Numerical Analysis Hilary Term 2021
Lecture 11: Gauss quadrature

Terminology: Quadrature = numerical integration

Goal: given a (continuous) function f : [a,b] — R, find its integral I = fabf(:c)da:, as
accurately as possible.

Idea: Approximate and Integrate. Find a polynomial p, from data {(z, f(xx))}ieo
by Lagrange interpolation (lecture 1), and integrate f;}” po(z)dx =: I,. Ideally, I, = I or
at least I,, =~ I. Is this true?

If we choose z; to be equispaced points in [a,b], the resulting I, is known as the
Newton-Cotes quadrature. This method is actually quite unstable and inaccurate, and a
much more accurate and elegant quadrature rule exists: Gauss quadrature. In this lecture
we cover this beautiful result involving orthogonal polynomials.

Preparations: Suppose that w is a weight function, defined, positive and integrable on
the open interval (a,b) of R.
Lemma. Let {¢g, ¢1,...,Pn, ...} be orthogonal polynomials for the inner product (f, g) =

b
/ w(z) f(x)g(x)dz. Then, for each k = 0,1,..., ¢ has k distinct roots in the interval
(a,b).

Proof. Since ¢o(z) = const. # 0, the result is trivially true for £ = 0. Suppose that k > 1:
b b

(Dr, Do) = / w(z)dr(x)po(x) dr = 0 with ¢y constant implies that / w(z)pr(x)dr =0
with w(z) >a0, x € (a,b). Thus ¢x(x) must change sign in (a,b), i.e.,a¢k has at least one
root in (a, b).

Suppose that there are ¢ points a < r; <1y < --- <1y < b where ¢, changes sign for some

1 </¢<k. Then
¢

H x —r;) X the sign of ¢, on (14, b)

J=1

has the same sign as ¢, on (a,b). Hence

<m4w=/1mmm@MWMx>a

and thus it follows from the previous lemma (cf. Lecture 12) that ¢, (which is of degree
¢) must be of degree > k, i.e., £ > k. However, ¢ is of exact degree k, and therefore the
number of its distinct roots, £, must be < k. Hence ¢ = k, and ¢, has k distinct roots in
(a,b). O

Application to quadrature. The above lemma leads to very efficient quadrature rules
since it answers the question: how should we choose the quadrature points xg, x1,...,x,

b n
[ )@ dem Y wfa) )

in the quadrature rule
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so that the rule is exact for polynomials of degree as high as possible? (The case w(z) =1
is the most common.)

Recall: the Lagrange interpolating polynomial
Pn = Zf(xj)[/n,j eI,
=0
is unique, so f € I, = p,, = f whatever interpolation points are used, and moreover
b b n
[ @@ de= [wpode = 3w ),
a a 7=0

exactly, where
b
wj:/ w(x)Ly, j(x)de. (2)

Theorem. Suppose that 2o < x; < --- < x, are the roots of the n+ 1-st degree orthogonal
polynomial ¢,,,; with respect to the inner product

b
<9:h>=/ w(z)g(x)h(z)d.

Then, the quadrature formula (1) with weights (2) is exact whenever f € Iy, ;.

Proof. Let p € IIy,11. Then by the Division Algorithm p(x) = q(z)¢ni1(x) + r(z) with
q,r € 1II,. So

/w(x)p(m)dx:/ w(x)q(x)¢n+1(x)dx+/ w(m)r(m)dx:ijr(xj) (3)

since the integral involving ¢ € II,, is zero by the lemma above and the other is integrated
exactly since r € II,,. Finally p(z;) = q(x;)bns1(x;) +r(z;) = r(z;) for j =0,1,...,n as
the x; are the roots of ¢,11. So (3) gives

/ w(x)p(x)de = ijp(:z:j),

where w; is given by (2) whenever p € Ils,41. O

These quadrature rules are called Gauss quadratures.

e w(z) =1, (a,b) = (—1,1): Gauss—Legendre quadrature.

o w(z)=(1—2?)7"2 and (a,b) = (—1,1): Gauss-Chebyshev quadrature.
e w(z)=-e" and (a,b) = (0,00): Gauss-Laguerre quadrature.

e w(z) =e " and (a,b) = (—00,00): Gauss-Hermite quadrature.
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They give better accuracy than Newton—Cotes quadrature for the same number of function
evaluations.

Note when using quadrature on unbounded intervals, the integral should be of the form
fo “*f(x)dz and only f is sampled at the nodes.

Note that by the linear change of variable t = (2 — a — b)/(b — a), which maps [a, b] —
[—1,1], we can evaluate for example

e

where ~ denotes “quadrature” and the ¢;, 7 = 0,1,...,n, are the roots of the n + 1-st

degree Legendre polynomial.
Example. 2-point Gauss-Legendre quadrature: ¢o(t) = * — 1 = t; = —

1 t— L 1

15 B

S

and

with wy = 1, similarly. So e.g., changing variables = = (¢t + 3)/2,

21 1 [t 2 1 1
/ —dx:—/ dt ~ + = 0.6923077 ... .
1 X 2 ,1t+3 3"‘% 3—%

Note that the trapezium rule (also two evaluations of the integrand) gives

21 11
—dzg~=|=4+1| =0.75
/lxx 2[2+} )

2
whereas / 1 dr =1In2 =0.6931472. .. .
1

T

Theorem. Error in Gauss quadrature: suppose that fZ7+2)

b f(2n+2) ) n
/a dx—Zw]ij 2n+g7 / H

Jj=

is continuous on (a, b). Then

for some 1 € (a,b).

Proof. The proof is based on the Hermite interpolating polynomial Hy,, 1 to f on zg, x1, ..., x,.
[Recall that Hany1(z;) = f(z;) and Hy, ., (z;) = f'(z;) for j = 0,1,...,n.] The error in
Hermite interpolation is

f(x) = Hopya(x) = ﬁ 2n+2 H:U—a:]
7=0

for some n = n(x) € (a,b). Now Hy,iq € Tlgyi1, SO

b
/ w(x)Hypyr(x) da = ijHgnH ;) Zw]f z;),

7=0
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the first identity because Gauss quadrature is exact for polynomials of this degree and the
second by interpolation. Thus

[ @@ de =3 wtw) = [ w@)fe) - Hano) ds

= RAACCITE) ) (GRS

J=0

and hence the required result follows from the integral mean value theorem as
w(e) Tl — ;) > 0 0

Remark: the “direct” approach of finding Gauss quadrature formulae sometimes works
for small n, but more sophisticated algorithms are used for large n.!

Example. To find the two-point Gauss—Legendre rule wq f(zo) + w1 f(21) on (—1,1) with
weight function w(z) = 1, we need to be able to integrate any cubic polynomial exactly,
SO

1
2:/ ldz = wy+ wy (4)
-1
1
O:/ zdr = Wy + W1Tq (5)
-1
1
3:/ r?dr = wexf +wiad (6)
-1
1
0:/ ?dr = woxy + wis. (7)
-1

These are four nonlinear equations in four unknowns wy, wy, o and x;. Equations (5) and

(7) give 0
ERIIHEH]

207 — 2170 = 0

which implies that

for wy, wy # 0, i.e.,
l’ol‘l(xl — 5(70)(.1'1 + l’o) =0.

If 29 = 0, this implies w; = 0 or 1 = 0 by (5), either of which contradicts (6). Thus
xg # 0, and similarly xz; # 0. If 21 = ¢, (5) implies w; = —wy, which contradicts (4). So

xr1 = —xo, and hence (5) implies w; = wy. But then (4) implies that wy = w; = 1 and (6)
gives
To=—J5 and T = I,

'See e.g., the research paper by Hale and Townsend, “Fast and accurate computation of Guass-Legendre and
Gauss—Jacobi quadrature nodes and weights” STAM J. Sci. Comput. 2013.
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which are the roots of the Legendre polynomial 22 — 1.

3

Convergence: Gauss quadrature converges astonishingly fast. It can be shown that if f

is analytic on [a, b], the convergence is geometric (exponential) in the number of samples.

This is in contrast to other (more straightforward) quadrature rules:

e Newton-Cotes: Find interpolant in n equispaced points, and integrate interpolant.

Convergence: (often) Divergent!

e (Composite) trapezium rule: Find piecewise-linear interpolant in n equispaced points,
and integrate interpolant. Convergence: O(1/n?) (assumes f” exists)

e (Composite) Simpson’s rule: Find piecewise-quadratic interpolant in n equispaced

points (each subinterval containing three points), and integrate interpolant. Conver-

gence: O(1/n*) (assumes f” exists)

The figure below illustrates the performance on integrating the Runge function.

Integration error
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Figure 1: Convergence of quadrature rules for fil ﬁdx (Runge function)

241

Nodes and weights for Gauss(-Legendre) quadrature The figure below shows
the nodes (interpolation points) and the corrsponding weights with the standard Gauss-

Legendre quadrature rule, i.e., when w(z) = 1 and [a,b] = [—1,1]. In Chebfun these are

computed conveniently by [x,w] = legpts(n+1)
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Note that the nodes/interpolation points cluster near endpoints (and sparser in the
middle); this is a general phenomenon, and very analogous to the Chebyshev interpolation
points mentioned in the least-squares lecture (Gauss and Chebyshev points have asymp-
totically the same distribution of points). Note also that the weights are all positive and
shrink as n grows; they have to because they sum to 2 (why?).
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