Numerical Analysis Sheet 3 — HT21

Orthogonal polynomials, best approximation, quadrature

- 1. For each of the following, say if it defines a norm on $C^{1}[a, b]$ (the vector space of continuously differentiable functions on [a, b]), and if not, why not:
 - (i) $\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right|$ (ii) $\max \left| f(x) + f'(x) \right|$
 - (ii) $\max_{x \in [a,b]} |f(x) + f'(x)|$
 - (iii) $\max_{x \in [a,b]} [f(x)]^2$ (iv) $\max_{x \in [a,b]} \{ |f(x)| + |f'(x)| \}$
- 2. Calculate the orthogonal polynomials ϕ_0 , ϕ_1 , ϕ_2 in the inner product space defined by

$$\langle f,g \rangle = \int_0^2 x f(x)g(x) \,\mathrm{d}x.$$

3. Calculate the best approximation to x^3 on [0, 2] from Π_2 in the norm derived from the inner product as above,

$$\int_0^2 x f(x) g(x) \, \mathrm{d}x = \langle f, g \rangle.$$

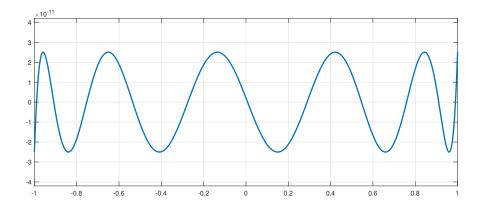
[If you like you can use Matlab or Python for solving linear systems]

- 4. By considering $||f (p + \epsilon q)||^2$ where $\epsilon \in \mathbb{R}$, $q \in \Pi_n$, show that if $p \in \Pi_n$ is a best approximation to f in this norm with associated inner product $\langle \cdot, \cdot \rangle$ then $\langle f p, q \rangle = 0$ for any $q \in \Pi_n$.
- 5. If $\{\phi_0, \phi_1, \dots, \phi_n, \dots\}$ are orthogonal polynomials in $\langle \cdot, \cdot \rangle$ which are normalised to be monic (i.e. have leading coefficient equal to 1) show that $\|\phi_k\| \leq \|q\|$ for all monic polynomials $q \in \Pi_k$ which are of exact degree k where $\|\cdot\|$ is the norm derived from the inner product.
- 6. Let $\mu_j = \int_a^b x^j w(x) dx$ be the *j*th *moment* of the weight distribution w(x). Show that the linear system of equations

$$\begin{bmatrix} \mu_0 & \mu_1 & \cdots & \mu_{n-1} \\ \mu_1 & \mu_2 & \cdots & \mu_n \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n-1} & \mu_n & \cdots & \mu_{2n-2} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{bmatrix} = \begin{bmatrix} \mu_n \\ \mu_{n+1} \\ \vdots \\ \mu_{2n-1} \end{bmatrix}$$

has as solution the coefficients of a polynomial $x^n - \sum_{j=0}^{n-1} c_j x^j$, which is a member of the family of orthogonal polynomials associated with the weight function w.

- 7. Let $p(x) = \sum_{k=0}^{n} c_k \phi_k(x)$ where $\{\phi_k\}_{k=0}^{n}$ are the *orthonormal* Legendre polynomials on [-1, 1]. (i) What is $\int_{-1}^{1} p(x) dx$? (ii) What is the best degree-k polynomial approximant to p in the L₂-norm? (i.e., minimiser of $\int_{-1}^{1} (p(x) q_k(x))^2 dx$ over $q_k \in \Pi_k$)
- 8. Let $f : [a, b] \to \mathbb{R}$ be a real continuous function. Consider finding the best degreek polynomial approximant p_k to f on [a, b] in the L_{∞} -norm (also known as minimax approximation). The solution is known to have a beautiful "equioscillation" property. For example, below is the error $\exp(x) - p_{10}(x)$ of the degree 10 minimax polynomial approximant to the exponential function on [-1, 1].



Make this precise by proving that equioscillation implies optimality: If $f - p_k$ has k + 2 extrema $(a \leq x_1 < x_2 < \cdots < x_{k+2} \leq b)$ with alternating signs, i.e., $f(x_i) - p_k(x_i) = (-1)^{i+\sigma} ||f - p_k||_{\infty}$ where $\sigma = 0$ or 1, then p_k is a minimax polynomial approximant of degree k to f.

Note 1: such computation can be done conveniently using Chebfun as e.g.

f = chebfun(@(x)exp(x)); p = minimax(f,10); plot(f-p).

Note 2: The equioscillation condition is in fact necessary and sufficient.

9. Simpson's Rule is a quadrature rule based on taking three sample points (endpoints x_0, x_2 and the center x_1), finding the quadratic polynomial interpolant, and integrating it. Show that Simpson's rule applied to $I = \int_{x_0}^{x_2} f(x) dx$ gives the approximation $I \approx \frac{x_1-x_0}{3}[f(x_0)+4f(x_1)+f(x_2)].$

Show further that Simpson's rule is exact if f is a cubic polynomial.

- 10. (Optional:) Let f be a polynomial of degree 2n + 1, expressed as $f(x) = \sum_{i=0}^{2n+1} c_i P_i(x)$, where $\{P_i(x)\}_{i=0}^{2n+1}$ are orthonormal polynomials satisfying $\int_{-1}^{1} P_i(x) P_j(x) dx = \delta_{ij}$ (i.e., scaled Legendre polynomials).
 - (a) Explain how to compute c_0 exactly by sampling f at n+1 points.
 - (b) Explain how to compute c_1 exactly by sampling f at n+2 points.