
Numerical Analysis Hilary Term 2021

Lectures 7–8: Computing eigenvalues: The Symmetric QR Algorithm

Direct vs. Iterative Methods: methods such as LU or QR factorisations and solving

Ax = b using them are direct : they compute a certain number of operations and then

finish with “the answer”. Another class of methods are iterative:

- construct a sequence;

- truncate that sequence “after convergence”;

- typically concerned with fast convergence rate (rather than operation count).

Note that unlike LU, QR or linear systems Ax = b, algorithms for eigenvalues are

necessarily iterative: By Galois theory, no finite algorithm can compute eigenvalues of

n × n(≥ 5) matrices exactly in a finite number of operations. We still have an incredibly

reliable algorithm to compute them, essentially to full accuracy (for symmetric matrices;

for nonsymmetric matrices, in a “backward stable” manner; this is outside the scope).

Notation: for x ∈ Rn, ‖x‖ =
√
xTx is the (Euclidean) length of x.

Notation: in iterative methods, xk usually means the vector x at the kth iteration (rather

than kth entry of vector x). Some sources use xk or x(k) instead.

Power Iteration: a simple method for calculating a single (largest) eigenvalue of a

square matrix A (and its associated eigenvector). For arbitrary y ∈ Rn, set x0 = y/‖y‖ to

calculate an initial vector, and then for k = 0, 1, . . .

Compute yk = Axk
and set xk+1 = yk/‖yk‖.

This is the Power Method or Power Iteration, and computes unit vectors in the

direction of x0, Ax0, A
2x0, A

3x0, . . . , A
kx0.

Suppose that A is diagonalizable so that there is a basis of eigenvectors of A:

{v1, v2, . . . , vn}

with Avi = λivi and ‖vi‖ = 1, i = 1, 2, . . . , n, and assume that

|λ1| > |λ2| ≥ · · · ≥ |λn|.

Then we can write

x0 =
n∑
i=1

αivi

for some αi ∈ R, i = 1, 2, . . . , n, so

Akx0 = Ak
n∑
i=1

αivi =
n∑
i=1

αiA
kvi.

However, since Avi = λivi =⇒ A2vi = A(Avi) = λiAvi = λ2i vi, inductively Akvi = λki vi.

So

Akx0 =
n∑
i=1

αiλ
k
i vi = λk1

[
α1v1 +

n∑
i=2

αi

(
λi
λ1

)k
vi

]
.

Lectures 7–8 pg 1 of 8

Since (λi/λ1)
k → 0 as k → ∞, Akx0 tends to look like λk1α1v1 as k gets large. The result

is that by normalizing to be a unit vector

Akx0
‖Akx0‖

→ ±v1 and
‖Akx0‖
‖Ak−1x0‖

≈
∣∣∣∣ λk1α1

λk−11 α1

∣∣∣∣ = |λ1|

as k →∞, and the sign of λ1 is identified by looking at, e.g., (Akx0)1/(A
k−1x0)1.

Essentially the same argument works when we normalize at each step: the Power

Iteration may be seen to compute yk = βkA
kx0 for some βk. Then, from the above,

xk+1 =
yk
‖yk‖

=
βk
|βk|
· Akx0
‖Akx0‖

→ ±v1.

Similarly, yk−1 = βk−1A
k−1x0 for some βk−1. Thus

xk =
βk−1
|βk−1|

· Ak−1x0
‖Ak−1x0‖

and hence yk = Axk =
βk−1
|βk−1|

· Akx0
‖Ak−1x0‖

.

Therefore, as above,

‖yk‖ =
‖Akx0‖
‖Ak−1x0‖

≈ |λ1|,

and the sign of λ1 may be identified by looking at, e.g., (xk+1)1/(xk)1.

Hence the largest eigenvalue (and its eigenvector) can be found.

Note: it is unlikely but possible for a chosen vector x0 that α1 = 0, but rounding errors

in the computation generally introduce a small component in v1, so that in practice this

is not a concern!

This simplified method for eigenvalue computation is the basis for effective methods, but

the current state of the art is the QR Algorithm which was invented by John Francis in

London in 1959/60. As we shall see, the mechanics of QR algorithm is very much related

to the power method.

The QR algorithm: We now describe the QR algorithm, a magical algorithm that can

solve eigenvalue problems Ax = λx.

For simplicity we consider the algorithm only in the case when A is symmetric, but it

is applicable also to nonsymmetric matrices with minor modifications.

Recall: a symmetric matrix A is similar to B if there is a nonsingular matrix P for which

A = P−1BP . Similar matrices have the same eigenvalues, since if A = P−1BP ,

0 = det(A− λI) = det(P−1(B − λI)P) = det(P−1) det(P) det(B − λI),

so det(A− λI) = 0 if, and only if, det(B − λI) = 0.

The basic QR algorithm is:

Set A1 = A.

for k = 1, 2, . . .

form the QR factorization Ak = QkRk

and set Ak+1 = RkQk

Lectures 7–8 pg 2 of 8

end

Proposition. The symmetric matrices A1, A2, . . . , Ak, . . . are all similar and thus have the

same eigenvalues.

Proof. Since

Ak+1 = RkQk = (QT
kQk)RkQk = QT

k (QkRk)Qk = QT
kAkQk = Q−1k AkQk,

Ak+1 is symmetric if Ak is, and is similar to Ak. 2

At least when A has eigenvalues of distinct modulus |λ1| > |λ2| > · · · > |λn|, this basic QR

algorithm can be shown to work (Ak converges to a diagonal matrix as k →∞, the diagonal

entries of which are the eigenvalues). To see this, we make the following observations.

Lemma.

Ak+1 = (Q(k))TAQ(k). (1)

(Note 18/2/2021: corrected from Ak = (Q(k))TAQ(k)) and

Ak = (Q1 · · ·Qk)(Rk · · ·R1) = Q(k)R(k) (2)

is the QR factorization of Ak.

Proof. (1) follows from a repeated application of the above proposition.

We use induction for (2): k = 1 trivial. Suppose Ak−1 = Q(k−1)R(k−1). Then Ak =

Rk−1Qk−1 = (Q(k−1))TAQ(k−1), and

(Q(k−1))TAQ(k−1) = QkRk.

Then AQ(k−1) = Q(k−1)QkRk, and so

Ak = AQ(k−1)R(k−1) = Q(k−1)QkRkR
(k−1) = Q(k)R(k),

giving (2). �
Let us now connect the above lemma with the power method.

Lemma. With Q(k) as in (2), let q1 be its first column, and let e1 = [1, 0, . . . , 0]T . Then

q1 is equal to either Ake1
‖Ake1‖2 or − Ake1

‖Ake1‖2 .

Proof. Right-multiplying e1 to (2) yields Ake1 = Q(k)R(k)e1. Since R(k) is upper triangular

R(k)e1 = [R
(k)
1,1 , 0, . . . , 0]T , and so Q(k)R(k)e1 is parallel to q1, which has unit norm. �

The results show in particular that the first column q1 of Q(k) is the result of power

method applied k times to the initial vector e1 = [1, 0, . . . , 0]T . It then follows that q1
converges to the dominant eigenvector. The second vector then starts converging to the

2nd dominant eigenvector, and so on. Once the columns of Q(k) converge to eigenvectors

(note that they are orthogonal by design), (1) shows that Ak converge to a diagonal matrix

of eigenvalues.

However, a really practical, fast algorithm is based on some refinements.

Reduction to tridiagonal form: the idea is to apply explicit similarity transformations

QAQ−1 = QAQT, with Q orthogonal, so that QAQT is tridiagonal.

Lectures 7–8 pg 3 of 8

Note: direct reduction to triangular form would reveal the eigenvalues, but is not possible.

If

H(w)A =

× × · · · ×
0 × · · · ×
...

...
. . .

...

0 × · · · ×

then H(w)AH(w)T is generally full, i.e., all zeros created by pre-multiplication are de-

stroyed by the post-multiplication. However, if

A =

[
γ uT

u C

]
(as A = AT) and

w =

[
0

ŵ

]
where H(ŵ)u =

α

0
...

0

 ,
it follows that

H(w)A =

γ uT

α × ... ×
...

...
...

...

0 × ... ×

 ,
i.e., the uT part of the first row of A is unchanged. However, then

H(w)AH(w)−1 = H(w)AH(w)T = H(w)AH(w) =

γ α 0 · · · 0

α

0
...

0

B

 ,

where B = H(ŵ)CHT(ŵ), as uTH(ŵ)T = (α, 0, · · · , 0); note that H(w)AH(w)T is

symmetric as A is.

Now we inductively apply this to the smaller matrix B, as described for the QR factoriza-

tion but using post- as well as pre-multiplications. The result of n − 2 such Householder

similarity transformations is the matrix

H(wn−2) · · ·H(w2)H(w)AH(w)H(w2) · · ·H(wn−2),

which is tridiagonal.

The QR factorization of a tridiagonal matrix can now easily be achieved with n−1 Givens

rotations J(i, j); these are orthogonal matrices that are I except for the four elements:

the (i, i), (i, j), (j, i), (j, j) entries with values c, s,−s, c respectively, where c2 + s2 = 1

Lectures 7–8 pg 4 of 8

(cosine and sine); one can choose c s.t.

[
c s

−s c

] [
a

b

]
=

[√
a2 + b2

0

]
. (The opera-

tions below can be done with Householder matrices too, but Givens rotations are more

straightforward).

Now if A is tridiagonal

J(n− 1, n) · · · J(2, 3)J(1, 2)︸ ︷︷ ︸
QT

A = R, upper triangular.

Precisely, R has a diagonal and 2 super-diagonals,

R =

× × × 0 0 0 · · · 0

0 × × × 0 0 · · · 0

0 0 × × × 0 · · · 0
...

...
...

0 0 0 0 × × × 0

0 0 0 0 0 × × ×
0 0 0 0 0 0 × ×
0 0 0 0 0 0 0 ×

(exercise: check!). In the QR algorithm, the next matrix in the sequence is RQ.

Lemma. In the QR algorithm applied to a symmetric tridiagonal matrix, the symmetry

and tridiagonal form are preserved when Givens rotations are used.

Proof. We have already shown that if Ak = QR is symmetric, then so is Ak+1 = RQ.

If Ak = QR = J(1, 2)TJ(2, 3)T · · · J(n − 1, n)TR is tridiagonal, then Ak+1 = RQ =

RJ(1, 2)TJ(2, 3)T · · · J(n−1, n)T. Recall that post-multiplication of a matrix by J(i, i+1)T

replaces columns i and i + 1 by linear combinations of the pair of columns, while leaving

columns j = 1, 2, . . . , i− 1, i + 2, . . . , n alone. Thus, since R is upper triangular, the only

subdiagonal entry in RJ(1, 2)T is in position (2, 1). Similarly, the only subdiagonal entries

in RJ(1, 2)TJ(2, 3)T = (RJ(1, 2)T)J(2, 3)T are in positions (2, 1) and (3, 2). Inductively,

the only subdiagonal entries in

RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)TJ(i− 1, i)T

= (RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)T)J(i− 1, i)T

are in positions (j, j − 1), j = 2, . . . i. So, the lower triangular part of Ak+1 only has

nonzeros on its first subdiagonal. However, then since Ak+1 is symmetric, it must be

tridiagonal. 2

Using shifts. One further and final step in making an efficient algorithm is the use of

shifts:

for k = 1, 2, . . .

form the QR factorization of Ak − µkI = QkRk

and set Ak+1 = RkQk + µkI

Lectures 7–8 pg 5 of 8

end

For any chosen sequence of values of µk ∈ R, {Ak}∞k=1 are symmetric and tridiagonal if A1

has these properties, and similar to A1.

The simplest shift to use is an,n, which leads rapidly in almost all cases to

Ak =

[
Tk 0

0T λ

]
,

where Tk is n− 1 by n− 1 and tridiagonal, and λ is an eigenvalue of A1. Inductively, once

this form has been found, the QR algorithm with shift an−1,n−1 can be concentrated only

on the n− 1 by n− 1 leading submatrix Tk. This process is called deflation.

Why does introducing shifts help? To understand this we establish a connection be-

tween QR and the power method applied to the inverse (known as the inverse power

method).

Lemma. With Q(k) as in (2), denote by qn its last column, and let en = [0, 0, . . . , 1]T .

Then qn is equal to either A−ken
‖A−ke1‖2 or − A−ken

‖A−ke1‖2 .

Proof. Recall (2), and take the inverse:

A−k = (R(k))−1(Q(k))T ,

and take the transpose:

(A−k)T (= A−k) = Q(k)(R(k))−T .

Now multiplying en gives

A−ken = Q(k)(R(k))−T en.

Since (R(k))−T is lower triangular, it follows that Q(k)(R(k))−T en is parallel to qn. �
This shows that the final column of Q(k) is the result of power method applied to en

now with the inverse A−1. Thus the last column of Q(k) is converging to the eigenvector

for the smallest eigenvalue λn, with convergence factor | λn
λn−1
|; Q(k) is converging not only

from the first, but (more significantly) from the last column(s).

Now we see how the introduction of shift has a drastic effect on the convergence: it

changes the factor to | λσ(n)−µ
λσ(n−1)−µ

|, where σ is a permutation such that |λσ(1) − µ| ≥ |λσ(2) −
µ| ≥ · · · ≥ |λσ(n)−µ|. If µ is close to an eigenvalue, this implies (potentially extremely) fast

convergence; in fact by choosing the shift µk = an,n, it can be shown that (proof omitted

and non-examinable) am,m−1 converges cubically : |am,m−1,k+1| = O(|am,m−1,k|3).
The overall algorithm for calculating the eigenvalues of an n by n symmetric matrix:

reduce A to tridiagonal form by orthogonal

(Householder) similarity transformations.

for m = n, n− 1, . . . 2

while am−1,m > tol

[Q,R] = qr(A− am,mI)

A = RQ+ am,mI

end while

record eigenvalue λm = am,m

Lectures 7–8 pg 6 of 8

A← leading m− 1 by m− 1 submatrix of A

end

record eigenvalue λ1 = a1,1

Lectures 7–8 pg 7 of 8

Computing roots of polynomials via eigenvalues Let us describe a nice application

of computing eigenvalues (by the QR algorithm). Let p(x) =
∑n

i=0 cix
i be a degree-n

polynomial so that cn 6= 0, and suppose we want to find its roots, i.e., values of λ for

which p(λ) = 0; there are n of them in C. For example, p(x) might be an approximant to

data, obtained by Lagrange interpolation from the first lecture. Why roots? For example,

you might be interested in the minimum of p; this can be obtained by differentiating and

setting to zero p′(x) = 0, which is again a polynomial rootfinding problem (for p′).

How do we solve p(x) = 0? Recall that eigenvalues of A are the roots of its characteristic

polynomial. Here we take the opposite direction—construct a matrix whose characteristic

polynomial is p.

Consider the following matrix, which is called the companion matrix (the blank

elements are all 0) for the polynomial p(x) =
∑n

i=0 cix
i:

C =

− cn−1

cn
− cn−2

cn
· · · − c1

cn
− c0
cn

1

1
. . .

1 0

 . (3)

Then direct calculation shows that if p(λ) = 0 then Cx = λx with x = [λn−1, λn−2, . . . , λ, 1]T .

Indeed one can show that the characteristic polynomial is det(λI−C) = p(λ)/cn (nonexam-

inable), so this implication is necessary and sufficient, so the eigenvalues of C are precisely

the roots of p, counting multiplicities.

Thus to compute roots of polynomials, one can compute eigenvalues of the companion

matrix via the QR algorithm—this turns out to be a very powerful idea!

Lectures 7–8 pg 8 of 8

