
Numerical Analysis Hilary Term 2021

Lecture 1: Lagrange Interpolation

Numerical analysis is the study of computational algorithms for solving problems in sci-

entific computing. It combines mathematical beauty, rigor and numerous applications; we

hope you’ll enjoy it! In this course we will cover the basics of three key fields in the subject:

� Approximation Theory (lectures 1, 9–11); recommended reading: L. N. Trefethen,

Approximation Theory and Approximation Practice, and E. Süli and D. F. Mayers,

An Introduction to Numerical Analysis.

� Numerical Linear Algebra (lectures 2–8); recommended reading: L. N. Trefethen and

D. Bau, Numerical Linear Algebra.

� Numerical Solution of Differential Equations (lectures 12–16); recommended reading:

E. Süli and D. F. Mayers, An Introduction to Numerical Analysis.

This first lecture comes from Chapter 6 of Süli and Mayers.

Notation: Πn = {real polynomials of degree ≤ n}
Setup: Given data fi at distinct xi, i = 0, 1, . . . , n, with x0 < x1 < · · · < xn, can we

find a polynomial pn such that pn(xi) = fi? Such a polynomial is said to interpolate the

data, and (as we shall see) can approximate f at other values of x if f is smooth enough.

This is the most basic question in approximation theory.

E.g.:

constant n = 0 linear n = 1 quadratic n = 2

Theorem. ∃pn ∈ Πn such that pn(xi) = fi for i = 0, 1, . . . , n.

Proof. Consider, for k = 0, 1, . . . , n, the “cardinal polynomial”

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
∈ Πn. (1)

Then Ln,k(xi) = δik, that is,

Ln,k(xi) = 0 for i = 0, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1.

So now define

pn(x) =
n∑

k=0

fkLn,k(x) ∈ Πn (2)
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=⇒
pn(xi) =

n∑
k=0

fkLn,k(xi) = fi for i = 0, 1, . . . , n. 2

The polynomial (2) is the Lagrange interpolating polynomial.

Theorem. The interpolating polynomial of degree ≤ n is unique.

Proof. Consider two interpolating polynomials pn, qn ∈ Πn. Their difference dn = pn−qn ∈
Πn satisfies dn(xk) = 0 for k = 0, 1, . . . , n. i.e., dn is a polynomial of degree at most n but

has at least n+ 1 distinct roots. Algebra =⇒ dn ≡ 0 =⇒ pn = qn. 2

Matlab:

>> help lagrange

LAGRANGE Plots the Lagrange polynomial interpolant for the

given DATA at the given KNOTS

>> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]);
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>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]);
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Data from an underlying smooth function: Suppose that f(x) has at least n + 1

smooth derivatives in the interval (x0, xn). Let fk = f(xk) for k = 0, 1, . . . , n, and let pn
be the Lagrange interpolating polynomial for the data (xk, fk), k = 0, 1, . . . , n.

Error: How large can the error f(x)− pn(x) be on the interval [x0, xn]?

Theorem. For every x ∈ [x0, xn] there exists ξ = ξ(x) ∈ (x0, xn) such that

e(x)
def
= f(x)− pn(x) = (x− x0)(x− x1) · · · (x− xn)

f (n+1)(ξ)

(n+ 1)!
, (3)

where f (n+1) is the (n+ 1)-st derivative of f .

Proof. Trivial for x = xk, k = 0, 1, . . . , n as e(x) = 0 by construction. So suppose x 6= xk.

Let

φ(t)
def
= e(t)− e(x)

π(x)
π(t),

where
π(t)

def
= (t− x0)(t− x1) · · · (t− xn)

= tn+1 −
(

n∑
i=0

xi

)
tn + · · · (−1)n+1x0x1 · · · xn

∈ Πn+1.

Now note that φ vanishes at n + 2 points x and xk, k = 0, 1, . . . , n. =⇒ φ′ vanishes at

n + 1 points ξ0, . . . , ξn between these points =⇒ φ′′ vanishes at n points between these

new points, and so on until φ(n+1) vanishes at an (unknown) point ξ in (x0, xn). But

φ(n+1)(t) = e(n+1)(t)− e(x)

π(x)
π(n+1)(t) = f (n+1)(t)− e(x)

π(x)
(n+ 1)!

since p(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n+1. The result then

follows immediately from this identity since φ(n+1)(ξ) = 0.

2

Example: f(x) = log(1 +x) on [0, 1]. Here, |f (n+1)(ξ)| = n!/(1 + ξ)n+1 < n! on (0, 1). So

|e(x)| < |π(x)|n!/(n+ 1)! ≤ 1/(n+ 1) since |x− xk| ≤ 1 for each x, xk, k = 0, 1, . . . , n, in
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[0, 1] =⇒ |π(x)| ≤ 1. This is probably pessimistic for many x, e.g. for x = 1
2
, π( 1

2
) ≤ 2−(n+1)

as | 1
2
− xk| ≤ 1

2
.

This shows the important fact that the error can be large at the end points when

samples {xk} are equispaced points, an effect known as the “Runge phenomena” (Carl

Runge, 1901), which we return to in lecture 4.

Generalisation: Given data fi and gi at distinct xi, i = 0, 1, . . . , n, with x0 < x1 <

· · · < xn, can we find a polynomial p such that p(xi) = fi and p′(xi) = gi? (i.e., interpolate

derivatives in addition to values)

Theorem. There is a unique polynomial p2n+1 ∈ Π2n+1 such that p2n+1(xi) = fi and

p′2n+1(xi) = gi for i = 0, 1, . . . , n.

Construction: Given Ln,k(x) in (1), let

Hn,k(x) = [Ln,k(x)]2(1− 2(x− xk)L′n,k(xk))

and Kn,k(x) = [Ln,k(x)]2(x− xk).

Then

p2n+1(x) =
n∑

k=0

[fkHn,k(x) + gkKn,k(x)] (4)

interpolates the data as required. The polynomial (4) is called the Hermite interpolating

polynomial. Note that Hn,k(xi) = δik and H ′n,k(xi) = 0, and Kn,k(xi) = 0, K ′n,k(xi) = δik.

Theorem. Let p2n+1 be the Hermite interpolating polynomial in the case where fi = f(xi)

and gi = f ′(xi) and f has at least 2n+2 smooth derivatives. Then, for every x ∈ [x0, xn],

f(x)− p2n+1(x) = [(x− x0)(x− x1) · · · (x− xn)]2
f (2n+2)(ξ)

(2n+ 2)!
,

where ξ ∈ (x0, xn) and f (2n+2) is the (2n+ 2)nd derivative of f .

Proof (non-examinable): see Süli and Mayers, Theorem 6.4. 2

We note that as xk → 0 in (3), we essentialy recover Taylor’s theorem with pn(x)

equal to the first n + 1 terms in Taylor’s expansion. Taylor’s theorem can be regarded as

a special case of Lagrange interpolation where we interpolate high-order derivatives at a

single point.
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