Numerical Analysis Sheet 1 — HT21 Lagrange interpolation and LU,QR

- 1. Construct the Lagrange interpolating polynomial for the data $\frac{x \mid 0 \mid 1 \mid 3}{f \mid 3 \mid 2 \mid 6}$.
- 2. If $p_n \in \Pi_n$ interpolates f at x_0, x_1, \ldots, x_n , prove that $p_n + q$ is the Lagrange interpolating polynomial to f + q at x_0, x_1, \ldots, x_n whenever $q \in \Pi_n$.
- 3. Consider interpolating 1/x by $p_n \in \Pi_n$ (i.e. at n + 1 points) on [1, 2]. If e(x) is the error, show that $|e(x)| \leq 1$ for $x \in [1, 2]$ with arbitrarily distributed points, but $|e(x)| \leq 1/2^{(n+1)/2}$ for all $x \in [1, 2]$ if n + 1 is even and half of the interpolation points are in $[1, \frac{3}{2}]$ and half in $(\frac{3}{2}, 2]$. In this latter situation, how many points would be needed to guarantee $|e(x)| \leq 10^{-3}$?
- 4. Show that $\sum_{k=0}^{n} q(x_k) L_{n,k}(x) = q(x)$ whenever $q \in \Pi_n$. (*Optional:* How many ways can you prove this?) Also, show that $\sum_{k=0}^{n} x_k^l L_{n,k}(x) = x^l$ for nonnegative integers $l \leq n$.
- 5. By performing Gauss Elimination (without pivoting), solve

2	1	1	0	$\begin{bmatrix} a \end{bmatrix}$		3	
4	3	3	1	b	=	8	
8	7	9	5	c		24	•
6	7	9	8	d		25	

From your calculations, write down an LU factorisation of the matrix A above, and verify that LU = A. Then by successive back and forwards substitutions (and without further factorisation) solve $Ax = b_2$ where $b_2 = [4\ 7\ 9\ 2]^T$.

6. What is the determinant of the matrix A in the question above? (Note one of the few algebraic properties of the determinant is that det(BC) = det(B)det(C) and you might also want to consider what is the determinant of a triangular matrix).

7. Suppose A is a real $n \times n$ matrix with $n \ge 2$ and that the permutation matrix

$$P = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{bmatrix}$$

Show that premultiplication of A by P reverses the order of the rows of A.

If A = LU is an LU factorisation of A (without pivoting), what is the structure of PLP? Hence describe how to calculate a factorisation $A = \hat{U}\hat{L}$ where \hat{U} is unit upper triangular and \hat{L} is lower triangular.

- 8. Suppose that A is a square nonsingular matrix. Prove that the factors Q and R featuring in the QR factorisation of A are unique if the diagonal entries of R are all positive. How many possibilities are there if this restriction is removed?
- 9. By considering the QR factorisation in which the diagonal entries of R are all positive as in the question above (or otherwise), prove that any orthogonal matrix may be expressed as the product of Householder matrices.
- 10. Prove that the product of two lower triangular matrices is lower triangular and that the inverse of a non-singular lower triangular matrix is lower triangular. Deduce similar results for upper triangular matrices.
- 11. (MATLAB/Python exercise) Using a loop and tic and toc compare the time it takes to do (pivoted) LU and QR factorisations. For example, for random matrices of dimension 2⁵ to 2¹⁰ for k=5:10, A=randn(2^k); tic, [L,U,P]=lu(A); toc,... tic, [Q,R]=qr(A); toc, end

should give some timings. What do you think the computational work is for QR factorisation given that LU is to leading order $\frac{2}{3}n^3$? Note **qr** uses Householder matrices as described in lectures to compute the QR factorisation.

12. (optional:) Given an LU factorisation of a matrix A, how might one calculate a column of the inverse of A? Estimate the computational work in calculating A^{-1} and hence in solving Ax = b via explicit computation of A^{-1} and multiplication by b.

Are you now convinced that this is *not* the way to solve linear systems of equations in practice?!

An even worse technique would be to apply GE separately for each column: what would the computational cost be then?