This is a linear algebra problem, which is the subject we will discuss in the next lectures.

We start with solving linear systems.

Setup: Given a square n by n matrix A and vector with n components b, find x such

that

Ax = b.

Equivalently find x = (x1, x2, . . . , xn)T for which

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn.

(1)

Lower-triangular matrices: the matrix A is lower triangular if aij = 0 for all

1 ≤ i < j ≤ n. The system (1) is easy to solve if A is lower triangular.

a11x1 = b1 =⇒ x1 =
b1
a11

⇓

a21x1 + a22x2 = b2 =⇒ x2 =
b2 − a21x1

a22
⇓

... ⇓

ai1x1 + ai2x2 + · · ·+ aiixi = bi =⇒ xi =

bi −
i−1∑
j=1

aijxj

aii
⇓

... ⇓

This works if, and only if, aii 6= 0 for each i. The procedure is known as forward

substitution.

Computational work estimate: one floating-point operation (flop) is one scalar mul-

tiply/division/addition/subtraction as in y = a ∗ x where a, x and y are computer repre-

sentations of real scalars.1

1This is an abstraction: e.g., some hardware can do y = a ∗ x+ b in one FMA flop (“Fused Multiply and Add”)

but then needs several FMA flops for a single division. For a trip down this sort of rabbit hole, look up the “Fast

inverse square root” as used in the source code of the video game “Quake III Arena”.

Lecture 2 pg 1 of 7

Hence the work in forward substitution is 1 flop to compute x1 plus 3 flops to compute

x2 plus . . . plus 2i − 1 flops to compute xi plus . . . plus 2n − 1 flops to compute xn, or in

total

n∑
i=1

(2i− 1) = 2

(
n∑

i=1

i

)
− n = 2 (1

2
n(n+ 1))− n = n2 + lower order terms

flops. We sometimes write this as n2 +O(n) flops or more crudely O(n2) flops.

Upper-triangular matrices: the matrix A is upper triangular if aij = 0 for all

1 ≤ j < i ≤ n. Once again, the system (1) is easy to solve if A is upper triangular.

... ⇑

aiixi + · · ·+ ain−1xn−1 + a1nxn = bi =⇒ xi =

bi −
n∑

j=i+1

aijxj

aii
⇑

... ⇑

an−1n−1xn−1 + an−1nxn = bn−1 =⇒ xn−1 =
bn−1 − an−1nxn

an−1n−1

⇑

annxn = bn =⇒ xn =
bn
ann

. ⇑

Again, this works if, and only if, aii 6= 0 for each i. The procedure is known as backward

or back substitution. This also takes approximately n2 flops.

For computation, we need a reliable, systematic technique for reducing Ax = b to Ux = c

with the same solution x but with U (upper) triangular =⇒ Gauss elimination.

Example [
3 −1

1 2

] [
x1
x2

]
=

[
12

11

]
.

Multiply first equation by 1/3 and subtract from the second =⇒[
3 −1

0 7
3

] [
x1
x2

]
=

[
12

7

]
.

Gauss(ian) Elimination (GE): this is most easily described in terms of overwriting

the matrix A = {aij} and vector b. At each stage, it is a systematic way of introducing

zeros into the lower triangular part of A by subtracting multiples of previous equations

(i.e., rows); such (elementary row) operations do not change the solution.

Lecture 2 pg 2 of 7

for columns j = 1, 2, . . . , n− 1

for rows i = j + 1, j + 2, . . . , n

row i ← row i− aij
ajj
∗ row j

bi ← bi −
aij
ajj
∗ bj

end

end

Example. 3 −1 2

1 2 3

2 −2 −1

 x1
x2
x3

 =

 12

11

2

 : represent as

 3 −1 2 | 12

1 2 3 | 11

2 −2 −1 | 2

=⇒ row 2← row 2− 1
3
row 1

row 3← row 3− 2
3
row 1

 3 −1 2 | 12

0 7
3

7
3
| 7

0 −4
3
−7

3
| −6

=⇒
row 3← row 3 + 4

7
row 2

 3 −1 2 | 12

0 7
3

7
3
| 7

0 0 −1 | −2

Back substitution:

x3 = 2

x2 =
7− 7

3
(2)

7
3

= 1

x1 =
12− (−1)(1)− 2(2)

3
= 3.

Cost of Gaussian Elimination: note, row i← row i− aij
ajj
∗ row j is

for columns k = j + 1, j + 2, . . . , n

aik ← aik −
aij
ajj

ajk

end

This is approximately 2(n− j) flops as the multiplier aij/ajj is calculated with just one

flop; ajj is called the pivot. Overall therefore, the cost of GE is approximately

n−1∑
j=1

2(n− j)2 = 2
n−1∑
l=1

l2 = 2
n(n− 1)(2n− 1)

6
=

2

3
n3 +O(n2)

flops. The calculations involving b are

n−1∑
j=1

2(n− j) = 2
n−1∑
l=1

l = 2
n(n− 1)

2
= n2 +O(n)

Lecture 2 pg 3 of 7

flops, just as for the triangular substitution.

LU factorization:

The basic operation of Gaussian Elimination, row i← row i+λ∗row j, can be achieved

by pre-multiplication by a special lower-triangular matrix

M(i, j, λ) = I +

 0 0 0

0 λ 0

0 0 0

← i

↑
j

where I is the identity matrix.

Example: n = 4,

M(3, 2, λ) =

1 0 0 0

0 1 0 0

0 λ 1 0

0 0 0 1

 and M(3, 2, λ)

a

b

c

d

 =

a

b

λb+ c

d

 ,

i.e., M(3, 2, λ)A performs: row 3 of A ← row 3 of A + λ∗ row 2 of A and similarly

M(i, j, λ)A performs: row i of A← row i of A+ λ∗ row j of A.

So GE for e.g., n = 3 is

M(3, 2,−l32) · M(3, 1,−l31) · M(2, 1,−l21) · A = U = () .

l32 =
a32
a22

l31 =
a31
a11

l21 =
a21
a11

(upper triangular)

The lij are called the multipliers.

Be careful: each multiplier lij uses the data aij and aii that results from the transforma-

tions already applied, not data from the original matrix. So l32 uses a32 and a22 that result

from the previous transformations M(2, 1,−l21) and M(3, 1,−l31).
Lemma. If i 6= j, (M(i, j, λ))−1 = M(i, j,−λ).

Proof. Exercise.

Outcome: for n = 3, A = M(2, 1, l21) ·M(3, 1, l31) ·M(3, 2, l32) · U , where

M(2, 1, l21) ·M(3, 1, l31) ·M(3, 2, l32) =

 1 0 0

l21 1 0

l31 l32 1

 = L = () .

(lower triangular)

This is true for general n:

Theorem. For any dimension n, GE can be expressed as A = LU , where U = ()

is upper triangular resulting from GE, and L = () is unit lower triangular (lower

Lecture 2 pg 4 of 7

triangular with ones on the diagonal) with lij = multiplier used to create the zero in the

(i, j)th position.

Most implementations of GE therefore, rather than doing GE as above,

factorize A = LU (≈ 1
3
n3 adds + ≈ 1

3
n3 mults)

and then solve Ax = b

by solving Ly = b (forward substitution)

and then Ux = y (back substitution)

Note: this is much more efficient if we have many different right-hand sides b but the same

A.

Pivoting: GE or LU can fail if the pivot aii = 0. For example, if

A =

[
0 1

1 0

]
,

GE fails at the first step. However, we are free to reorder the equations (i.e., the rows)

into any order we like. For example, the equations

0 · x1 + 1 · x2 = 1

1 · x1 + 0 · x2 = 2
and

1 · x1 + 0 · x2 = 2

0 · x1 + 1 · x2 = 1

are the same, but their matrices [
0 1

1 0

]
and

[
1 0

0 1

]

have had their rows reordered: GE fails for the first but succeeds for the second =⇒ better

to interchange the rows and then apply GE.

Partial pivoting: when creating the zeros in the jth column, find

|akj| = max(|ajj|, |aj+1j|, . . . , |anj|),

then swap (interchange) rows j and k.

For example,

a11 · a1j−1 a1j · · · a1n
0 · · · · · · ·
0 · aj−1j−1 aj−1j · · · aj−1n

0 · 0 ajj · · · ajn
0 · 0 · · · · ·
0 · 0 akj · · · akn
0 · 0 · · · · ·
0 · 0 anj · · · ann

→

a11 · a1j−1 a1j · · · a1n
0 · · · · · · ·
0 · aj−1j−1 aj−1j · · · aj−1n

0 · 0 akj · · · akn
0 · 0 · · · · ·
0 · 0 ajj · · · ajn
0 · 0 · · · · ·
0 · 0 anj · · · ann

Lecture 2 pg 5 of 7

Property: GE with partial pivoting cannot fail if A is nonsingular.

Proof. If A is the first matrix above at the jth stage,

det[A] = a11 · · · aj−1j−1 · det

ajj · · · ajn
· · · · ·
akj · · · akn
· · · · ·
anj · · · ann

 .

Hence det[A] = 0 if ajj = · · · = akj = · · · = anj = 0. Thus if the pivot ak,j is zero, A is

singular. So if A is nonsingular, all of the pivots are nonzero. (Note: actually ann can be

zero and an LU factorization still exist.)

The effect of pivoting is just a permutation (reordering) of the rows, and hence can be

represented by a permutation matrix P .

Permutation matrix: P has the same rows as the identity matrix, but in the pivoted

order. So

PA = LU

represents the factorization—equivalent to GE with partial pivoting. E.g., 0 1 0

0 0 1

1 0 0

A
has the 2nd row of A first, the 3rd row of A second and the 1st row of A last.

Matlab example:
1 >> A = rand (5,5)

2 A =

3 0.69483 0.38156 0.44559 0.6797 0.95974

4 0.3171 0.76552 0.64631 0.6551 0.34039

5 0.95022 0.7952 0.70936 0.16261 0.58527

6 0.034446 0.18687 0.75469 0.119 0.22381

7 0.43874 0.48976 0.27603 0.49836 0.75127

8 >> exactx = ones (5,1); b = A*exactx;

9 >> [LL , UU] = lu(A) % note "psychologically lower triangular" LL

10 LL =

11 0.73123 -0.39971 0.15111 1 0

12 0.33371 1 0 0 0

13 1 0 0 0 0

14 0.036251 0.316 1 0 0

15 0.46173 0.24512 -0.25337 0.31574 1

16 UU =

17 0.95022 0.7952 0.70936 0.16261 0.58527

18 0 0.50015 0.40959 0.60083 0.14508

19 0 0 0.59954 -0.076759 0.15675

20 0 0 0 0.81255 0.56608

21 0 0 0 0 0.30645

Lecture 2 pg 6 of 7

22

23 >> [L, U, P] = lu(A)

24 L =

25 1 0 0 0 0

26 0.33371 1 0 0 0

27 0.036251 0.316 1 0 0

28 0.73123 -0.39971 0.15111 1 0

29 0.46173 0.24512 -0.25337 0.31574 1

30 U =

31 0.95022 0.7952 0.70936 0.16261 0.58527

32 0 0.50015 0.40959 0.60083 0.14508

33 0 0 0.59954 -0.076759 0.15675

34 0 0 0 0.81255 0.56608

35 0 0 0 0 0.30645

36 P =

37 0 0 1 0 0

38 0 1 0 0 0

39 0 0 0 1 0

40 1 0 0 0 0

41 0 0 0 0 1

42

43 >> max(max(P’*L - LL))) % we see LL is P’*L

44 ans =

45 0

46

47 >> y = L \ (P*b); % now to solve Ax = b...

48 >> x = U \ y

49 x =

50 1

51 1

52 1

53 1

54 1

55

56 >> norm(x - exactx , 2) % within roundoff error of exact soln

57 ans =

58 3.5786e-15

Lecture 2 pg 7 of 7

Numerical Analysis Hilary Term 2021

Lecture 3: QR Factorization

Definition: a square real matrix Q is orthogonal if QT = Q−1. This is true if, and only

if, QTQ = I = QQT.

Example: the permutation matrices P in LU factorization with partial pivoting are

orthogonal.

Proposition. The product of orthogonal matrices is an orthogonal matrix.

Proof. If S and T are orthogonal, (ST)T = TTST so

(ST)T(ST) = TTSTST = TT(STS)T = TTT = I.

Definition: The scalar (dot)(inner) product of two vectors

x =

x1
x2
...

xn

 and y =

y1
y2
...

yn

in Rn is

xTy = yTx =
n∑

i=1

xiyi ∈ R

Definition: Two vectors x, y ∈ Rn are orthogonal if xTy = 0. A set of vectors

{u1, u2, . . . , ur} is an orthogonal set if uTi uj = 0 for all i, j ∈ {1, 2, . . . , r} such that

i 6= j.

Lemma. The columns of an orthogonal matrixQ form an orthogonal set, which is moreover

an orthonormal basis for Rn.

Proof. Suppose that Q = [q1 q2 · · · qn], i.e., qj is the jth column of Q. Then

QTQ = I =

qT1
qT2
...

qTn

 [q1 q2 · · · qn] =

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .
Comparing the (i, j)th entries yields

qTi qj =

{
0 i 6= j

1 i = j.

Note that the columns of an orthogonal matrix are of length 1 as qTi qi = 1, so they form

an orthonormal.

Lecture 3 pg 1 of 4

To see that it forms a basis, let x ∈ Rn be any vector. One has x = QQTx = Qc where

c = QTx, so x =
∑n

i=1 ciqi.

Lemma. If u ∈ Rn, P is n-by-n orthogonal and v = Pu, then uTu = vTv.

Proof. vTv = (Pu)T(Pu) = (uTPT)(Pu) = uT(PTP)u = uTu.

Definition: The outer product of two vectors x and y ∈ Rn is

xyT =

x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn

...
...

. . .
...

xny1 xny2 · · · xnyn

 ,
an n-by-n matrix (notation: xyT ∈ Rn×n). More usefully, if z ∈ Rn, then

(xyT)z = xyTz = x(yTz) =

(
n∑

i=1

yizi

)
x.

Definition: For w ∈ Rn, w 6= 0, the Householder reflector H(w) ∈ Rn×n is the matrix

H(w) = I − 2

wTw
wwT.

Proposition. H(w) is a symmetric orthogonal matrix.

Proof.

Symmetry is straightforward to verify. For orthogonality,

H(w)H(w)T =

(
I − 2

wTw
wwT

)(
I − 2

wTw
wwT

)
= I − 4

wTw
wwT +

4

(wTw)2
w(wTw)wT

= I. 2

Lemma. Given u ∈ Rn, there exists a w ∈ Rn such that

H(w)u =

α

0
...

0

 ≡ v,

say, where α = ±
√
uTu.

Remark: Since H(w) is an orthogonal matrix for any w ∈ R, w 6= 0, it is necessary for

the validity of the equality H(w)u = v that vTv = uTu, i.e., α2 = uTu; hence our choice

of α = ±
√
uTu.

Proof. Take w = γ(u− v), where γ 6= 0. Recall that uTu = vTv. Thus,

wTw = γ2(u− v)T(u− v) = γ2(uTu− 2uTv + vTv)

= γ2(uTu− 2uTv + uTu) = 2γuT(γ(u− v))

= 2γwTu.

Lecture 3 pg 2 of 4

So

H(w)u =

(
I − 2

wTw
wwT

)
u = u− 2wTu

wTw
w = u− 1

γ
w = u− (u− v) = v.

2

Now if u is the first column of the n-by-n matrix A,

H(w)A =

α × · · · ×
0
...

0

B

 , where × = general entry.

Similarly for B, we can find ŵ ∈ Rn−1 such that

H(ŵ)B =

β × · · · ×
0
...

0

C

and then

1 0 · · · 0

0
...

0

H(ŵ)

H(w)A =

α × × · · · ×
0 β × · · · ×
0

0
...

0

0

0
...

0

C

.

Note [
1 0

0 H(ŵ)

]
= H(w2), where w2 =

[
0

ŵ

]
.

Thus if we continue in this manner for the n− 1 steps, we obtain

H(wn−1) · · ·H(w3)H(w2)H(w)︸ ︷︷ ︸
QT

A =

α × · · · ×
0 β · · · ×
...

...
. . .

...

0 0 · · · γ

 = () .

The matrix QT is orthogonal as it is the product of orthogonal (Householder) matrices, so

we have constructively proved that

Theorem. Given any square matrix A, there exists an orthogonal matrix Q and an upper

triangular matrix R such that

A = QR

Notes: 1. This could also be established using the Gram–Schmidt Process.

2. If u is already of the form (α, 0, · · · , 0)T, we just take H = I.

Lecture 3 pg 3 of 4

3. It is not necessary that A is square: if A ∈ Rm×n, then we need the product of (a) m−1

Householder matrices if m ≤ n =⇒

() = A = QR = ()()

or (b) n Householder matrices if m > n =⇒()
= A = QR =

()()
. (1)

This m > n case is particular important, and we note that one can also write()
= A = QR =

()
() .

This is called the thin QR factorization, wherein Q ∈ Rm×n has orthonormal columns and

has the same size as A; by contrast, in (1) Q is square orthogonal, and (1) is called the

full QR.

Lecture 3 pg 4 of 4

Numerical Analysis Hilary Term 2021

Lecture 4: Least-squares problem

So far the linear systems we treated had the same number of equations as unknowns

(variables), so the problem was Ax = b for a square matrix A. Very often in practice, we

have more equations that we would like to satisfy than variables to fit them. It is then

usually impossible to obtain Ax = b; a common approach is then to try minimise the

difference between Ax and b. If we choose to minimise the Euclidean length of the vector,

this leads to a least-squares problem:

min
x
‖Ax− b‖, A ∈ Rm×n, b ∈ Rm,m ≥ n. (1)

Here ‖y‖ :=
√
y21 + y22 + · · ·+ y2m =

√
yTy.

Least-squares problems (also known as overdetermined systems) are ubiquitous in ap-

plied mathematics and data science; linear regression is a basic example.

Solution of least-squares by the QR factorisation:

Let A = [Q Q⊥]
[
R
0

]
= QF

[
R
0

]
be a ’full’ QR factorization, computed e.g. via the

Householder QR factorization. We assume R is nonsingular (i.e., A has full column rank);

this is a generic condition. Noting that ‖QT
Fy‖ =

√
yTQFQT

Fy =
√
yTy = ‖y‖ for any

vector y, we have

‖Ax− b‖ = ‖QT
F (Ax− b)‖ =

∥∥∥∥[R0
]
x−

[
QT b

QT
⊥b

]∥∥∥∥ .
The bottom part is −QT

⊥b, no matter what x is. The top part can be made 0 by taking

x = R−1QT b—this is therefore the solution.

The argument also suggests an algorithm: compute the “thin” QR factorization A =

QR, then solve Rx = QT b for x, which is obtained by backward substitution as R is

triangular. Note that while we used the full QR for the derivation, we only need the thin

QR for the solution of (1).

Later we will see that a general linear least-squares problem has solution characterised

by the orthogonality condition, which in our context reduces to AT (Ax − b) = 0, so

x = (ATA)−1AT b; one can verify this is the same as R−1QT b obtained above.

Illustration of least-squares for polynomial approximation: We treated Lagrange

interpolation in Lecture 1. While Lagrange polynomials give a clean expression for the

interpolating polynomial, the interpolating polynomial is not always a good approximation

to the original underlying function f . For example, suppose f(x) = 1/(25x2 + 1) (this is

a famous function called the Runge function), and take a degree-n polynomial interpolant

pn at n + 1 equispaced points in [−1, 1]. The interpolating polynomials for varying n are

shown in Figure 1.

As we increase n, we hope that pn → f—but this is far from the truth! pn is diverging

as n grows near the endpoints ±1, and the divergence is actually exponential (very bad);

note the vertical scales of the final plots! This is called Runge’s phenomenon.

How can we avoid the divergence, and get pn → f as we hope? One approach is

to oversample: take (many) more points than the degree n. With m(> n + 1) data

Lecture 4 pg 1 of 3

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

degree 2

-1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

degree 4

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

2

degree 10

-1 -0.5 0 0.5 1
-60

-50

-40

-30

-20

-10

0

10

degree 20

-1 -0.5 0 0.5 1
-500

0

500

1000

1500

2000

2500

degree 30

-1 -0.5 0 0.5 1
-1

0

1

2

3

4

5
10

6

degree 50

Figure 1: Polynomial interpolants (dashed black curves) of f(x) = 1/(25x2 + 1) (blue). The red

dots are the interpolation points.

points x1, . . . , xm, this will lead to the least-squares problem minc ‖Ac − b‖, wherein

c = [c0, c1, . . . , cn]T represents the coefficients of the polynomial pn(x) =
∑n

j=0 cjx
j,

A ∈ Rm×(n+1) with Aij = (xi)
j−1 and b = [f(x1), . . . , f(xm)]T .

We illustrate this in Figure 2 with the example above, but now fixing n = 20 and

varying the number of data points m. This time, for large enough m the polynomial pn is

close to f across the whole interval [−1, 1].

-1 -0.5 0 0.5 1

-60

-50

-40

-30

-20

-10

0

10

m=21

-1 -0.5 0 0.5 1

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

m=25

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m=30

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m=50

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m=100

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m=200

Figure 2: Least-squares polynomial fits of degree 20 (black dashed curves) of f(x) = 1/(25x2 +1)

(blue).

Lecture 4 pg 2 of 3

Extensions and related facts (Non-examinable):

� Instead of pn(x) =
∑n

j=0 cjx
j, it is actually much better to use a different polynomial

basis involving orthogonal polynomials {φi}ni=0 such as the Chebyshev polynomials,

a topic discussed later. Then we would express pn(x) =
∑n

j=0 cjφj(x) and Aij =

(φj−1(xi)), and the least-squares problem will be beter-conditioned (easier to solve

accurately). However, Runge’s phenomenon still persists unless m� n.

� Note that we do not have pn → f in Figure 2 as m → ∞ because the polynomial

degree n = 20 is fixed; to get pn → f one needs to increase n together with m. It

can be shown that if one takes m = n2, we do have pn → f for any analytic function

f (the convergence is exponential in n).

� Another—more elegant—solution to overcome the instability in Figure 1 is to change

the interpolation points. If one chooses them to be the so-called Chebyshev points

xj = cos(jπ/n) for j = 0, 1, . . . , n, the interpolating polynomial can be shown to be an

excellent approximation to f , in fact nearly the best-possible polynomial approxima-

tion for any continuous f . This is a fundamental fact in approximation theory; for a

rigorous and extended discussion (including an explanation of Runge’s phenomenon),

check out the Part C course Approximation of Functions.

Underdetermined case (Non-examinable): One might wonder, what if we have

fewer equations than variables? That is, if we have Ax = b with A ∈ Rm×n, m < n. This

underdetermined system of equations has infinitely many solutions (if there is one). The

natural question becomes, which one should we look for? One possibility is to find the

minimum-norm solution minimize ‖x‖ subject to Ax = b; the solution can be computed

again via the QR factorization (of AT). This problem has connections to the hot topic of

deep learning. Another fascinating approach that has had enormous impact is to minimise

the 1-norm ‖x‖1 subject to Ax = b, where ‖x‖1 =
∑n

i=1 |xi|. This is the basis of the

exciting field of compressed sensing.

Lecture 4 pg 3 of 3

Numerical Analysis Hilary Term 2021

Lecture 5: Singular Value Decomposition

We now introduce the Singular Value Decomposition (SVD), an extremely important

matrix decomposition applicable to any matrix, including nonsymmetric and rectangular

ones.

Theorem. (SVD) Every matrix A ∈ Rm×n with m ≥ n can be written as

A = UΣV T , (1)

where U ∈ Rm×n and V ∈ Rn×n are matrices with orthonormal columns, i.e., UTU = In
and V TV = In = V V T (V is square orthogonal; note that UUT 6= Im), and

Σ =

σ1

. . .

σn

 (= diag(σ1, . . . , σn))

is a diagonal matrix with nonnegative diagonal entries. In short, the SVD is a decomposi-

tion of A into a product of ’orthonormal-diagonal-orthogonal’ matrices; when A is square

m = n, ’orthogonal-diagonal-orthogonal’.

One can think of orthogonal matrices as a length-preserving rotation, so the SVD

indicates that applying a matrix performs a rotation, followed by shrinkage or amplification

of the elements, followed by another (different) rotation.

σi are called the singular values and usually arranged in decreasing order σ1 ≥ σ2 ≥
· · · ≥ σn ≥ 0. The columns of U, V are called the (left and right) singular vectors of A.

The rank of a matrix A is the number of its positive singular values (this is equivalent e.g.

to the number of linearly independent columns or rows).

Proof. Let’s prove the existence of the SVD (1) by the following steps.

1. The matrix ATA ∈ Rn×n is symmetric. This is straightforward to verify, either by

direct calculations or from the general identity (XY)T = Y TXT .

2. The eigenvalues of ATA are all real and nonnegative (such matrices are called symmet-

ric positive definite). To see this, suppose ATAx = λx, x 6= 0. Then xTATAx = λxTx,

so λ = xTATAx
xT x

= yT y
xT x
≥ 0, where y = Ax.

3. Let ATA = V D2V T be the symmetric eigenvalue decomposition, with V ∈ Rn×n

orthogonal and D diagonal. Then let B = AV . Now BTB = D2 is a diagonal

matrix, implying that the columns of B are pairwise orthogonal.

4. Let’s write BTB = D2 = diag(λ1, . . . , λr, 0, . . . , 0), where λr > 0.

(a) It is possible that r = n, and this is an important case (happens iff rank(A) = n)

where there is no 0 diagonal entry inD2. We then haveD−1 = diag(1/
√
λ1, . . . , 1/

√
λr).

Take U := BD−1 = AVD−1, which has orthonormal columns UTU = In. We

are then done, as taking Σ = D, A = UΣV T .

Lecture 5 pg 1 of 4

(b) When r < n (the rank-deficient case), B has columns that are 0. Let Dr =

diag(λ1, . . . , λr). We still have B

[
D−1r

In−r

]
= [U1, 0], and so

A = [U1, 0]

[
Dr

In−r

]
V T = [U1U2]

[
Dr

0

]
V T

for any U2; we take it to be orthonormal UT
2 U2 = In−r and UT

2 U1 = 0 (U2 is any

orthonormal matrix in the orthogonal complement of U1; its existence can be

verified e.g. using Householder reflectors). Taking U = [U1, U2] completes the

proof, again with Σ = D.

�

Some comments:

� Analogous to the full QR factorisation, there is a ’full SVD’ A = ŨΣ̃Ṽ T , where

Ũ = [U U⊥] ∈ Rm×m is orthogonal and Σ̃ ∈ Rm×n =

[
Σ

0(m−n)×n

]
and Ṽ = V . This

can be obtained by starting from (1) and finding an orthogonal complement U⊥ of U .

� Fat matrices: the assumption m ≥ n is just for convenience; if m < n, one still has

A = UΣV T where Σ ∈ Rm×m is diagonal, U ∈ Rm×m is orthogonal, and V ∈ Rn×m

has orthonormal columns. Below we continue with the assumption m ≥ n.

� The SVD extends directly to matrices with nonreal entries: A = UΣV ∗, where U, V

are unitary matrices and ∗ denotes the conjugate transpose.

Matrix spectral norm Let us briefly introduce the spectral norm1 for matrices A ∈
Rm×n: ‖A‖2 = σ1(A), i.e., the largest singular value. It is a nonnegative scalar that mea-

sures ’how large’ the matrix is. It has the equivalent characterisation ‖A‖2 = maxx 6=0
‖Ax‖2
‖x‖2 ,

where the norms in the right-hand side are the standard Euclidean norm (length) for vec-

tors ‖x‖2 =
√
x21 + x22 + · · ·+ x2n.

Low-rank approximation The SVD is useful for theoretical purposes, as it identifies

e.g. the range (column space), null space, rank, and many more. In applications, the

primary reason SVD is so important is that it gives the optimal low-rank approximation.

Let A = UΣV T be the SVD and write U = [u1, . . . , un], V = [v1, . . . , vn], and define the

“tall-skinny matrices” Uk = [u1, . . . , uk], Vk = [v1, . . . , vk], and Σk = diag(σ1, . . . , σk). Let

k be any integer k ≤ n. Then set

Ak = UkΣkV
T
k =

k∑
i=1

σiuiv
T
i .

Note that rank(Ar) = r. Also note that A =
∑n

i=1 σiuiv
T
i , which is another way of

expressing the SVD. Ar is called the truncated SVD of A, as Ar is obtained by truncating

the trailing components of the SVD of A.

1Also known as the 2-norm or the operator norm. We return to the topic of norms later in the course.

Lecture 5 pg 2 of 4

We are now ready to state the result.

Theorem. Let r ≤ n be an integer. For any B ∈ Cm×n with rank(B) ≤ r,

‖A− Ar‖2 = σr+1 ≤ ‖A−B‖2. (2)

In other words, Ar is the best rank-r approximant to A in the spectral norm.

Proof. The first equality ‖A − Ar‖2 = σr+1 can be seen by noting that A − Ar =∑n
i=r+1 σiuiv

T
i with singular values σr+1, . . . , σn, along with r 0’s. For the inequality:

1. Since rank(B) ≤ r, we can write B = B1B
T
2 where B1, B2 have r columns. Therefore,

there exists an orthonormal null space W ∈ Cn×(n−r) s.t. BW = 0.

2. Then ‖A − B‖2 ≥ ‖(A − B)W‖2 = ‖AW‖2 = ‖UΣ(V TW)‖2. Now since W is

(n − r)-dimensional, there is an interesection between W and [v1, . . . , vr+1], the

(r + 1)-dimensional subspace spanned by the leading r + 1 left singular vectors

([W, v1, . . . , vr+1][x1, x2]
T = 0 has a solution; then Wx1 is such a vector).

3. Scale x1 to have unit norm, and by orthogonal invariance ‖UΣV TWx1‖2 = ‖ΣV TWx1‖2 =

‖Σr+1y1‖2, where ‖y1‖2 = 1 (b.c. Wx1 lies in span[v1, . . . , vr+1]) and Σr+1 is the lead-

ing r + 1 part of Σ.

4. Then ‖UΣr+1y1‖2 ≥ σr+1 can be verified by direct calculations.

�

In fact, more generally it is known that

‖A− Ar‖ ≤ ‖A−B‖ (3)

for any so-called unitarily invariant norm ‖ · ‖ (non-examinable).

In many applications σr+1 � σ1 for some r � n, in which case A ≈ UrΣrV
T
r . Now,

storing Ur,Σr, Vr requires ≈ (m + n + 1)r memory, as opposed to mn for the full A, so

when r � min(m,n), this can be used for data compression; this fact is used everywhere

e.g. in data science!

Illustration of low-rank approximation: A traditional example to illustrate low-rank

approximation via the truncated SVD is image compression. A grayscale image can be

represented by a matrix A, with each entry representing the intensity of a pixel. One can

then approximate A by a truncated SVD, and use that to get a compressed image that

hopefully looks similar to the original image to human eyes. Images tend to have structure

that lends A to be approximately low-rank.

Below we take an image of the Oxford logo, represent it as a matrix A ∈ R589×589

and compute its SVD (just [U,S,V] = svd(A) in MATLAB). Using the truncated SVD

we then compute a rank-r approximation for different values of r. With a rank-1 matrix

the rows (and columns) are all parallel so the image is uninformative; but as r increases

the image becomes clear, and with rank 50 the image is almost indistinguishable from the

original, while still giving some data compression. For larger images, such savings can be

Lecture 5 pg 3 of 4

Original 589× 589 rank 1 rank 5

rank 10 rank 20 rank 50

Figure 1: The Oxford logo and its low-rank approximations via the truncated SVD.

significant. (This is however not how images are usually compressed in practice; e.g. the

algorithm behind the jpg format is completely different).

The SVD A = UΣV T and symmetric eigenvalue decomposition A = V ΛV T have

many properties and results in common (e.g. Courant-Fisher min-max theorem; nonexam-

inable), stemming from the fact that they are both decompositions of the form “orthogonal-

diagonal-orthogonal”. In fact the SVD proof given above suggests an algorithm for com-

puting the SVD via a symmetric eigenvalue decomposition of ATA (this is not exactly how

the SVD is compute in practice, but this is outside the scope); we now turn to eigenvalue

problems Ax = λx and describe an algorithm for solving them.

Lecture 5 pg 4 of 4

Numerical Analysis Hilary Term 2021

Lecture 6: Matrix Eigenvalues

We now turn to eigenvalue problems Ax = λx, where A ∈ Rn×n or A ∈ Cn×n, λ ∈ C,

and x(6= 0) ∈ Cn. Recall that there are n eigenvalues in C (nonreal λ possible even if A is

real). There are usually, but not always, n linearly independent eigenvectors (e.g. Jordan

block

[
1 1

0 1

]
has only one eigenvector [1, 0]T).

Background: An important result from analysis (not proved or examinable!), which will

be useful.

Theorem. (Ostrowski) The eigenvalues of a matrix are continuously dependent on the

entries. That is, suppose that {λi, i = 1, . . . , n} and {µi, i = 1, . . . , n} are the eigenvalues

of A ∈ Rn×n and A + B ∈ Rn×n respectively. Given any ε > 0, there is a δ > 0 such that

|λi − µi| < ε whenever maxi,j |bij| < δ, where B = {bij}1≤i,j≤n.

Noteworthy properties related to eigenvalues:

� A has n eigenvalues (counting multiplicities), equal to the roots of the characteristic

polynomial pA(λ) = det(λI − A).

� If Axi = λixi for i = 1, . . . , n and xi are linearly independent so that [x1, x2, . . . , xn] =:

X is nonsingular, then A has the eigenvalue decomposition A = XΛX−1. This

usually, but not always, exist. The most general form is the Jordan canonical form

(which we don’t treat much in this course).

� Any square matrix has a Schur decomposition A = QTQ∗ where Q is unitary

QQ∗ = Q∗Q = In, and T triangular. The superscript ∗ denotes the (complex)

conjugate transpose, (Q∗)ij = Qji.

� For a normal matrix s.t. A∗A = AA∗, the Schur decomposition shows T is diagonal

(proof: examine diagonal elements of A∗A and AA∗), i.e., A can be diagonalized by a

unitary similarity transformation: A = QΛQ∗, where Λ = diag(λ1, . . . , λn). Most of

the structured matrices we treat are normal, including symmetric (λ ∈ R), orthogonal

(|λ| = 1), and skew-symmetric (λ ∈ iR).

Aim: estimate the eigenvalues of a matrix.

Theorem. Gerschgorin’s theorem: Suppose that A = {aij}1≤i,j≤n ∈ Rn×n, and λ is an

eigenvalue of A. Then, λ lies in the union of the Gerschgorin discs

Di =

z ∈ C |aii − z| ≤
n∑

j 6=i
j=1

|aij|

 , i = 1, . . . , n.

Proof. If λ is an eigenvalue of A ∈ Rn×n, then there exists an eigenvector x ∈ Rn with

Ax = λx, x 6= 0, i.e.,
n∑

j=1

aijxj = λxi, i = 1, . . . , n.

Lecture 6 pg 1 of 2

Suppose that |xk| ≥ |x`|, ` = 1, . . . , n, i.e.,

“xk is the largest entry”. (1)

Then the kth row of Ax = λx gives
n∑

j=1

akjxj = λxk, or

(akk − λ)xk = −
n∑

j 6=k
j=1

akjxj.

Dividing by xk, (which, we know, is 6= 0) and taking absolute values,

|akk − λ| =

∣∣∣∣∣∣∣∣
n∑

j 6=k
j=1

akj
xj
xk

∣∣∣∣∣∣∣∣ ≤
n∑

j 6=k
j=1

|akj|
∣∣∣∣xjxk
∣∣∣∣ ≤ n∑

j 6=k
j=1

|akj|

by (1). 2

Example.

A =

 9 1 2

−3 1 1

1 2 −1

-4 -2 0 2 4 6 8 10 12

-5

0

5

With Matlab calculate >> eig(A) = 8.6573, -2.0639, 2.4066

Theorem. Gerschgorin’s 2nd theorem: If any union of ` (say) discs is disjoint from

the other discs, then it contains ` eigenvalues.

Proof. Consider B(θ) = θA + (1 − θ)D, where D = diag(A), the diagonal matrix whose

diagonal entries are those from A. As θ varies from 0 to 1, B(θ) has entries that vary

continuously from B(0) = D to B(1) = A. Hence the eigenvalues λ(θ) vary continuously

by Ostrowski’s theorem. The Gerschgorin discs of B(0) = D are points (the diagonal

entries), which are clearly the eigenvalues of D. As θ increases the Gerschgorin discs of

B(θ) increase in radius about these same points as centres. Thus if A = B(1) has a

disjoint set of ` Gerschgorin discs by continuity of the eigenvalues it must contain exactly

` eigenvalues (as they can’t jump!). 2

Lecture 6 pg 2 of 2

Numerical Analysis Hilary Term 2021

Lectures 7–8: Computing eigenvalues: The Symmetric QR Algorithm

Direct vs. Iterative Methods: methods such as LU or QR factorisations and solving

Ax = b using them are direct : they compute a certain number of operations and then

finish with “the answer”. Another class of methods are iterative:

- construct a sequence;

- truncate that sequence “after convergence”;

- typically concerned with fast convergence rate (rather than operation count).

Note that unlike LU, QR or linear systems Ax = b, algorithms for eigenvalues are

necessarily iterative: By Galois theory, no finite algorithm can compute eigenvalues of

n × n(≥ 5) matrices exactly in a finite number of operations. We still have an incredibly

reliable algorithm to compute them, essentially to full accuracy (for symmetric matrices;

for nonsymmetric matrices, in a “backward stable” manner; this is outside the scope).

Notation: for x ∈ Rn, ‖x‖ =
√
xTx is the (Euclidean) length of x.

Notation: in iterative methods, xk usually means the vector x at the kth iteration (rather

than kth entry of vector x). Some sources use xk or x(k) instead.

Power Iteration: a simple method for calculating a single (largest) eigenvalue of a

square matrix A (and its associated eigenvector). For arbitrary y ∈ Rn, set x0 = y/‖y‖ to

calculate an initial vector, and then for k = 0, 1, . . .

Compute yk = Axk
and set xk+1 = yk/‖yk‖.

This is the Power Method or Power Iteration, and computes unit vectors in the

direction of x0, Ax0, A
2x0, A

3x0, . . . , A
kx0.

Suppose that A is diagonalizable so that there is a basis of eigenvectors of A:

{v1, v2, . . . , vn}

with Avi = λivi and ‖vi‖ = 1, i = 1, 2, . . . , n, and assume that

|λ1| > |λ2| ≥ · · · ≥ |λn|.

Then we can write

x0 =
n∑
i=1

αivi

for some αi ∈ R, i = 1, 2, . . . , n, so

Akx0 = Ak
n∑
i=1

αivi =
n∑
i=1

αiA
kvi.

However, since Avi = λivi =⇒ A2vi = A(Avi) = λiAvi = λ2i vi, inductively Akvi = λki vi.

So

Akx0 =
n∑
i=1

αiλ
k
i vi = λk1

[
α1v1 +

n∑
i=2

αi

(
λi
λ1

)k
vi

]
.

Lectures 7–8 pg 1 of 8

Since (λi/λ1)
k → 0 as k → ∞, Akx0 tends to look like λk1α1v1 as k gets large. The result

is that by normalizing to be a unit vector

Akx0
‖Akx0‖

→ ±v1 and
‖Akx0‖
‖Ak−1x0‖

≈
∣∣∣∣ λk1α1

λk−11 α1

∣∣∣∣ = |λ1|

as k →∞, and the sign of λ1 is identified by looking at, e.g., (Akx0)1/(A
k−1x0)1.

Essentially the same argument works when we normalize at each step: the Power

Iteration may be seen to compute yk = βkA
kx0 for some βk. Then, from the above,

xk+1 =
yk
‖yk‖

=
βk
|βk|
· Akx0
‖Akx0‖

→ ±v1.

Similarly, yk−1 = βk−1A
k−1x0 for some βk−1. Thus

xk =
βk−1
|βk−1|

· Ak−1x0
‖Ak−1x0‖

and hence yk = Axk =
βk−1
|βk−1|

· Akx0
‖Ak−1x0‖

.

Therefore, as above,

‖yk‖ =
‖Akx0‖
‖Ak−1x0‖

≈ |λ1|,

and the sign of λ1 may be identified by looking at, e.g., (xk+1)1/(xk)1.

Hence the largest eigenvalue (and its eigenvector) can be found.

Note: it is unlikely but possible for a chosen vector x0 that α1 = 0, but rounding errors

in the computation generally introduce a small component in v1, so that in practice this

is not a concern!

This simplified method for eigenvalue computation is the basis for effective methods, but

the current state of the art is the QR Algorithm which was invented by John Francis in

London in 1959/60. As we shall see, the mechanics of QR algorithm is very much related

to the power method.

The QR algorithm: We now describe the QR algorithm, a magical algorithm that can

solve eigenvalue problems Ax = λx.

For simplicity we consider the algorithm only in the case when A is symmetric, but it

is applicable also to nonsymmetric matrices with minor modifications.

Recall: a symmetric matrix A is similar to B if there is a nonsingular matrix P for which

A = P−1BP . Similar matrices have the same eigenvalues, since if A = P−1BP ,

0 = det(A− λI) = det(P−1(B − λI)P) = det(P−1) det(P) det(B − λI),

so det(A− λI) = 0 if, and only if, det(B − λI) = 0.

The basic QR algorithm is:

Set A1 = A.

for k = 1, 2, . . .

form the QR factorization Ak = QkRk

and set Ak+1 = RkQk

Lectures 7–8 pg 2 of 8

end

Proposition. The symmetric matrices A1, A2, . . . , Ak, . . . are all similar and thus have the

same eigenvalues.

Proof. Since

Ak+1 = RkQk = (QT
kQk)RkQk = QT

k (QkRk)Qk = QT
kAkQk = Q−1k AkQk,

Ak+1 is symmetric if Ak is, and is similar to Ak. 2

At least when A has eigenvalues of distinct modulus |λ1| > |λ2| > · · · > |λn|, this basic QR

algorithm can be shown to work (Ak converges to a diagonal matrix as k →∞, the diagonal

entries of which are the eigenvalues). To see this, we make the following observations.

Lemma.

Ak+1 = (Q(k))TAQ(k). (1)

(Note 18/2/2021: corrected from Ak = (Q(k))TAQ(k)) and

Ak = (Q1 · · ·Qk)(Rk · · ·R1) = Q(k)R(k) (2)

is the QR factorization of Ak.

Proof. (1) follows from a repeated application of the above proposition.

We use induction for (2): k = 1 trivial. Suppose Ak−1 = Q(k−1)R(k−1). Then Ak =

Rk−1Qk−1 = (Q(k−1))TAQ(k−1), and

(Q(k−1))TAQ(k−1) = QkRk.

Then AQ(k−1) = Q(k−1)QkRk, and so

Ak = AQ(k−1)R(k−1) = Q(k−1)QkRkR
(k−1) = Q(k)R(k),

giving (2). �
Let us now connect the above lemma with the power method.

Lemma. With Q(k) as in (2), let q1 be its first column, and let e1 = [1, 0, . . . , 0]T . Then

q1 is equal to either Ake1
‖Ake1‖2 or − Ake1

‖Ake1‖2 .

Proof. Right-multiplying e1 to (2) yields Ake1 = Q(k)R(k)e1. Since R(k) is upper triangular

R(k)e1 = [R
(k)
1,1 , 0, . . . , 0]T , and so Q(k)R(k)e1 is parallel to q1, which has unit norm. �

The results show in particular that the first column q1 of Q(k) is the result of power

method applied k times to the initial vector e1 = [1, 0, . . . , 0]T . It then follows that q1
converges to the dominant eigenvector. The second vector then starts converging to the

2nd dominant eigenvector, and so on. Once the columns of Q(k) converge to eigenvectors

(note that they are orthogonal by design), (1) shows that Ak converge to a diagonal matrix

of eigenvalues.

However, a really practical, fast algorithm is based on some refinements.

Reduction to tridiagonal form: the idea is to apply explicit similarity transformations

QAQ−1 = QAQT, with Q orthogonal, so that QAQT is tridiagonal.

Lectures 7–8 pg 3 of 8

Note: direct reduction to triangular form would reveal the eigenvalues, but is not possible.

If

H(w)A =

× × · · · ×
0 × · · · ×
...

...
. . .

...

0 × · · · ×

then H(w)AH(w)T is generally full, i.e., all zeros created by pre-multiplication are de-

stroyed by the post-multiplication. However, if

A =

[
γ uT

u C

]
(as A = AT) and

w =

[
0

ŵ

]
where H(ŵ)u =

α

0
...

0

 ,
it follows that

H(w)A =

γ uT

α × ... ×
...

...
...

...

0 × ... ×

 ,
i.e., the uT part of the first row of A is unchanged. However, then

H(w)AH(w)−1 = H(w)AH(w)T = H(w)AH(w) =

γ α 0 · · · 0

α

0
...

0

B

 ,

where B = H(ŵ)CHT(ŵ), as uTH(ŵ)T = (α, 0, · · · , 0); note that H(w)AH(w)T is

symmetric as A is.

Now we inductively apply this to the smaller matrix B, as described for the QR factoriza-

tion but using post- as well as pre-multiplications. The result of n − 2 such Householder

similarity transformations is the matrix

H(wn−2) · · ·H(w2)H(w)AH(w)H(w2) · · ·H(wn−2),

which is tridiagonal.

The QR factorization of a tridiagonal matrix can now easily be achieved with n−1 Givens

rotations J(i, j); these are orthogonal matrices that are I except for the four elements:

the (i, i), (i, j), (j, i), (j, j) entries with values c, s,−s, c respectively, where c2 + s2 = 1

Lectures 7–8 pg 4 of 8

(cosine and sine); one can choose c s.t.

[
c s

−s c

] [
a

b

]
=

[√
a2 + b2

0

]
. (The opera-

tions below can be done with Householder matrices too, but Givens rotations are more

straightforward).

Now if A is tridiagonal

J(n− 1, n) · · · J(2, 3)J(1, 2)︸ ︷︷ ︸
QT

A = R, upper triangular.

Precisely, R has a diagonal and 2 super-diagonals,

R =

× × × 0 0 0 · · · 0

0 × × × 0 0 · · · 0

0 0 × × × 0 · · · 0
...

...
...

0 0 0 0 × × × 0

0 0 0 0 0 × × ×
0 0 0 0 0 0 × ×
0 0 0 0 0 0 0 ×

(exercise: check!). In the QR algorithm, the next matrix in the sequence is RQ.

Lemma. In the QR algorithm applied to a symmetric tridiagonal matrix, the symmetry

and tridiagonal form are preserved when Givens rotations are used.

Proof. We have already shown that if Ak = QR is symmetric, then so is Ak+1 = RQ.

If Ak = QR = J(1, 2)TJ(2, 3)T · · · J(n − 1, n)TR is tridiagonal, then Ak+1 = RQ =

RJ(1, 2)TJ(2, 3)T · · · J(n−1, n)T. Recall that post-multiplication of a matrix by J(i, i+1)T

replaces columns i and i + 1 by linear combinations of the pair of columns, while leaving

columns j = 1, 2, . . . , i− 1, i + 2, . . . , n alone. Thus, since R is upper triangular, the only

subdiagonal entry in RJ(1, 2)T is in position (2, 1). Similarly, the only subdiagonal entries

in RJ(1, 2)TJ(2, 3)T = (RJ(1, 2)T)J(2, 3)T are in positions (2, 1) and (3, 2). Inductively,

the only subdiagonal entries in

RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)TJ(i− 1, i)T

= (RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)T)J(i− 1, i)T

are in positions (j, j − 1), j = 2, . . . i. So, the lower triangular part of Ak+1 only has

nonzeros on its first subdiagonal. However, then since Ak+1 is symmetric, it must be

tridiagonal. 2

Using shifts. One further and final step in making an efficient algorithm is the use of

shifts:

for k = 1, 2, . . .

form the QR factorization of Ak − µkI = QkRk

and set Ak+1 = RkQk + µkI

Lectures 7–8 pg 5 of 8

end

For any chosen sequence of values of µk ∈ R, {Ak}∞k=1 are symmetric and tridiagonal if A1

has these properties, and similar to A1.

The simplest shift to use is an,n, which leads rapidly in almost all cases to

Ak =

[
Tk 0

0T λ

]
,

where Tk is n− 1 by n− 1 and tridiagonal, and λ is an eigenvalue of A1. Inductively, once

this form has been found, the QR algorithm with shift an−1,n−1 can be concentrated only

on the n− 1 by n− 1 leading submatrix Tk. This process is called deflation.

Why does introducing shifts help? To understand this we establish a connection be-

tween QR and the power method applied to the inverse (known as the inverse power

method).

Lemma. With Q(k) as in (2), denote by qn its last column, and let en = [0, 0, . . . , 1]T .

Then qn is equal to either A−ken
‖A−ke1‖2 or − A−ken

‖A−ke1‖2 .

Proof. Recall (2), and take the inverse:

A−k = (R(k))−1(Q(k))T ,

and take the transpose:

(A−k)T (= A−k) = Q(k)(R(k))−T .

Now multiplying en gives

A−ken = Q(k)(R(k))−T en.

Since (R(k))−T is lower triangular, it follows that Q(k)(R(k))−T en is parallel to qn. �
This shows that the final column of Q(k) is the result of power method applied to en

now with the inverse A−1. Thus the last column of Q(k) is converging to the eigenvector

for the smallest eigenvalue λn, with convergence factor | λn
λn−1
|; Q(k) is converging not only

from the first, but (more significantly) from the last column(s).

Now we see how the introduction of shift has a drastic effect on the convergence: it

changes the factor to | λσ(n)−µ
λσ(n−1)−µ

|, where σ is a permutation such that |λσ(1) − µ| ≥ |λσ(2) −
µ| ≥ · · · ≥ |λσ(n)−µ|. If µ is close to an eigenvalue, this implies (potentially extremely) fast

convergence; in fact by choosing the shift µk = an,n, it can be shown that (proof omitted

and non-examinable) am,m−1 converges cubically : |am,m−1,k+1| = O(|am,m−1,k|3).
The overall algorithm for calculating the eigenvalues of an n by n symmetric matrix:

reduce A to tridiagonal form by orthogonal

(Householder) similarity transformations.

for m = n, n− 1, . . . 2

while am−1,m > tol

[Q,R] = qr(A− am,mI)

A = RQ+ am,mI

end while

record eigenvalue λm = am,m

Lectures 7–8 pg 6 of 8

A← leading m− 1 by m− 1 submatrix of A

end

record eigenvalue λ1 = a1,1

Lectures 7–8 pg 7 of 8

Computing roots of polynomials via eigenvalues Let us describe a nice application

of computing eigenvalues (by the QR algorithm). Let p(x) =
∑n

i=0 cix
i be a degree-n

polynomial so that cn 6= 0, and suppose we want to find its roots, i.e., values of λ for

which p(λ) = 0; there are n of them in C. For example, p(x) might be an approximant to

data, obtained by Lagrange interpolation from the first lecture. Why roots? For example,

you might be interested in the minimum of p; this can be obtained by differentiating and

setting to zero p′(x) = 0, which is again a polynomial rootfinding problem (for p′).

How do we solve p(x) = 0? Recall that eigenvalues of A are the roots of its characteristic

polynomial. Here we take the opposite direction—construct a matrix whose characteristic

polynomial is p.

Consider the following matrix, which is called the companion matrix (the blank

elements are all 0) for the polynomial p(x) =
∑n

i=0 cix
i:

C =

− cn−1

cn
− cn−2

cn
· · · − c1

cn
− c0
cn

1

1
. . .

1 0

 . (3)

Then direct calculation shows that if p(λ) = 0 then Cx = λx with x = [λn−1, λn−2, . . . , λ, 1]T .

Indeed one can show that the characteristic polynomial is det(λI−C) = p(λ)/cn (nonexam-

inable), so this implication is necessary and sufficient, so the eigenvalues of C are precisely

the roots of p, counting multiplicities.

Thus to compute roots of polynomials, one can compute eigenvalues of the companion

matrix via the QR algorithm—this turns out to be a very powerful idea!

Lectures 7–8 pg 8 of 8

Numerical Analysis Hilary Term 2021

Lecture 9: Best Approximation in Inner-Product Spaces

Best approximation of functions: given a function f on [a, b], find the “closest”

polynomial/piecewise polynomial (see later sections)/ trigonometric polynomial (truncated

Fourier series).

Norms: are used to measure the size of/distance between elements of a vector space.

Given a vector space V over the field R of real numbers, the mapping ‖ · ‖ : V → R is a

norm on V if it satisfies the following axioms:

(i) ‖f‖ ≥ 0 for all f ∈ V , with ‖f‖ = 0 if, and only if, f = 0 ∈ V ;

(ii) ‖λf‖ = |λ|‖f‖ for all λ ∈ R and all f ∈ V ; and

(iii) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ V (the triangle inequality).

Examples: 1. For vectors x ∈ Rn, with x = (x1, x2, . . . , xn)T,

‖x‖ ≡ ‖x‖2 = (x21 + x22 + · · ·+ x2n)
1
2 =
√
xTx

is the `2- or vector two-norm.

2. For continuous functions on [a, b],

‖f‖ ≡ ‖f‖∞ = max
x∈[a,b]

|f(x)|

is the L∞- or ∞-norm.

3. For integrable functions on (a, b),

‖f‖ ≡ ‖f‖1 =

∫ b

a

|f(x)| dx

is the L1- or one-norm.

4. For functions in

V = L2
w(a, b) ≡ {f : [a, b]→ R |

∫ b

a

w(x)[f(x)]2 dx <∞}

for some given weight function w(x) > 0 (this certainly includes continuous functions on

[a, b], and piecewise continuous functions on [a, b] with a finite number of jump-discontinuities),

‖f‖ ≡ ‖f‖2 =

(∫ b

a

w(x)[f(x)]2 dx

) 1
2

is the L2- or two-norm—the space L2(a, b) is a common abbreviation for L2
w(a, b) for the

case w(x) ≡ 1.

Note: ‖f‖2 = 0 =⇒ f = 0 almost everywhere on [a, b]. We say that a certain property P holds

almost everywhere (a.e.) on [a, b] if property P holds at each point of [a, b] except perhaps on a

subset S ⊂ [a, b] of zero measure. We say that a set S ⊂ R has zero measure (or that it is of

measure zero) if for any ε > 0 there exists a sequence {(αi, βi)}∞i=1 of subintervals of R such that

Lecture 9 pg 1 of 6

S ⊂ ∪∞i=1(αi, βi) and
∑∞

i=1(βi − αi) < ε. Trivially, the empty set ∅(⊂ R) has zero measure. Any

finite subset of R has zero measure. Any countable subset of R, such as the set of all natural

numbers N, the set of all integers Z, or the set of all rational numbers Q, is of measure zero.

Least-squares polynomial approximation: aim to find the best polynomial approxi-

mation to f ∈ L2
w(a, b), i.e., find pn ∈ Πn for which

‖f − pn‖2 ≤ ‖f − q‖2 ∀q ∈ Πn.

Seeking pn in the form pn(x) =
n∑
k=0

αkx
k then results in the minimization problem

min
(α0,...,αn)

∫ b

a

w(x)

[
f(x)−

n∑
k=0

αkx
k

]2
dx.

The unique minimizer can be found from the (linear) system

∂

∂αj

∫ b

a

w(x)

[
f(x)−

n∑
k=0

αkx
k

]2
dx = 0 for each j = 0, 1, . . . , n,

but there is important additional structure here.

Inner-product spaces: a real inner-product space is a vector space V over R with a

mapping 〈·, ·〉 : V × V → R (the inner product) for which

(i) 〈v, v〉 ≥ 0 for all v ∈ V and 〈v, v〉 = 0 if, and only if v = 0;

(ii) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V ; and

(iii) 〈αu+ βv, z〉 = α〈u, z〉+ β〈v, z〉 for all u, v, z ∈ V and all α, β ∈ R.

Examples: 1. V = Rn,

〈x, y〉 = xTy =
n∑
i=1

xiyi,

where x = (x1, . . . , xn)T and y = (y1, . . . , yn)T.

2. V = L2
w(a, b) = {f : (a, b)→ R |

∫ b

a

w(x)[f(x)]2 dx <∞},

〈f, g〉 =

∫ b

a

w(x)f(x)g(x) dx,

where f, g ∈ L2
w(a, b) and w is a weight-function, defined, positive and integrable on (a, b).

Notes: 1. Suppose that V is an inner product space, with inner product 〈·, ·〉. Then

〈v, v〉 12 defines a norm on V (see the final paragraph on the last page for a proof). In

Example 2 above, the norm defined by the inner product is the (weighted) L2-norm.

2. Suppose that V is an inner product space, with inner product 〈·, ·〉, and let ‖ · ‖ denote

the norm defined by the inner product via ‖v‖ = 〈v, v〉 12 , for v ∈ V . The angle θ between

u, v ∈ V is

θ = cos−1
(
〈u, v〉
‖u‖‖v‖

)
.

Lecture 9 pg 2 of 6

Thus u and v are orthogonal in V ⇐⇒ 〈u, v〉 = 0.

E.g., x2 and 3
4
− x are orthogonal in L2(0, 1) with inner product 〈f, g〉 =

∫ 1

0

f(x)g(x) dx

as ∫ 1

0

x2
(
3
4
− x
)

dx = 1
4
− 1

4
= 0.

3. Pythagoras Theorem: Suppose that V is an inner-product space with inner product

〈·, ·〉 and norm ‖ · ‖ defined by this inner product. For any u, v ∈ V such that 〈u, v〉 = 0

we have

‖u± v‖2 = ‖u‖2 + ‖v‖2.
Proof.

‖u± v‖2 = 〈u± v, u± v〉 = 〈u, u± v〉 ± 〈v, u± v〉 [axiom (iii)]

= 〈u, u± v〉 ± 〈u± v, v〉 [axiom (ii)]

= 〈u, u〉 ± 〈u, v〉 ± 〈u, v〉+ 〈v, v〉
= 〈u, u〉+ 〈v, v〉 [orthogonality]

= ‖u‖2 + ‖v‖2.

4. The Cauchy–Schwarz inequality: Suppose that V is an inner-product space with

inner product 〈·, ·〉 and norm ‖ · ‖ defined by this inner product. For any u, v ∈ V ,

|〈u, v〉| ≤ ‖u‖‖v‖.
Proof. For every λ ∈ R,

0 ≤ 〈u− λv, u− λv〉 = ‖u‖2 − 2λ〈u, v〉+ λ2‖v‖2 = φ(λ),

which is a quadratic in λ. The minimizer of φ is at λ∗ = 〈u, v〉/‖v‖2, and thus since

φ(λ∗) ≥ 0, ‖u‖2 − 〈u, v〉2/‖v‖2 ≥ 0, which gives the required inequality. 2

5. The triangle inequality: Suppose that V is an inner-product space with inner product

〈·, ·〉 and norm ‖ · ‖ defined by this inner product. For any u, v ∈ V ,

‖u+ v‖ ≤ ‖u‖+ ‖v‖.
Proof. Note that

‖u+ v‖2 = 〈u+ v, u+ v〉 = ‖u‖2 + 2〈u, v〉+ ‖v‖2.

Hence, by the Cauchy–Schwarz inequality,

‖u+ v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2 .

Taking square-roots yields

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

2

Note: The function ‖ · ‖ : V → R defined by ‖v‖ := 〈v, v〉 12 on the inner-product space

V , with inner product 〈·, ·〉, trivially satisfies the first two axioms of norm on V ; this is a

Lecture 9 pg 3 of 6

consequence of 〈·, ·〉 being an inner product on V . Result 5 above implies that ‖ · ‖ also

satisfies the third axiom of norm, the triangle inequality.

Least-Squares Approximation

For the problem of least-squares approximation, 〈f, g〉 =

∫ b

a

w(x)f(x)g(x) dx and ‖f‖22 =

〈f, f〉 where w(x) > 0 on (a, b).

Theorem. If f ∈ L2
w(a, b) and pn ∈ Πn is such that

〈f − pn, r〉 = 0 ∀r ∈ Πn, (1)

then

‖f − pn‖2 ≤ ‖f − r‖2 ∀r ∈ Πn,

i.e., pn is a best (weighted) least-squares approximation to f on [a, b].

Proof.

‖f − pn‖22 = 〈f − pn, f − pn〉
= 〈f − pn, f − r〉+ 〈f − pn, r − pn〉 ∀r ∈ Πn

Since r − pn ∈ Πn the assumption (1) implies that

= 〈f − pn, f − r〉
≤ ‖f − pn‖2‖f − r‖2 by the Cauchy–Schwarz inequality.

Dividing both sides by ‖f − pn‖2 gives the required result. 2

Remark: the converse is true too (see problem sheet 3).

This gives a direct way to calculate a best approximation: we want to find pn(x) =
n∑
k=0

αkx
k

such that ∫ b

a

w(x)

(
f −

n∑
k=0

αkx
k

)
xi dx = 0 for i = 0, 1, . . . , n. (2)

[Note that (2) holds if, and only if,∫ b

a

w(x)

(
f −

n∑
k=0

αkx
k

)(
n∑
i=0

βix
i

)
dx = 0 ∀q =

n∑
i=0

βix
i ∈ Πn.]

However, (2) implies that

n∑
k=0

(∫ b

a

w(x)xk+i dx

)
αk =

∫ b

a

w(x)f(x)xi dx for i = 0, 1, . . . , n

which is the component-wise statement of a matrix equation

Aα = ϕ, (3)

to determine the coefficients α = (α0, α1, . . . , αn)T, where A = {ai,k, i, k = 0, 1, . . . , n},
ϕ = (f0, f1, . . . , fn)T,

ai,k =

∫ b

a

w(x)xk+i dx and fi =

∫ b

a

w(x)f(x)xi dx.

Lecture 9 pg 4 of 6

The system (3) are called the normal equations.

Example: the best least-squares approximation to ex on [0, 1] from Π1 in 〈f, g〉 =∫ b

a

f(x)g(x) dx. We want

∫ 1

0

[ex − (α01 + α1x)]1 dx = 0 and

∫ 1

0

[ex − (α01 + α1x)]x dx = 0.

⇐⇒
α0

∫ 1

0

dx+ α1

∫ 1

0

x dx =

∫ 1

0

ex dx

α0

∫ 1

0

x dx+ α1

∫ 1

0

x2 dx =

∫ 1

0

exx dx

i.e., [
1 1

2

1
2

1
3

] [
α0

α1

]
=

[
e− 1

1

]
=⇒ α0 = 4e − 10 and α1 = 18 − 6e, so p1(x) := (18 − 6e)x + (4e − 10) is the best

approximation.

Proof that the coefficient matrix A is nonsingular will now establish existence and unique-

ness of (weighted) ‖ · ‖2 best-approximation.

Theorem. The coefficient matrix A is nonsingular.

Proof. Suppose not =⇒ ∃α 6= 0 with Aα = 0 =⇒ αTAα = 0

⇐⇒
n∑
i=0

αi(Aα)i = 0 ⇐⇒
n∑
i=0

αi

n∑
k=0

aikαk = 0,

and using the definition aik =

∫ b

a

w(x)xkxi dx ,

⇐⇒
n∑
i=0

αi

n∑
k=0

(∫ b

a

w(x)xkxi dx

)
αk = 0.

Rearranging gives∫ b

a

w(x)

(
n∑
i=0

αix
i

)(
n∑
k=0

αkx
k

)
dx = 0 or

∫ b

a

w(x)

(
n∑
i=0

αix
i

)2

dx = 0

which implies that
n∑
i=0

αix
i = 0 and thus αi = 0 for i = 0, 1, . . . , n. This contradicts the

initial supposition, and thus A is nonsingular. 2

Remark:

Lecture 9 pg 5 of 6

� Note in the simplest least-squares approximation problem minx ‖Ax − b‖2 that we

dealt with in lecture 4, the theorem gives the solution AT (Ax − b) = 0, that is,

x = (ATA)−1AT b. This coincides with the QR-based solution derived in lecture 4.

� The above theorem does not imply that the normal equations are usable in practice:

the method would need to be stable with respect to small perturbations. In fact,

difficulties arise from the “ill-conditioning” of the matrix A as n increases. The next

lecture looks at a fix.

Lecture 9 pg 6 of 6

Numerical Analysis Hilary Term 2021

Lecture 10: Orthogonal Polynomials

Gram–Schmidt orthogonalization procedure: the solution of the normal equations

Aα = ϕ for best least-squares polynomial approximation would be easy if A were diagonal.

Instead of {1, x, x2, . . . , xn} as a basis for Πn, suppose we have a basis {φ0, φ1, . . . , φn}.

Then pn(x) =
n∑

k=0

βkφk(x), and the normal equations become

∫ b

a

w(x)

(
f(x)−

n∑
k=0

βkφk(x)

)
φi(x) dx = 0 for i = 0, 1, . . . , n,

or equivalently

n∑
k=0

(∫ b

a

w(x)φk(x)φi(x) dx

)
βk =

∫ b

a

w(x)f(x)φi(x) dx, i = 0, . . . , n, i.e.,

Aβ = ϕ, (1)

where β = (β0, β1, . . . , βn)T, ϕ = (f1, f2, . . . , fn)T and now

ai,k =

∫ b

a

w(x)φk(x)φi(x) dx and fi =

∫ b

a

w(x)f(x)φi(x) dx.

So A is diagonal if

〈φi, φk〉 =

∫ b

a

w(x)φi(x)φk(x) dx

{
= 0 i 6= k and

6= 0 i = k.

We can create such a set of orthogonal polynomials

{φ0, φ1, . . . , φn, . . .},

with φi ∈ Πi for each i, by the Gram–Schmidt procedure, which is based on the following

lemma.

Lemma. Suppose that φ0, . . . , φk, with φi ∈ Πi for each i, are orthogonal with respect to

the inner product 〈f, g〉 =

∫ b

a

w(x)f(x)g(x) dx. Then,

φk+1(x) = xk+1 −
k∑

i=0

λiφi(x)

satisfies

〈φk+1, φj〉 =

∫ b

a

w(x)φk+1(x)φj(x) dx = 0, j = 0, 1, . . . , k, with

λj =
〈xk+1, φj〉
〈φj, φj〉

, j = 0, 1, . . . , k.

Lecture 10 pg 1 of 4

Proof. For any j, 0 ≤ j ≤ k,

〈φk+1, φj〉 = 〈xk+1, φj〉 −
k∑

i=0

λi〈φi, φj〉

= 〈xk+1, φj〉 − λj〈φj, φj〉
by the orthogonality of φi and φj, i 6= j,

= 0 by definition of λj. 2

Notes: 1. The G–S procedure does this successively for k = 0, 1, . . . , n.

2. φk is always of exact degree k, so {φ0, . . . , φ`} is a basis for Π` ∀` ≥ 0.

3. φk can be normalised to satisfy 〈φk, φk〉 = 1 or to be monic, or . . .

Examples: 1. The inner product 〈f, g〉 =

∫ 1

−1
f(x)g(x) dx

gives orthogonal polynomials called the Legendre polynomials,

φ0(x) ≡ 1, φ1(x) = x, φ2(x) = x2 − 1
3
, φ3(x) = x3 − 3

5
x, . . .

2. The inner product 〈f, g〉 =

∫ 1

−1

f(x)g(x)√
1− x2

dx

gives orthogonal polynomials called the Chebyshev polynomials,

φ0(x) ≡ 1, φ1(x) = x, φ2(x) = 2x2 − 1, φ3(x) = 4x3 − 3x, . . .

3. The inner product 〈f, g〉 =

∫ ∞
0

e−xf(x)g(x) dx

gives orthogonal polynomials called the Laguerre polynomials,

φ0(x) ≡ 1, φ1(x) = 1− x, φ2(x) = 2− 4x+ x2,

φ3(x) = 6− 18x+ 9x2 − x3, . . .

Lemma. Suppose that {φ0, φ1, . . . , φk, . . .} are orthogonal polynomials for a given inner

product 〈·, ·〉. Then, 〈φk, q〉 = 0 whenever q ∈ Πk−1.

Proof. This follows since if q ∈ Πk−1, then q(x) =
k−1∑
i=0

σiφi(x) for some σi ∈ R, i =

0, 1, . . . , k − 1, so

〈φk, q〉 =
k−1∑
i=0

σi〈φk, φi〉 = 0.
2

Remark: note from the above argument that if q(x) =
k∑

i=0

σiφi(x) is of exact degree k

(so σk 6= 0), then 〈φk, q〉 = σk〈φk, φk〉 6= 0.

Theorem. Suppose that {φ0, φ1, . . . , φn, . . .} is a set of orthogonal polynomials. Then,

there exist sequences of real numbers (αk)∞k=1, (βk)∞k=1, (γk)∞k=1 such that a three-term

recurrence relation holds of the form

φk+1(x) = αk(x− βk)φk(x)− γkφk−1(x), k = 1, 2,

Lecture 10 pg 2 of 4

Proof. The polynomial xφk ∈ Πk+1, so there exist real numbers

σk,0, σk,1, . . . , σk,k+1

such that

xφk(x) =
k+1∑
i=0

σk,iφi(x)

as {φ0, φ1, . . . , φk+1} is a basis for Πk+1. Now take the inner product on both sides with

φj where j ≤ k − 2. On the left-hand side, note xφj ∈ Πk−1 and thus

〈xφk, φj〉 =

∫ b

a

w(x)xφk(x)φj(x) dx =

∫ b

a

w(x)φk(x)xφj(x) dx = 〈φk, xφj〉 = 0,

by the above lemma for j ≤ k − 2. On the right-hand side〈
k+1∑
i=0

σk,iφi, φj

〉
=

k+1∑
i=0

σk,i〈φi, φj〉 = σk,j〈φj, φj〉

by the linearity of 〈·, ·〉 and orthogonality of φi and φj for i 6= j. Hence σk,j = 0 for

j ≤ k − 2, and so

xφk(x) = σk,k+1φk+1(x) + σk,kφk(x) + σk,k−1φk−1(x).

Almost there: taking the inner product with φk+1 reveals that

〈xφk, φk+1〉 = σk,k+1〈φk+1, φk+1〉,

so σk,k+1 6= 0 by the above remark as xφk is of exact degree k + 1 (e.g., from above

Gram–Schmidt notes). Thus,

φk+1(x) =
1

σk,k+1

(x− σk,k)φk(x)− σk,k−1
σk,k+1

φk−1(x),

which is of the given form, with

αk =
1

σk,k+1

, βk = σk,k, γk =
σk,k−1
σk,k+1

, k = 1, 2,

That completes the proof. 2

Example. The inner product 〈f, g〉 =

∫ ∞
−∞

e−x
2

f(x)g(x) dx

gives orthogonal polynomials called the Hermite polynomials,

φ0(x) ≡ 1, φ1(x) = 2x, φk+1(x) = 2xφk(x)− 2kφk−1(x) for k ≥ 1.

Lecture 10 pg 3 of 4

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Chebyshev orthogonal polynomials

T
0
(x)

T
1
(x)

T
2
(x)

T
3
(x)

T
4
(x)

T
5
(x)

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5
Legendre polynomials

P
0
(x)

P
1
(x)

P
2
(x)

P
3
(x)

P
4
(x)

P
5
(x)

−2 −1 0 1 2
−150

−100

−50

0

50

100

150

x

Hermite orthogonal polynomials

H
0
(x)

H
1
(x)

H
2
(x)

H
3
(x)

H
4
(x)

H
5
(x)

Lecture 10 pg 4 of 4

Numerical Analysis Hilary Term 2021

Lecture 11: Gauss quadrature

Terminology: Quadrature ≡ numerical integration

Goal: given a (continuous) function f : [a, b] → R, find its integral I =
∫ b

a
f(x)dx, as

accurately as possible.

Idea: Approximate and Integrate. Find a polynomial pn from data {(xk, f(xk))}nk=0

by Lagrange interpolation (lecture 1), and integrate
∫ xn

x0
pn(x) dx =: In. Ideally, In = I or

at least In ≈ I. Is this true?

If we choose xk to be equispaced points in [a, b], the resulting In is known as the

Newton-Cotes quadrature. This method is actually quite unstable and inaccurate, and a

much more accurate and elegant quadrature rule exists: Gauss quadrature. In this lecture

we cover this beautiful result involving orthogonal polynomials.

Preparations: Suppose that w is a weight function, defined, positive and integrable on

the open interval (a, b) of R.

Lemma. Let {φ0, φ1, . . . , φn, . . .} be orthogonal polynomials for the inner product 〈f, g〉 =∫ b

a

w(x)f(x)g(x) dx. Then, for each k = 0, 1, . . . , φk has k distinct roots in the interval

(a, b).

Proof. Since φ0(x) ≡ const. 6= 0, the result is trivially true for k = 0. Suppose that k ≥ 1:

〈φk, φ0〉 =

∫ b

a

w(x)φk(x)φ0(x) dx = 0 with φ0 constant implies that

∫ b

a

w(x)φk(x) dx = 0

with w(x) > 0, x ∈ (a, b). Thus φk(x) must change sign in (a, b), i.e., φk has at least one

root in (a, b).

Suppose that there are ` points a < r1 < r2 < · · · < r` < b where φk changes sign for some

1 ≤ ` ≤ k. Then

q(x) =
∏̀
j=1

(x− rj)× the sign of φk on (r`, b)

has the same sign as φk on (a, b). Hence

〈φk, q〉 =

∫ b

a

w(x)φk(x)q(x) dx > 0,

and thus it follows from the previous lemma (cf. Lecture 12) that q, (which is of degree

`) must be of degree ≥ k, i.e., ` ≥ k. However, φk is of exact degree k, and therefore the

number of its distinct roots, `, must be ≤ k. Hence ` = k, and φk has k distinct roots in

(a, b). 2

Application to quadrature. The above lemma leads to very efficient quadrature rules

since it answers the question: how should we choose the quadrature points x0, x1, . . . , xn
in the quadrature rule ∫ b

a

w(x)f(x) dx ≈
n∑

j=0

wjf(xj) (1)

Lecture 11 pg 1 of 6

so that the rule is exact for polynomials of degree as high as possible? (The case w(x) ≡ 1

is the most common.)

Recall: the Lagrange interpolating polynomial

pn =
n∑

j=0

f(xj)Ln,j ∈ Πn

is unique, so f ∈ Πn =⇒ pn ≡ f whatever interpolation points are used, and moreover∫ b

a

w(x)f(x) dx =

∫ b

a

w(x)pn(x) dx =
n∑

j=0

wjf(xj),

exactly, where

wj =

∫ b

a

w(x)Ln,j(x) dx. (2)

Theorem. Suppose that x0 < x1 < · · · < xn are the roots of the n+1-st degree orthogonal

polynomial φn+1 with respect to the inner product

〈g, h〉 =

∫ b

a

w(x)g(x)h(x) dx.

Then, the quadrature formula (1) with weights (2) is exact whenever f ∈ Π2n+1.

Proof. Let p ∈ Π2n+1. Then by the Division Algorithm p(x) = q(x)φn+1(x) + r(x) with

q, r ∈ Πn. So∫ b

a

w(x)p(x) dx =

∫ b

a

w(x)q(x)φn+1(x) dx+

∫ b

a

w(x)r(x) dx =
n∑

j=0

wjr(xj) (3)

since the integral involving q ∈ Πn is zero by the lemma above and the other is integrated

exactly since r ∈ Πn. Finally p(xj) = q(xj)φn+1(xj) + r(xj) = r(xj) for j = 0, 1, . . . , n as

the xj are the roots of φn+1. So (3) gives∫ b

a

w(x)p(x) dx =
n∑

j=0

wjp(xj),

where wj is given by (2) whenever p ∈ Π2n+1. 2

These quadrature rules are called Gauss quadratures.

� w(x) ≡ 1, (a, b) = (−1, 1): Gauss–Legendre quadrature.

� w(x) = (1− x2)−1/2 and (a, b) = (−1, 1): Gauss–Chebyshev quadrature.

� w(x) = e−x and (a, b) = (0,∞): Gauss–Laguerre quadrature.

� w(x) = e−x
2

and (a, b) = (−∞,∞): Gauss–Hermite quadrature.

Lecture 11 pg 2 of 6

They give better accuracy than Newton–Cotes quadrature for the same number of function

evaluations.

Note when using quadrature on unbounded intervals, the integral should be of the form∫∞
0

e−xf(x) dx and only f is sampled at the nodes.

Note that by the linear change of variable t = (2x − a − b)/(b − a), which maps [a, b] →
[−1, 1], we can evaluate for example∫ b

a

f(x) dx =

∫ 1

−1
f

(
(b− a)t+ b+ a

2

)
b− a

2
dt ' b− a

2

n∑
j=0

wjf

(
b− a

2
tj +

b+ a

2

)
,

where ' denotes “quadrature” and the tj, j = 0, 1, . . . , n, are the roots of the n + 1-st

degree Legendre polynomial.

Example. 2-point Gauss–Legendre quadrature: φ2(t) = t2 − 1
3

=⇒ t0 = − 1√
3
, t1 = 1√

3

and

w0 =

∫ 1

−1

t− 1√
3

− 1√
3
− 1√

3

dt = −
∫ 1

−1
(
√
3
2
t− 1

2
) dt = 1,

with w1 = 1, similarly. So e.g., changing variables x = (t+ 3)/2,∫ 2

1

1

x
dx =

1

2

∫ 1

−1

2

t+ 3
dt ' 1

3 + 1√
3

+
1

3− 1√
3

= 0.6923077

Note that the trapezium rule (also two evaluations of the integrand) gives∫ 2

1

1

x
dx ' 1

2

[
1

2
+ 1

]
= 0.75,

whereas

∫ 2

1

1

x
dx = ln 2 = 0.6931472

Theorem. Error in Gauss quadrature: suppose that f (2n+2) is continuous on (a, b). Then∫ b

a

w(x)f(x) dx =
n∑

j=0

wjf(xj) +
f (2n+2)(η)

(2n+ 2)!

∫ b

a

w(x)
n∏

j=0

(x− xj)2 dx,

for some η ∈ (a, b).

Proof. The proof is based on the Hermite interpolating polynomialH2n+1 to f on x0, x1, . . . , xn.

[Recall that H2n+1(xj) = f(xj) and H ′2n+1(xj) = f ′(xj) for j = 0, 1, . . . , n.] The error in

Hermite interpolation is

f(x)−H2n+1(x) =
1

(2n+ 2)!
f (2n+2)(η(x))

n∏
j=0

(x− xj)2

for some η = η(x) ∈ (a, b). Now H2n+1 ∈ Π2n+1, so∫ b

a

w(x)H2n+1(x) dx =
n∑

j=0

wjH2n+1(xj) =
n∑

j=0

wjf(xj),

Lecture 11 pg 3 of 6

the first identity because Gauss quadrature is exact for polynomials of this degree and the

second by interpolation. Thus∫ b

a

w(x)f(x) dx−
n∑

j=0

wjf(xj) =

∫ b

a

w(x)[f(x)−H2n+1(x)] dx

=
1

(2n+ 2)!

∫ b

a

f (2n+2)(η(x))w(x)
n∏

j=0

(x− xj)2 dx,

and hence the required result follows from the integral mean value theorem as

w(x)
∏n

j=0(x− xj)2 ≥ 0. 2

Remark: the “direct” approach of finding Gauss quadrature formulae sometimes works

for small n, but more sophisticated algorithms are used for large n.1

Example. To find the two-point Gauss–Legendre rule w0f(x0)+w1f(x1) on (−1, 1) with

weight function w(x) ≡ 1, we need to be able to integrate any cubic polynomial exactly,

so

2 =

∫ 1

−1
1 dx = w0 + w1 (4)

0 =

∫ 1

−1
x dx = w0x0 + w1x1 (5)

2
3

=

∫ 1

−1
x2 dx = w0x

2
0 + w1x

2
1 (6)

0 =

∫ 1

−1
x3 dx = w0x

3
0 + w1x

3
1. (7)

These are four nonlinear equations in four unknowns w0, w1, x0 and x1. Equations (5) and

(7) give [
x0 x1
x30 x31

] [
w0

w1

]
=

[
0

0

]
,

which implies that

x0x
3
1 − x1x30 = 0

for w0, w1 6= 0, i.e.,

x0x1(x1 − x0)(x1 + x0) = 0.

If x0 = 0, this implies w1 = 0 or x1 = 0 by (5), either of which contradicts (6). Thus

x0 6= 0, and similarly x1 6= 0. If x1 = x0, (5) implies w1 = −w0, which contradicts (4). So

x1 = −x0, and hence (5) implies w1 = w0. But then (4) implies that w0 = w1 = 1 and (6)

gives

x0 = − 1√
3

and x1 = 1√
3
,

1See e.g., the research paper by Hale and Townsend, “Fast and accurate computation of Guass–Legendre and

Gauss–Jacobi quadrature nodes and weights” SIAM J. Sci. Comput. 2013.

Lecture 11 pg 4 of 6

which are the roots of the Legendre polynomial x2 − 1
3
.

Convergence: Gauss quadrature converges astonishingly fast. It can be shown that if f

is analytic on [a, b], the convergence is geometric (exponential) in the number of samples.

This is in contrast to other (more straightforward) quadrature rules:

� Newton-Cotes: Find interpolant in n equispaced points, and integrate interpolant.

Convergence: (often) Divergent!

� (Composite) trapezium rule: Find piecewise-linear interpolant in n equispaced points,

and integrate interpolant. Convergence: O(1/n2) (assumes f ′′ exists)

� (Composite) Simpson’s rule: Find piecewise-quadratic interpolant in n equispaced

points (each subinterval containing three points), and integrate interpolant. Conver-

gence: O(1/n4) (assumes f ′′′′ exists)

The figure below illustrates the performance on integrating the Runge function.

10
0

10
1

10
2

10
3

#samples n

10
-15

10
-10

10
-5

10
0

In
te

g
ra

ti
o
n
 e

rr
o
r

Trap O(1/n
2
)

Simpson O(1/n
4
)

Newton-Cotes

Gauss exp(-cn)Gauss exp(-cn)

Figure 1: Convergence of quadrature rules for
∫ 1
−1

1
25x2+1

dx (Runge function)

Nodes and weights for Gauss(-Legendre) quadrature The figure below shows

the nodes (interpolation points) and the corrsponding weights with the standard Gauss-

Legendre quadrature rule, i.e., when w(x) = 1 and [a, b] = [−1, 1]. In Chebfun these are

computed conveniently by [x,w] = legpts(n+1)

Lecture 11 pg 5 of 6

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

nodes x
i

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

w
e
ig

h
ts

 w
i

n=5

n=10

Note that the nodes/interpolation points cluster near endpoints (and sparser in the

middle); this is a general phenomenon, and very analogous to the Chebyshev interpolation

points mentioned in the least-squares lecture (Gauss and Chebyshev points have asymp-

totically the same distribution of points). Note also that the weights are all positive and

shrink as n grows; they have to because they sum to 2 (why?).

Lecture 11 pg 6 of 6

Numerical Analysis Hilary Term 2021

Lecture 12–13: Introduction to numerical methods for initial-value problems

Initial value problems: Initial value problems arise everywhere in mathematics where

we wish to model the evolution in time of a given system.

Definition 1. Let I = [x0, X] ⊂ R be a (time) interval and D ⊂ Rd be an open subset,

where d ∈ N+ denotes the space dimension.

� A first-order ordinary differential equation (ODE) is an equation of the form

y′(x) = f(x,y) ,

where the righthand side is a function f : I ×D → Rd.

� An initial value problem (IVP) is an ODE with an initial condition, that is,

y′(x) = f(x,y) , y(x0) = y0 .

Picard’s Theorem gives sufficient conditions to ensure that the IVP admits a unique solu-

tion1.

Theorem. Suppose that f is continuous in a neighborhood U ⊂ R1+d of (x0,y0) that

contains the (closed) cylinder

R = {(x,y) : x0 ≤ x ≤ XM , ‖y − y0‖ ≤ YM} ,

where XM > x0 and YM > 0 are constants. Suppose also that there exists a positive

constant L such that

‖f(x,y)− f(x, z)‖ ≤ L‖y − z‖

holds whenever (x,y) and (x, z) lie in R. Finally, letting

M := max{‖f(x,y)‖ : (x,y) ∈ R} ,

suppose that M(XM − x0) ≤ YM . Then, there exists a unique continuously differentiable

function

[x0, XM] 3 x 7→ y(x) ∈ Rd

that is the solution to our IVP.

Note that Picard’s theorem guarantees the existence of a solution only up to a finite

time XM ; consider : y′ = y2, y(0) = 1, which has solution y(x) = (1−x)−1 and blows up at

x = 1. Furthermore, if an IVP satisfies the assumptions of Picard’s theorem, its solution

is stable on the bounded interval [x0, X]. This means that if y : [x0, X] → D solves the

IVP

y′(x) = f(x,y) , y(x0) = y0 ,

1For more details about Picard’s theorem, we refer to chapter 11 of Prof. Trefethen’s book Exploring ODEs,

which is freely available at http://people.maths.ox.ac.uk/trefethen/Exploring.pdf

Lecture 12–13 pg 1 of 7

http://people.maths.ox.ac.uk/trefethen/Exploring.pdf

and ỹ : [x0, X]→ D solves the same ODE with a perturbed initial condition ỹ0, that is,

ỹ′(x) = f(x, ỹ) , ỹ(x0) = ỹ0 ,

then

‖y(x)− ỹ(x)‖ ≤ eL(X−x0)‖y0 − ỹ0‖ ∀x ∈ [x0, X] .

This implies that a small error in the initial condition does not compromise dramatically

the solution of the IVP. However, note that the constant eL(X−x0) in the above bound grows

exponentially as the final time X increases.

You have seen in A1 Differential Equations 1 that any higher-order IVP can be re-

formulated as a larger first-order IVP. We therefore mainly consider numerical methods

for first-order problems. It is also possible to reformulate nonautonomous problems as

larger autonomous ones (wherein y′ = f(y)), so sometimes we will restrict ourselves to

autonomous ones when it is convenient to do so.

An inconvenient truth is that most IVPs (and most differential equations) cannot be

solve analytically (i.e., exactly, to obtain closed-form solutions). It therefore becomes

necessary to find approximate solutions with a numerical algorithm. Fortunately, a number

of reliable and efficient methods are available for such solution. The remainder of this

course is devoted to these methods and their analysis.

One-step methods Assume that the IVP

y′ = f(x,y) , y(x0) = y0 ,

admits a unique stable solution y : [x0, X] → D that is defined on the bounded interval

[x0, X]. How can we compute a numerical approximation of y that can be made arbitrarily

accurate? A simple idea is to first divide the interval [x0, X] into N ∈ N+ subintervals

defined by the equidistant points xn = x0 + nh, n = 0, . . . , N , where the step size h is

h = (X − x0)/N . To each time step xn, we associate an approximation yn of y(xn). To

define how to compute these approximations, we take inspiration from the integral equation

arising in Picard’s theorem:

y(xn+1) = y(xn) +

∫ xn+1

xn

f(x,y(x)) dx ,

which is obtained by integrating the IVP, and where the integration is to be understood

componentwise.

This equality suggests that, if we have already computed an approximation yn of y(xn),

we could compute yn+1 by adding to yn an approximation of the integral appearing on the

righthand side. There is therefore a deep connection between quadrature and the solution

of IVPs. Indeed if f(x,y) = f(x), i.e., f does not depend on y, then computing y is

a standard quadrature problem, and can be solved by e.g. Gauss quadrature. Starting

with n = 0, we could iterate such a strategy to compute the entire sequence {yn}Nn=0. In

what follows, we construct three different schemes based on three different (and still very

similar) approximations of the integral and investigate the impact that this choice has on

the properties of the resulting numerical method.

Lecture 12–13 pg 2 of 7

To construct an approximation of the integral, we recall that by the mean value theorem

there is a ξ ∈ [xn, xn+1] such that∫ xn+1

xn

f(x,y(x)) dx = hf(ξ,y(ξ)) .

Therefore, we can construct an approximation by replacing ξ with a value s we like. The

resulting numerical approximation rule is called a rectangle rule. A consequence is that,

for any s ∈ [xn, xn+1], the approximation error is at most∫ xn+1

xn

f(x,y(x)) dx− hf(s,y(s)) = h(f(ξ,y(ξ))− f(s,y(s))) ≤ h max
r∈[xn,xn+1]

|f(r,y(r))− f(s,y(s))|.

For instance, we can choose s = xn, so that∫ xn+1

xn

f(x,y(x)) dx ≈ hf(xn,y(xn)) .

Inserting this gives

y(xn+1) ≈ y(xn) + hf(xn,y(xn)) ,

which motivates the definition of the explicit Euler method2

yn+1 = yn + hf(xn,yn) .

Two other interesting choices are ξ = xn+1 and ξ = (xn + xn+1)/2, which give rise to the

implicit Euler method

yn+1 = yn + hf(xn+1,yn+1)

and the implicit midpoint rule

yn+1 = yn + hf(xn + h/2, (yn + yn+1)/2) ,

respectively.

Note the occurrence of yn+1 on the right-hand side of these last two methods. These

numerical methods are called implicit, because computing yn+1 requires solving a (generally

nonlinear) system, which makes them more computationally expensive than explicit Euler.

The arising equations are typically solved with Newton’s method, which you met in M4

Constructive Mathematics. Explicit methods are faster per timestep, but as we will see

often suffer from severe timestep restrictions to retain stability, and implicit methods are

usually faster for such problems.

We test these methods on two different examples. First, we consider the linear test

case

y′ = λy , y0 = 1 , x ∈ [0, 1] . (1)

For λ = 3 and N = 10, we observe that all three methods compute a qualitatively

correct solution, although the one computed with the implicit midpoint rule is way more

2The explicit and the implicit Euler methods have been known since 1768!

Lecture 12–13 pg 3 of 7

accurate. Doubling the value of N , we see that the accuracy of the Euler methods improves,

although they are never as precise as the implicit midpoint rule.

Next, we investigate what happens for negative values of λ. This case is interesting

because the exact solution converges to 0 exponentially fast. We fix N = 10 and investigate

different values of λ. For λ ∈ [−1,−10], we see that all methods provide a qualitatively

correct solution. For λ < −10, we see that the explicit Euler solution start oscillating,

becoming equioscillatory for λ = −20, and diverging for λ < −20.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

exact

impEul

impMpr

expEul

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

exact

impEul

impMpr

expEul

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

exact

impEul

impMpr

expEul

Figure 1: Solving (1) using explicit Euler, midpoint and implicit Euler methods.

For λ < −20, the solution computed with the implicit midpoint rule also starts to

oscillate, although the level of these oscillations cannot be compared with the ones of the

explicit Euler method, and the method does not diverge (not even for λ = −9000). On

the other hand, it is surprising to see that the implicit Euler method provides excellent

solutions for any negative number of λ. This example shows that the stability of a numerical

method can vary drastically.

The second test case we consider is the following IVP:

y′ =

(
y2
−y1

)
, y0 =

(
1

0

)
, x ∈ [0, 2π] , (2)

whose analytical (exact) solution is y(x) =
(
cos(x)
sin(x)

)
. This case is interesting because the

quantity Q(y) := ‖y(x)‖ is constant in time. We fix N = 40 and plot the orbit (that is,

the curve t 7→ y(x)) of the numerical solutions computed with the three methods above

and the evolution of their quantity Q.

The numerical solutions are illustrated in Figure 2. We see that the implicit midpoint

rule is the only method that preserves Q, and that it does it up to machine precision! The

laws of physics are typically formulated by considering the conservation laws of energy,

mass, momentum, etc., and numerical methods that exactly preserve key structural prop-

erties of the underyling models are now of prime importance. This line of thinking has led

to a beautiful confluence of numerical analysis with geometry and topology.

Consistency of a one-step method

Definition 2. A one-step method is a function Ψ that takes the triplet (s,y, h) ⊂ R ×
Rd × R and a function f , and computes an approximation Ψ(s,y, h, f) of y(s+ h), which

Lecture 12–13 pg 4 of 7

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

expEul

impEul

impMpr

0 1 2 3 4 5 6
0.6

0.8

1

1.2

1.4

1.6

1.8
Q(y(t))

Figure 2: Numerical solutions for (2).

is the solution at s+ h of the IVP

y′(x) = f(x,y) , y(s) = y .

Here, we tacitly assume that y(s + h) exists. Additionally, the timestep h may need to be

sufficiently small for Ψ to be well defined.

Definition 3. A one-step method Ψ is said to be consistent if

Ψ(s,y, 0, f) = y

and
d

dh
Ψ(s,y, h, f)|h=0 = f(s,y) .

Definition 4. The consistency error τ is defined as

τ (s,y, h, f) :=
y(s+ h)− y

h
− Ψ(s,y, h, f)− y

h
=

y(s+ h)−Ψ(s,y, h, f)

h
,

where y(s+ h) is the solution at s+ h of the IVP.

The following lemma gives additional insight about the definition of consistent one-step

method. The gist of it is that a one-step method is consistent if the consistency error can

be made arbitrarily small by reducing h.

Lemma. Assume that h 7→ Ψ(s,y, h, f) is continuously differentiable in a neighborhood

of 0. Then, Ψ is consistent if and only if, for any fixed f ,

‖τ (s̃, ỹ, h, f)‖ → 0 as h→ 0

locally uniformly in (s̃, ỹ) ∈ R, where R is the cylinder from Picard’s Theorem.

It is sometimes convenient to represent an abstract one-step method via its increment

function.

Lemma. Assume that h 7→ Ψ(s,y, h, f) is continuously differentiable in a neighborhood

of 0. Then, Ψ is consistent if and only if there is a continuous increment function h 7→

Lecture 12–13 pg 5 of 7

ψ(s,y, h, f) such that

Ψ(s,y, h, f) = y + hψ(s,y, h, f) , ψ(s,y, 0, f) = f(s,y) .

We also define the global error

en := y(xn)− yn.

Then e := eN = y(xN)− yN is the error in the solution at x = X.

Theorem. Let Ψ be a consistent one-step method and assume that its increment function

ψ is Lipschitz continuous with respect to y, that is, that there exists a positive constant

Lψ such that, for 0 ≤ h ≤ h0 and for the same region R of Picard’s theorem,

‖ψ(x,y, h, f)−ψ(x, z, h, f)‖ ≤ Lψ‖y − z‖ for(x,y), (x, z) inR .

Then, assuming that (xn,yn) remains in R, it follows that

e ≤
(

exp (Lψ(xN − x0))− 1

Lψ

)
max

n=0,...,N−1
‖τ (xn,y(xn), h, f)‖ .

Proof. For a generic n ∈ {1, . . . , N − 1},

en+1= ‖y(xn+1)− yn+1‖ ,
= ‖y(xn+1)−Ψ(xn,yn, h, f)‖ ,
= ‖y(xn+1)−Ψ(xn,y(xn), h, f) + Ψ(xn,y(xn), h, f)−Ψ(xn,yn, h, f)‖ ,
≤ ‖y(xn+1)−Ψ(xn,y(xn), h, f)‖+ ‖Ψ(xn,y(xn), h, f)−Ψ(xn,yn, h, f)‖ ,
= h‖τ (xn,y(xn), h, f)‖+ ‖ (y(xn) + hψ(x,y(xn), h, f))− (yn + hψ(x,yn, h, f)) ‖ ,
≤ h‖τ (xn,y(xn), h, f)‖+ ‖y(xn)− yn‖+ h‖ψ(x,y(xn), h, f)−ψ(x,yn, h, f)‖ ,
= h‖τ (xn,y(xn), h, f)‖+ en + h‖ψ(x,y(xn), h, f)−ψ(x,yn, h, f)‖ ,
≤ h‖τ (xn,y(xn), h, f)‖+ en + hLψ‖y(xn)− yn‖ ,
= h‖τ (xn,y(xn), h, f)‖+ (1 + hLψ)en .

Iterating recursively, this implies that (note that e0 = 0)

en+1≤ (1 + hLψ)n+1e0 + h
∑n

k=0(1 + hLψ)k maxm=0,...,n ‖τ (xm,y(xm), h, f)‖
=

(1+hLψ)
n+1−1

Lψ
maxm=0,...,n ‖τ (xm,y(xm), h, f)‖ .

To conclude the proof, note that 1 + hLψ ≤ exphLψ. 2

A method is said to have order of accuracy (or just order) p if e ≤ Chp for some constant

C. The related notion of consistency order is the largest p̃ such that the consistency error

‖τ (s,y, h, f)‖ ≤ C̃hp̃ for some C̃. The consistency order p̃ measures the local error whereas

p does the global error; they are usually the same, as the above theorem suggests.

Listing 1: l11 ivp1.m

1 clear , set(0,’DefaultFigureWindowStyle ’,’docked ’)

2 N = 10; h = 1/N; lambda = -20; %modify these parameters to experiment

Lecture 12–13 pg 6 of 7

3 expEul = nan(1, N+1); impEul = nan(1, N+1); impMpr = nan(1, N+1);

4 y0 = 1; expEul (1) = y0; impEul (1) = y0; impMpr (1) = y0;

5

6 for ii = 1:N

7 expEul(ii+1) = expEul(ii)*(1+h*lambda);

8 impEul(ii+1) = impEul(ii)/(1-h*lambda);

9 impMpr(ii+1) = impMpr(ii)*(1+h*lambda /2)/(1 -h*lambda /2);

10 end

11

12 t = linspace(0, 1, N+1); figure (1);

13 plot(t, exp(lambda*t), t, impEul , ’*-’, t, impMpr , ’k*-’,t, expEul , ’*-’)

14 legend ({’exact’, ’impEul ’, ’impMpr ’,’expEul ’})

Listing 2: l11 ivp2.m

1 clear , set(0,’DefaultFigureWindowStyle ’,’docked ’)

2 N = 40; T = 2*pi; h = T/N; A = [0 1; -1 0];

3 expEul = nan(2, N+1); impEul = nan(2, N+1); impMpr = nan(2, N+1);

4 y0 = [1; 0]; expEul (:,1) = y0; impEul (:,1) = y0; impMpr (:,1) = y0;

5

6 for ii = 1:N

7 expEul(:,ii+1) = (eye (2)+h*A)* expEul(:,ii);

8 impEul(:,ii+1) = (eye(2)-h*A)\ impEul(:,ii);

9 impMpr(:,ii+1) = (eye(2)-h*A/2)\((eye (2)+h*A/2)* impMpr(:,ii));

10 end

11 figure (2); subplot (1,2,1);

12 plot(expEul (1,:), expEul (2,:), ’*-’, ’linewidth ’, 4);

13 plot(impEul (1,:), impEul (2,:), ’*-’, ’linewidth ’, 4);

14 plot(impMpr (1,:), impMpr (2,:), ’*-’, ’linewidth ’, 4);

15 axis equal

16 legend ({’expEul ’, ’impEul ’, ’impMpr ’})

17 subplot (1,2,2), t = linspace(0, T, N+1); Q = @(y) sqrt(sum(y.^2, 1));

18 plot(t, Q(expEul), ’*-’, t, Q(impEul), ’*-’, t, Q(impMpr), ’*-’,’linewidth ’, 4)

19 title(’Q(y(t))’,’FontSize ’ ,24);

20 fprintf(’max(abs(Q(impMpr)-1)) = %e\n’, max(abs(Q(impMpr)-1)))

Lecture 12–13 pg 7 of 7

Numerical Analysis Hilary Term 2021

Lecture 14: Runge–Kutta methods

Runge–Kutta methods: Runge–Kutta (RK) methods form a broad class of algorithms

for the numerical solution of IVPs. The class includes both explicit and implicit schemes.

When applications call for an integrator with some kind of stability or conservation prop-

erty, there usually exists a suitable RK method. In particular, RK methods can be made

arbitrarily high-order without the loss of stability.

Here we state some results without proof; they are nonexaminable. For a detailed

discussion, we refer to the books

� Süli and Mayer, “Introduction to Numerical Analysis”

� Hairer, Norsett, and Wanner, “Solving Ordinary Differential Equations”

� Butcher, “Numerical Methods for Ordinary Differential Equations”

Definition 1. The family of s-stage Runge–Kutta methods is defined by

Ψ(x,y, h, f) = y + h
s∑
i=1

biki , (1)

where the stages kis (recall that y ∈ Rd, and so do the kis) are the solutions of the coupled

system of (generally nonlinear) equations

ki := f(x+ cih,y + h
s∑
j=1

aijkj) , i = 1, . . . , s . (2)

The coefficients {ci}si=1 are always given by

ci :=
s∑
j=1

aij i = 1, . . . , s .

Definition 2. The coefficients of a Runge–Kutta method are commonly summarized in a

Butcher tableau1

c A[
b>

.

Example 3. The explicit Euler method, the implicit Euler method, and the implicit mid-

point rule are Runge–Kutta methods. Their Butcher tables are

0 0

1
,

1 1

1
, and

1/2 1/2

1
, respectively.

1The use of this tableau was introduced by J. C. Butcher in 1963 with the article Coefficients for the study of

Runge–Kutta integration processes.

Lecture 14 pg 1 of 6

It is convenient at this point to restrict our attention to autonomous IVPs. (Recall that

a nonautonomous system can always be made autonomous by increasing its dimension.)

The process of making an IVP autonomous commutes with Runge–Kutta discretisation if

and only if
s∑
i=1

bi = 1, ck =
s∑
j=1

akj k = 1, . . . , s ,

which we assume henceforth. (In other words, if these conditions hold, the RK discreti-

sation of the autonomised system is the autonomisation of the RK discretisation of the

original problem.)

By computing appropriate Taylor expansions, it is possible to derive algebraic condi-

tions the Runge–Kutta coefficients must satisfy for the method to have a targeted consis-

tency order. For example:

Lemma 4. A Runge–Kutta method is consistent if and only if
∑s

i=1 bi = 1. If the condi-

tion
s∑
i=1

bici =
1

2

is also satisfied, the Runge–Kutta method has consistency order 2, and if the conditions

s∑
i=1

bic
2
i =

1

3
and

s∑
i=1

bi

s∑
j=1

aijcj =
1

6

are also satisfied, the Runge–Kutta method has consistency order 3.

The following table indicates the number of conditions as described above that a Runge–

Kutta method must satisfy to have order p:

p 1 2 3 4 5 6 7 8 9 10 20

#conditions 1 2 4 8 17 37 85 200 486 1205 20247374
.

The number of stages of a Runge–Kutta method provides an interesting upper bound

on its consistency order.

Lemma 5. The (consistency) order p of an s-stage Runge–Kutta method is bounded by

p ≤ 2s. If the Runge–Kutta method is explicit, then p ≤ s.

To evolve a numerical solution from xn to xn+1 with a Runge–Kutta method, one

needs to compute the stages ki. If the Runge–Kutta method is explicit, these stages can

be computed sequentially (and at a low-cost) starting from k1 (a Runge–Kutta method is

explicit if aij = 0 whenever j ≥ i, i.e. the matrix A is strictly lower-triangular). An example

of this is the explicit Euler method. If A is lower-triangular (i.e. possibly aii 6= 0), then

the scheme is said to be diagonally-implicit ; one can compute the stages ki sequentially,

solving a sequence of nonlinear problems. The implicit Euler and implicit midpoint rules

are examples of diagonally-implicit RK methods. Finally, if A enjoys neither of these

structures, the RK method is said to be fully implicit; one must solve a large coupled

nonlinear system for all stages simultaneously.

Lecture 14 pg 2 of 6

It is possible to construct Runge–Kutta methods that achieve maximal order. So-called

Butcher barriers quantify the minimal amount of stages that an explicit Runge–Kutta

method of order p requires. The following table shows some of these minimal amount of

stages:

p 1 2 3 4 5 6 7 8 ≥ 9

minimal value of s 1 2 3 4 6 7 9 11 ≥ p+ 3
.

This implies that a Runge–Kutta method that has maximal order must be implicit.

Construction of explicit RK methods: To construct explicit Runge–Kutta methods,

we start by recalling that the analytic solution of

y′ = f(x,y) , y(x0) = y0 , (3)

is given by the (implicit) formula

y(x+ h) = y(x) +

∫ x+h

x

f(τ,y(τ)) dτ = y(x) + h

∫ 1

0

f(x+ hτ,y(x+ hτ)) dτ .

Approximating the latter integral with a quadrature rule on [0, 1] with s nodes c1, . . . , cs
and weights b1, . . . , bs returns

y(x+ h) ≈ y(x) + h
s∑
i=1

bif(x+ cih,y(x+ cih)) . (4)

Note that this approximation requires the values y(x+ cih). To make the method explicit,

we approximate the values y(x0 + cih) with explicit Runge–Kutta methods we already

know. This way, we can construct s-stage explicit Runge–Kutta methods by induction.

Example 6. If we choose the 1-point Gauss quadrature rule, that is,

y(x+ h) ≈ y(x) + hf(x+ h/2,y(x+ h/2)) (5)

and approximate y(x+ h/2) with the explicit Euler method, the resulting scheme reads

Ψ(x,y, h, f) = y + hf

(
x+ h/2,y +

h

2
f(x,y)

)
. (6)

Example 7. If we use the trapezium rule, that is,

y(x+ h) ≈ y(x) +
h

2
f(x,y(x)) +

h

2
f(x+ h,y(x+ h)) ,

and approximate y(x+ h) with the explicit Euler method, the resulting scheme reads

Ψ(x,y, h, f) = y +
h

2
f(x,y) +

h

2
f (x+ h,y + hf(x,y)) . (7)

Lecture 14 pg 3 of 6

Both of these are 2nd-order Runge–Kutta methods. Their Butcher tables read

0 0 0

1/2 1/2 0

0 1

and

0 0 0

1 1 0

1/2 1/2

,

respectively.

A similar approach leads to the most famous explicit Runge–Kutta method RK4, a

4-stage 4th-order explicit Runge–Kutta method whose Butcher table reads

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 2/6 2/6 1/6

.

We have seen that s-stage explicit Runge–Kutta methods have at most order s. Next,

we construct s-stage implicit Runge–Kutta methods whose order is at least s.

Definition 8. Let c1, . . . , cs ∈ [0, 1] be (pairwise distinct) collocation points. The corre-

sponding collocation method is the one-step method defined by

Ψ(x,y, h, f) = ỹ(h) ,

where ỹ is the unique polynomial of degree s that satisfies

ỹ(0) = y and ỹ′(cih) = f(x+ cih, ỹ(cih)) , for i = 1, . . . , s . (8)

Lemma 9. Let Q be the highest-order quadrature rule on [0, 1] that can be constructed

using the nodes c1, . . . , cs, and let pQ be its order (pQ = 1 + the maximal degree of polyno-

mials it integrates exactly). If f is sufficiently smooth and h > 0 is sufficiently small, the

collocation method associated to c1, . . . , cs has order pQ.

Corollary 10. If f is sufficiently smooth and h > 0 is sufficiently small, the order of the

collocation method associated to c1, . . . , cs is at least s and at most 2s (Gauss quadrature).

It is not obvious, but collocation methods are indeed Runge–Kutta methods.

Lemma 11. Collocation methods are Runge–Kutta methods. Their coefficients are

aij =

∫ ci

0

Lj(τ) dτ , bi =

∫ 1

0

Li(τ) dτ , (9)

where {Li}si=1 are the Lagrange polynomials associated to c1, . . . , cs.

Stability of Runge–Kutta methods We have seen that numerical methods for IVPs

may encounter stability issues. For simplicity, we only consider autonomous ODEs.

Lecture 14 pg 4 of 6

Definition 12. A fixed point of y′ = f(y) is a point y∗ such that f(y∗) = 0. A fixed point

y∗ is asymptotically stable (or attractive) if there exists a ball Bδ(y
∗) (of radius δ > 0

and centered at y∗) such that, whenever y0 ∈ Bδ(y
∗), the solution to y′ = f(y), y(0) = y0

satisfies limx→∞ y(x) = y∗.

Theorem 13. A fixed point y∗ of an autonomous ODE is asymptotically stable if

σ (Df(y∗)) ⊂ C− := {z ∈ C : Rez < 0} ,

where σ (Df(y∗)) denotes the set of eigenvalues of the matrix Df(y∗).

This theorem implies that, to study the asymptotic stability of y∗, we can restrict our

considerations to the linearised ODE y′ = Df(y∗)(y − y∗), that is, we can restrict our

attention to linear ODEs. To further simplify the analysis, we restrict our attention to a

single eigenvalue, yielding the Dahlquist test equation

y′ = zy , y(0) = 1 , and Rez < 0 . (10)

Clearly, the solution of the Dahlquist test equation is y(x) = exp(zx), which satisfies

limx→∞ y(x) = 0. Therefore, y∗ = 0 is an attractive fixed point.

The solution of the Dahlquist test equation obtained with a Runge–Kutta method has

a special structure:

Definition 14. Let Ψ be a Runge–Kutta method. The function

S : C→ C , z 7→ S(z) := Ψ(0, 1, 1, f : y 7→ zy) ,

is called the stability function of Ψ. To shorten the notation, we henceforth write Ψ(0, 1, 1, z)

instead of Ψ(0, 1, 1, f : y 7→ zy).

Lemma 15. If Ψ is a Runge–Kutta method, then Ψ(0, `, h, z) = Ψ(0, 1, 1, zh)`.

Theorem 16. Let {yk}k∈N be the Runge–Kutta solution to the Dahlquist test equation

obtained with a time step h > 0. Then, yk = S(zh)k.

Proof. By direct computation, we can see that

y1 = Ψ(0, 1, h, z) = Ψ(0, 1, 1, zh) = S(zh)

and that

y2 = Ψ(0, y1, h, z) = Ψ(0, 1, 1, zh)y1 = S(zh)y1 = S(zh)2 .

Therefore, we conclude that yk = S(hλ)k. 2

It is desirable that the discrete solution {yk}k∈N satisfies limk→∞ yk = 0, mimicking the

behavior of the exact solution to the Dahlquist test equation. When this happens, we say

that {yk}k∈N is asymptotically stable.

Lecture 14 pg 5 of 6

Definition 17. The region in the complex plane

SΨ := {z ∈ C : |S(z)| < 1}

is called the stability region of the Runge–Kutta method. Clearly, {yk}k∈N is asymptotically

stable if zh ∈ SΨ.

It is not so difficult to see that the stability function of an explicit Runge–Kutta method

is a polynomial, which implies that SΨ is bounded. Therefore, the numerical approximation

computed with an explicit Runge–Kutta method cannot be asymptotically stable if the

time step h is too large. This is what we saw in our previous numerical experiments.

However, the stability function of an implicit Runge–Kutta method is a rational function,

and hence may not suffer from this limitation.

Definition 18. A Runge–Kutta method is said to be A-stable2 if C− ⊂ SΨ.

The Gauss collocation methods form a family of arbitrarily high-order A-stable methods

whose stability region is exactly C−.

A-stability guarantees that {yk}k∈N will eventually converge to zero. However, the

decay can be very slow compared to that of the exact solution.

Example 19. Let {yk} be the approximate solution to the Dalhquist test equation obtained

with the implicit midpoint rule and a fixed step size h. By direct computation, we can see

that stability function of the implicit midpoint rule is

S(z) =
1 + z/2

1− z/2
.

The exact solution converges exponentially to zero with rate Rez. In particular, the smaller

(more negative) the Rez, the quicker the convergence. On the other hand, {yk} is a geomet-

ric sequence with ratio S(zh). This also converges to zero, but the more negative the Rez,

the closer |S(zh)| to 1, and the slower the decay of {yk}. This implies that, if Rez � 0,

the qualitative behavior of {yk} can be very different from the one of the exact solution.

Therefore, if the initial value problem has a strongly attractive fixed point, it is advisable

to further ensure that limRez→−∞ |S(z)| = 0.

Definition 20. An A-stable method that further satisfies limRez→−∞ |S(z)| = 0 is said to

be L-stable (or stiffly accurate).

One can verify that the implicit Euler method is L-stable, but it is not the only one. An

example of a family of L-stable RK methods is the Gauss–Radau family. This is a family of

collocation methods where the final quadrature point is fixed to cs = 1 and the remaining

points c1, . . . , cs−1 are chosen to obtain an associated quadrature rule of maximal order

2s− 1.

2This concept was introduced by G. Dahlquist in 1963 with the article A special stability problem for linear

multistep methods.

Lecture 14 pg 6 of 6

Numerical Analysis Hilary Term 2021

Lecture 15–16: Multistep methods

Linear multi-step methods

Runge-Kutta methods deliver an approximate solution to

y′ = f(x,y) , y(x0) = y0 , (1)

but tacitly assume that it is possible to evaluate the right-hand side f(x,y) anywhere (and

use a lot of such function evaluations). Instead, linear multi-step methods require values

of f at grid points only.

Definition 1. Let X > x0 be a final time, N, k ∈ N, N ≥ k, h := (X − x0)/N , and xn :=

x0 + hn. A linear k-step method is an iterative method that computes the approximation

yn+k to y(xn+k) by solving

k∑
j=0

αjyn+j = h

k∑
j=0

βjf(xn+j,yn+j) , (2)

where {αj}kj=0 and {βj}kj=0 are real coefficients. To avoid degenerate cases, we assume that

αk 6= 0 and that α2
0 + β2

0 6= 0.

Note that if βk = 0, the method is explicit.

It is also possible to construct multi-step methods on nonequidistant grids, and good

timestepping software does so for you.

In the same way Runge-Kutta methods are summarized with Butcher tables, linear

multi-step methods can be summarized with two polynomials.

Definition 2. For the k-step method defined by (2),

ρ(z) =
k∑

j=0

αjz
j and σ(z) =

k∑
j=0

βjz
j (3)

are called the first and second characteristic polynomials.

Example 3. A simple linear 3-step method can be constructed using Simpson’s quadrature

rule. Indeed,

y(xn+1)= y(xn−1) +
∫ xn+1

xn−1
f(x,y(x)) dx

≈ y(xn−1) + 2h
6

(f(xn−1,y(xn−1)) + 4f(xn,y(xn)) + f(xn+1,y(xn+1))) .

This motivates the following linear 2-step method

yn+2 − yn = h

(
2

6
f(xn,yn) +

8

6
f(xn+1,yn+1) +

2

6
f(xn+2,yn+2)

)
(4)

Its first and second characteristic polynomials are

ρ(z) = z2 − 1 and σ(z) =
2

6
(z2 + 4z + 1) . (5)

Lecture 15–16 pg 1 of 7

There is a formal calculus that can be used to construct families of multi-step methods.

Definition 4. For a fixed small h > 0, we define:

� the shift operator E : y(x) 7→ y(x+ h),

� its inverse E−1 : y(x) 7→ y(x− h),

� the difference operator ∆ : y(x) 7→ y(x)− y(x− h),

� the identity operator I : y(x) 7→ y(x),

� and the differential operator D : y(x) 7→ y′(x).

Lemma 5. Suppose that y(x) is analytic (hence infinitely differentiable) at x. Then for-

mally, hD = − log(I−∆).

Proof. First, using Taylor expansion, we can show that

Ey(x)= y(x) + hy′(x) + h2

2
y′′(x) + . . .

= y(x) + hDy(x) + h2

2
D2y(x) + . . . = exp(hD)y(x) ,

and thus, E = exp(hD). This implies that hD = log(E).

Then, using the definition, we see that E−1 = I−∆, and thus E = (I−∆)−1.

Therefore, hD = log(E) = log((I−∆)−1) = − log(I−∆). 2

Example 6. We can construct a multi-step method using the previous lemma. Indeed, by

Taylor expansion of the logarithm log(1− x) = −
∑∞

i=1 x
i/i,

hD = − log(I−∆) =

(
∆ +

1

2
∆2 +

1

3
∆3 + . . .

)
, (6)

and thus

hf(xn,y(xn)) =

(
∆ +

1

2
∆2 +

1

3
∆3 + . . .

)
y(xn) . (7)

To construct a family of multi-step methods, we truncate the infinite series at different

orders and replace y(xn) with yn. These methods are called backward differentiation for-

mulas, and their simplest instances are

yn − yn−1= hf(xn,yn) , (implicit Euler)
3
2
yn − 2yn−1 + 1

2
yn−2= hf(xn,yn) ,

11
6

yn − 3yn−1 + 3
2
yn−2 − 1

3
yn−3= hf(xn,yn) .

Example 7. Explicit Euler’s method arises from truncating the series

hD =

(
∆− 1

2
∆2 − 1

6
∆3 + . . .

)
E , (8)

which can be derived similarly.

Lecture 15–16 pg 2 of 7

Example 8. Another two important families are the Adams-Moulton methods and the

Adams-Bashforth methods, which originate from the formal equalities

E∆= h
(
I− 1

2
∆− 1

12
∆2 − 1

24
∆3 − 19

720
∆4 + . . .

)
D ,

E∆= h
(
I + 1

2
∆ + 5

12
∆2 + 3

8
∆3 + 251

720
∆4 + . . .

)
D ,

respectively.

For example, writing fn+i = fn+i(xn+i,yn+i) for simplicity, the three-step Adams–

Moulton method is (an implicit method)

yn+3 = yn+2 +
1

24
h (9fn+3 + 19fn+2 − 5fn+1 − 9fn) ,

and the four-step Adams-Bashforth method is (explicit)

yn+4 = yn+3 +
1

24
h (55fn+3 − 59fn+2 + 37fn+1 − 9fn)

To compute yk with a linear k-step method, we need the values y0, . . . ,yk−1. These

(except y0) must be approximated with either a one-step method or another multi-step

method that uses fewer steps. At any rate, they will contain numerical errors. Clearly,

a meaningful multistep method should be robust with respect to small perturbations of

these initial values.

Definition 9. A linear k-step method is said to be zero-stable if there is a constant K > 0

such that for every N ∈ N sufficiently large and for any two different sets of initial data

y0, . . . ,yk−1 and ỹ0, . . . , ỹk−1, the two sequences {yn}Nn=0 and {ỹn}Nn=0 that stem from the

linear k-step method with h = (X − x0)/N satisfy

max
0≤n≤N

‖yn − ỹn‖ ≤ K max
j≤k−1

‖yj − ỹj‖ . (9)

Zero-stability of a k-step method can be verified algebraically with the following property,

which is known as the root condition.

Definition 10. A linear k-step method satisfies the root condition if all zeros of its first

characteristic polynomial ρ(z) lie inside the closed unit disc, and every zero that lies on

the unit circle is simple.

Theorem 11. A linear multi-step method is zero-stable for any ODE y′(x) = f(x,y)

with Lipschitz right-hand side, if and only if the linear multi-step method satisfies the root

condition.

This theorem implies that zero-stability of a multi-step method can be determined by

merely considering its behavior when applied to the trivial differential equation y′ = 0; it

is for this reason that it is called zero-stability.

Consistency and convergence

Lecture 15–16 pg 3 of 7

Definition 12. The consistency error of a linear k-step method with σ(1) 6= 0 is

τ (h) =

∑k
j=0 αjy(xj)− h

∑k
j=0 βjy

′(xj)

h
∑k

j=0 βj
, (10)

where y is a smooth function.

Definition 13. A linear multi-step method has (consistency) order p if τ (h) = O(hp).

By adequate Taylor expansion, we can obtain the following theorem.

Theorem 14. A linear multi-step method has consistency order p if and only if σ(1) 6= 0

and
k∑

j=0

αj = 0 and
k∑

j=0

αjj
q = q

k∑
j=0

βjj
q−1 for q = 1, . . . , p . (11)

Definition 15. A multi-step method is said to be consistent if these conditions are satisfied

at least for p = 1.

Theorem 16. A linear multi-step method is consistent iff

ρ(1) = 0 and ρ′(1) = σ(1) 6= 0. (12)

In general, these conditions can be reformulated more elegantly.

Theorem 17. Equation (11) is equivalent to ρ(eh)− hσ(eh) = O(hp+1).

To define the concept of convergence for linear k-step methods, we need to specify some

criteria about the choice of the starting conditions.

Definition 18. A set of starting conditions yi = ηi(h), i = 0, . . . , k− 1 is consistent with

the initial value y0 if ηs(h)→ y0 as h→ 0 for every s = 0, . . . , k − 1.

Definition 19. A linear k-step method is convergent if, for every initial value problem

y = f(x,y), y(x0) = y0 (that satisfies the assumptions of Picard’s theorem) and for any

choice of consistent starting conditions

y0 = η0(h), . . . ,yk−1 = ηk−1(h) , (13)

we have that

lim
h→0

yN = y(X) (with N = (X − x0)/h) (14)

Theorem 20 (Dahlquist’s Equivalence Theorem). For consistent linear k-step method

with consistent starting values, zero-stability is necessary and sufficient for convergence.

Moreover, if τ (h) = O(hp) and ‖y(xs) − ηs(h)‖ = O(hp) for s = 0, . . . , k − 1, then

max0≤n≤N ‖y(xn)− yn‖ = O(hp).

Lecture 15–16 pg 4 of 7

For Runge–Kutta methods, we showed that one can construct s-stage methods of order

2s. Unfortunately, it is not possible to construct linear k-step methods of order 2k without

violating the zero-stability requirement.

Theorem 21 (The first Dahlquist-barrier). The order p of a zero-stable linear k-step

method satisfies

� p ≤ k + 2 if k is even,

� p ≤ k + 1 if k is odd,

� p ≤ k if βk/αk ≤ 0 (in particular if the method is explicit).

Stability of linear multi-step methods Similar to one-step methods, stability is in-

vestigated by applying a linear multi-step method to the Dahlquist test equation y′ = zy,

z ∈ C, y(0) = 1, and h = 1. Recall that the solution to this ODE is y(x) = exp(zx), that

|y(x)| → 0 as t → ∞ whenever Re(z) < 0, and that we call its numerical approximation

{yn}n∈N (absolutely) stable if yn → 0 as n→∞ when Re(z) < 0.

Our goal is to investigate when the sequence {yn}n∈N computed with a linear k-step

method is stable. First of all, note that the n-th iterate yn satisfies

k∑
j=0

αjyn+j =
k∑

j=0

βjzyn+j , or equivalently,
k∑

j=0

(αj − zβj)yn+j = 0 . (15)

With the following lemma from the theory of difference equations, we know that yn is of

the form

yn = p1(n)rn1 + . . .+ p`(n)rn` , (16)

where the rjs are the roots of the polynomial π(x) =
∑k

j=0(αj− zβj)xj, and the pj(n)s are

polynomials of degree mj − 1, where mj is the multiplicity of rj.

Lemma 22. Let {γi}ki=0 be real coefficients and let {xi}k−1i=0 be initial values. Let {xn}n∈N
be the sequence defined by the kth order linear difference equation

k∑
i=0

γixn+i = 0 . (17)

Then, xn is of the form

xn = p1(n)rn1 + . . .+ p`(n)rn` , (18)

where r1, . . ., r` are the roots of the polynomial π(x) =
∑k

i=0 γix
i and p1, . . ., p` are

polynomials of degree m1 − 1, . . ., m` − 1, where mi is the multiplicity of ri.

With (16), we can fully analyze the asymptotic behavior of {yn}n∈N. Indeed:

� if π(x) has a zero rj outside the unit disc, than yn grows as |rj|n,

� if an rj is on the unit circle and has multiplicity mj > 1, then yn ∼ nmj−1,

Lecture 15–16 pg 5 of 7

� otherwise, yn → 0 geometrically as n→∞.

This computation shows that the polynomial π plays a crucial role in this stability

analysis. Therefore, similarly to one-step methods, we introduce the following definitions.

Definition 23. The stability polynomial of a linear k-step method is

π(x) = π(x; z) :=
k∑

j=0

(αj − zβj)xj = ρ(x)− zσ(x) . (19)

Definition 24. The stability domain of a linear multistep method is

S := {z ∈ C : if π(x; z) = 0, then |x| ≤ 1; multiple zeros satisfy |x| < 1} . (20)

Note that 0 ∈ S if the method is zero-stable (as π(x; 0) = ρ(x)).

Dahlquist’s second barrier theorem places sharp limits on the stability domains of linear

multi-step methods.

Theorem 25 (Dahlquist’s second barrier). An A-stable linear multi-step method must

be implicit and of order p ≤ 2. The trapezium rule is the second-order A-stable linear multi-

step method with the smallest error constant.

It is possible to break the Dahlquist barrier by hybridising between multi-stage and multi-

step methods. Such methods are called general linear methods1.

Example 26. We conclude with an example illustrating some of the results. Consider

the scalar IVP y′ = sin(x2)y, y(0) = 1. We use explicit Euler, implicit Euler, implicit

midpoint, explicit 4-stage Runge-Kutta, and 4th order Adam-Bashforth method to solve it.

Here are the solutions.

0 1 2 3 4 5 6 7 8

x

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

y

Explicit Euler

Implicit Euler

Midpoint

Exact

We now look at the error y(xn) − yn, shown in Figure 1. There we also examine the

multistep method

yn+2 = −4yn+1 + 5yn + h(4f(xn+1,yn+1)− 2f(xn,yn)) (21)

Lecture 15–16 pg 6 of 7

0 1 2 3 4 5 6 7 8

x

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

e
rr

o
r

Explicit Euler

Implicit Euler

Midpoint

RK4

Adams-Bash

0 1 2 3 4 5 6 7 8
10

-10

10
0

10
10

10
20

10
30

10
40

10
50

10
60

error with unstable method!

Figure 1: Errors with stable methods (left) and an unstable method (21)

which has consistency order 3, but is not zero-stable; we thus expect it to not converge. In

fact the solution blows up and the error diverges to ∞—it hardly gets any worse than that!

Finally, we can vary the step size h and examine the convergence as h → 0. Higher-

order methods should have better accuracy especially for small h. We confirm this in the

figure (note the loglog scale).

10
-3

10
-2

10
-1

h

10
-6

10
-4

10
-2

10
0

e
rr

o
r

O(h)

O(h
2
)

O(h
4
)

e-Euler

i-Euler

midpoint

R-K4

Adam-B4

(MATLAB code is lec16 demo.m)

This concludes this course—for further courses related to numerical analysis, check out

e.g.

� Numerical Solution of Differential Equations (Part B)

� Approximation of Functions (Part C)

� Numerical Linear Algebra (Part C)

� Finite Element Method for PDEs (Part C)

� Continuous Optimisation (Part C)

1See General linear methods, J. C. Butcher, Acta Numerica (2006).

Lecture 15–16 pg 7 of 7

