
Numerical Analysis Hilary Term 2021

Lecture 4: Least-squares problem

So far the linear systems we treated had the same number of equations as unknowns

(variables), so the problem was Ax = b for a square matrix A. Very often in practice, we

have more equations that we would like to satisfy than variables to fit them. It is then

usually impossible to obtain Ax = b; a common approach is then to try minimise the

difference between Ax and b. If we choose to minimise the Euclidean length of the vector,

this leads to a least-squares problem:

min
x
‖Ax− b‖, A ∈ Rm×n, b ∈ Rm,m ≥ n. (1)

Here ‖y‖ :=
√
y21 + y22 + · · ·+ y2m =

√
yTy.

Least-squares problems (also known as overdetermined systems) are ubiquitous in ap-

plied mathematics and data science; linear regression is a basic example.

Solution of least-squares by the QR factorisation:

Let A = [Q Q⊥]
[
R
0

]
= QF

[
R
0

]
be a ’full’ QR factorization, computed e.g. via the

Householder QR factorization. We assume R is nonsingular (i.e., A has full column rank);

this is a generic condition. Noting that ‖QT
Fy‖ =

√
yTQFQT

Fy =
√
yTy = ‖y‖ for any

vector y, we have

‖Ax− b‖ = ‖QT
F (Ax− b)‖ =

∥∥∥∥[R0
]
x−

[
QT b

QT
⊥b

]∥∥∥∥ .
The bottom part is −QT

⊥b, no matter what x is. The top part can be made 0 by taking

x = R−1QT b—this is therefore the solution.

The argument also suggests an algorithm: compute the “thin” QR factorization A =

QR, then solve Rx = QT b for x, which is obtained by backward substitution as R is

triangular. Note that while we used the full QR for the derivation, we only need the thin

QR for the solution of (1).

Later we will see that a general linear least-squares problem has solution characterised

by the orthogonality condition, which in our context reduces to AT (Ax − b) = 0, so

x = (ATA)−1AT b; one can verify this is the same as R−1QT b obtained above.

Illustration of least-squares for polynomial approximation: We treated Lagrange

interpolation in Lecture 1. While Lagrange polynomials give a clean expression for the

interpolating polynomial, the interpolating polynomial is not always a good approximation

to the original underlying function f . For example, suppose f(x) = 1/(25x2 + 1) (this is

a famous function called the Runge function), and take a degree-n polynomial interpolant

pn at n + 1 equispaced points in [−1, 1]. The interpolating polynomials for varying n are

shown in Figure 1.

As we increase n, we hope that pn → f—but this is far from the truth! pn is diverging

as n grows near the endpoints ±1, and the divergence is actually exponential (very bad);

note the vertical scales of the final plots! This is called Runge’s phenomenon.

How can we avoid the divergence, and get pn → f as we hope? One approach is

to oversample: take (many) more points than the degree n. With m(> n + 1) data
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Figure 1: Polynomial interpolants (dashed black curves) of f(x) = 1/(25x2 + 1) (blue). The red

dots are the interpolation points.

points x1, . . . , xm, this will lead to the least-squares problem minc ‖Ac − b‖, wherein

c = [c0, c1, . . . , cn]T represents the coefficients of the polynomial pn(x) =
∑n

j=0 cjx
j,

A ∈ Rm×(n+1) with Aij = (xi)
j−1 and b = [f(x1), . . . , f(xm)]T .

We illustrate this in Figure 2 with the example above, but now fixing n = 20 and

varying the number of data points m. This time, for large enough m the polynomial pn is

close to f across the whole interval [−1, 1].
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Figure 2: Least-squares polynomial fits of degree 20 (black dashed curves) of f(x) = 1/(25x2 +1)

(blue).
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Extensions and related facts (Non-examinable):

� Instead of pn(x) =
∑n

j=0 cjx
j, it is actually much better to use a different polynomial

basis involving orthogonal polynomials {φi}ni=0 such as the Chebyshev polynomials,

a topic discussed later. Then we would express pn(x) =
∑n

j=0 cjφj(x) and Aij =

(φj−1(xi)), and the least-squares problem will be beter-conditioned (easier to solve

accurately). However, Runge’s phenomenon still persists unless m� n.

� Note that we do not have pn → f in Figure 2 as m → ∞ because the polynomial

degree n = 20 is fixed; to get pn → f one needs to increase n together with m. It

can be shown that if one takes m = n2, we do have pn → f for any analytic function

f (the convergence is exponential in n).

� Another—more elegant—solution to overcome the instability in Figure 1 is to change

the interpolation points. If one chooses them to be the so-called Chebyshev points

xj = cos(jπ/n) for j = 0, 1, . . . , n, the interpolating polynomial can be shown to be an

excellent approximation to f , in fact nearly the best-possible polynomial approxima-

tion for any continuous f . This is a fundamental fact in approximation theory; for a

rigorous and extended discussion (including an explanation of Runge’s phenomenon),

check out the Part C course Approximation of Functions.

Underdetermined case (Non-examinable): One might wonder, what if we have

fewer equations than variables? That is, if we have Ax = b with A ∈ Rm×n, m < n. This

underdetermined system of equations has infinitely many solutions (if there is one). The

natural question becomes, which one should we look for? One possibility is to find the

minimum-norm solution minimize ‖x‖ subject to Ax = b; the solution can be computed

again via the QR factorization (of AT ). This problem has connections to the hot topic of

deep learning. Another fascinating approach that has had enormous impact is to minimise

the 1-norm ‖x‖1 subject to Ax = b, where ‖x‖1 =
∑n

i=1 |xi|. This is the basis of the

exciting field of compressed sensing.
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