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Chapter 1

Second-order linear boundary value
problems - Part 1

These lecture notes are based on material written by Derek Moulton and Peter
Howell. Please send any corrections or comments to Renaud Lambiotte.

1.1 Basic notation and concepts

In this section, we will develop various techniques to analyse and solve ordinary differential
equations (ODEs), in particular inhomogeneous linear boundary value problems (BVPs). We
start by briefly explaining what is meant by each piece of this expression. Although everything
to follow can in principle be generalised to ODEs of arbitrary order, we restrict our attention
to second order ODEs for the moment.

A second-order linear ODE is an equation of the form

Ly(x) = f(x), (1.1)

where f is a given forcing function and L is a linear differential operator, that is,

Ly(x) ≡ P2(x)y′′(x) + P1(x)y′(x) + P0(x)y(x) (1.2a)

≡ P2(x)
d2y

dx2
+ P1(x)

dy

dx
+ P0(x)y(x), (1.2b)

for some given coefficients P0(x), P1(x), P2(x). The operator L is linear in the sense that

L
[
α1y1(x) + α2y2(x)

]
≡ α1Ly1(x) + α2Ly2(x), (1.3)

for any constants αi and functions yi(x). Here, and henceforth unless explicitly stated oth-
erwise, we assume that y is sufficiently smooth for all the required derivatives to exist and
be continuous. We will also assume that the coefficents Pi are at least continuous and (for
reasons that will become clear) that P2 is nonzero in the range of x of interest.

The linear ODE (1.1) is said to be homogeneous if the right-hand side f is identically zero,
and if not then the equation is inhomogeneous. We will refer frequently to the homogeneous
and inhomogeneous (or “Non-homogeneous”) versions of (1.1), which we label as follows:

homogeneous: Ly = 0, (H)

inhomogeneous: Ly = f 6≡ 0. (N)

1–1
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Generally, we expect to need to supplement a second-order ODE of the form (1.1) with two
boundary conditions to get a unique solution for y(x), and the term boundary value problem
refers to the way in which those boundary conditions are imposed. Much of the Differential
Equations I course concerns the solution of initial value problems (IVPs), where the “initial
values” of y and y′ are given at a single point x = a, say. In a BVP, the ODE (1.1) is posed
on an interval, say a < x < b, and the boundary conditions involve the values of y and y′ at
both ends of the domain x = a and x = b. Provided the coefficients Pi(x) and the forcing
function f(x) are sufficiently well behaved (and P2(x) 6= 0), Picard’s Theorem guarantees
that an IVP for a linear ODE of the form (1.1) has a unique solution in a neighbourhood of
the initial point x = a, but we will see that the same cannot be said of a linear BVP.

Example 1.1. Second order IVP and BVP
The simple 2nd order linear inhomogeneous ODE

y′′ + y = 1 (1.4)

has the general solution y(x) = 1 + c1 cosx + c2 sinx, where c1 and c2 are arbitrary integration
constants. A typical IVP would involve solving (1.4) in x > 0 subject to the initial conditions y(0) = 1
and y′(0) = 2. By imposing the two initial conditions, we can easily solve for the integration constants
and thus obtain the solution y(x) = 1 + 2 sinx.

A typical BVP would be to solve (1.4) on an interval, say 0 < x < π, subject to the boundary
conditions y(0) = 1 and y′(π) = 2. Again, we can solve for the arbitrary constants, and this time we
obtain the solution y(x) = 1− 2 sinx.

Suppose we replace the right-hand side of (1.4) with a more complicated forcing function, for
example

y′′(x) + y(x) = tanx. (1.5)

In principle, this ODE is solvable, subject to suitable boundary conditions, but now it is not at all
obvious how to “spot” the particular integral!

Finally, suppose we slightly alter the boundary conditions to y(0) = 1 and y(π) = 2. One can
easily confirm that the ODE (1.4) has no solution subject to the modified boundary conditions.

In the remainder of this section, we will derive general methods to solve ODEs of the form
(1.1), as well as addressing the following general questions.

1. How can we construct a particular integral for the ODE (1.1) for arbitrary forcing
function f?

2. Given suitable boundary conditions, when does a solution exist? When is it unique?

1.2 Space of solutions

If we ignore boundary conditions for the moment, then the following properties of solutions
of (H) and (N) are easily established.

(i) The solutions of (H) form a vector space since, if Ly1 = 0 = Ly2, then L[αy1 +βy2] = 0.

(ii) If y and Y satisfy (N), then y − Y satisfies (H).

(iii) It follows that the general solution of (N) may be written in the form

y(x) = yPI(x)︸ ︷︷ ︸
any solution of (N)

+ yCF(x)︸ ︷︷ ︸
general solution of (H)

(1.6)

where yPI is called the particular integral and yCF the complementary function.

https://courses.maths.ox.ac.uk/node/37627
https://courses.maths.ox.ac.uk/node/37627
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(iv) For a second-order ODE, the vector space of solutions to (H) has dimension two (see
below). The complementary function therefore takes the form

yCF(x) = c1y1(x) + c2y2(x), (1.7)

where c1, c2 are arbitrary constants, and y1, y2 are any two linearly independent solu-
tions to (H).

1.3 Linear independence; the Wronskian

A pair of functions y1(x), y2(x) is linearly independent if there is no non-trivial linear combi-
nation that vanishes identically; in other words if

c1y1(x) + c2y2(x) ≡ 0 ⇔ c1 = c2 = 0. (1.8)

They are linearly dependent if ci, not both zero, can be found such that c1y1(x) + c2y2(x) is
identically zero. Provided y1, y2 are differentiable, this would also entail c1y

′
1(x)+c2y

′
2(x) ≡ 0.

Therefore (
y1 y2
y′1 y′2

)(
c1
c2

)
≡ 0, (1.9)

and non-trivial solutions can exist for (c1, c2) if and only if the determinant of the matrix is
zero.

We define the Wronskian of a pair of functions to be this determinant:

W (x) = W [y1, y2] = det

(
y1 y2
y′1 y′2

)
= y1(x)y′2(x)− y2(x)y′1(x). (1.10)

From what we have just seen, we conclude the following.

Proposition 1.1. If two functions are linearly dependent then their Wronskian vanishes.

The converse to this statement is not necessarily true, however. For example, the following
(once) differentiable functions:

y1(x) =

{
0 x < 0,

x2 x ≥ 0,
y2(x) =

{
x2 x < 0,

0 x ≥ 0,
(1.11)

are easily shown to be linearly independent, but have Wronskian equal to zero [exercise].
We will now show that there is a partial converse to Proposition 1.1 for the case where y1
and y2 are solutions to (H).

Suppose that y1 and y2 are two solutions to (H), i.e.

P2y
′′
1 + P1y

′
1 + P0y1 = 0, (1.12a)

P2y
′′
2 + P1y

′
2 + P0y2 = 0. (1.12b)

We can eliminate the P0 term between these two equations by substracting y2×(1.12a) from
y1×(1.12b) to get

P2

(
y1y
′′
2 − y2y′′1

)
+ P1

(
y1y
′
2 − y2y′1

)
= 0. (1.13)
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The term multiplying P1 in this equation is clearly the Wronskian W [y1, y2], and the term
multiplying P2 is the derivative of W with respect to x, i.e.

P2
dW

dx
+ P1W = 0. (1.14)

Now, provided P2 is nowhere zero, we can solve for W to get

W (x) = const× exp

(
−
∫
P1(x)

P2(x)
dx

)
. (1.15)

Since the exponential can’t vanish, it follows that if W = 0 at one point, then W ≡ 0
everywhere and, conversely, if W 6= 0 at one point, then W 6= 0 everywhere. Now we can use
this result to obtain a partial converse to Proposition 1.1.

Proposition 1.2. Two solutions of a given homogeneous second-order ODE (H) are linearly
dependent if and only if their Wronskian is zero.

Proof. Suppose y1 and y2 are two solutions of (H); if they are linearly dependent then we know
already that their Wronskian is zero so now suppose for the converse that their Wronskian is
zero (everywhere, by (1.15)). If y1 is the zero function then y1 and y2 are certainly linearly
dependent and we are done. Suppose that there is at least one value of x, say x = a, with
y1(a) 6= 0, and pick µ so that y2(a) = µy1(a). Then

0 = W (a) = y1(a)y′2(a)− y2(a)y′1(a) = y1(a)
(
y′2(a)− µy′1(a)

)
(1.16)

and, since y1(a) 6= 0 by assumption, we conclude that y′2(a) = µy′1(a).
Now define y(x) = y2(x)−µy1(x); then y(x) is a solution of (H) by linearity, and satisfies

the initial conditions y(a) = 0 = y′(a). Thus by uniqueness of solution of (H) (Picard’s
Theorem: again assuming that P2 6= 0) we conclude that y(x) ≡ 0 and therefore y1 and y2
are linearly dependent.

1.4 A basis of solutions to (H)

We can choose two particular solutions y1 and y2 of (H) satisfying the following initial con-
ditions at some point x = a:

y1(a) = 1, y′1(a) = 0, y2(a) = 0, y′2(a) = 1. (1.17)

By Picard’s Theorem both y1(x) and y2(x) exist and are unique at least in a neighbourhood
of x = a provided P2(a) 6= 0. Also their Wronskian has W = 1 at x = a and so is nonzero in
the same neighbourhood of x = a, and hence they are linearly independent.

In fact, y1 and y2 span the vector space of solutions. Suppose y(x) is any other solution
of (H) and set

Y (x) = y1(x)y(a) + y2(x)y′(a). (1.18)

Then Y (x) is also a solution of (H) and satisfies the initial conditions

Y (a) = y(a), Y ′(a) = y′(a). (1.19)

By uniqueness (Picard again) Y (x) ≡ y(x) and thus y(x) is a linear combination of y1 and y2.
Hence they do span the vector space of solutions, i.e. they are a basis, and we conclude the
following.



Differential Equations II Draft date: 31 December 2020 1–5

Proposition 1.3.

(i) The dimension of the space of solutions of H is 2.

(ii) Any pair of solutions of H with W 6= 0 is a basis.

Exercise: generalise everything done so far to n-th order linear ODEs.

1.5 Solution methods for homogeneous problem

There are very few general methods of solution for second-order linear ODEs of the form
(H). We will discuss three well known special cases of (H) where the general solution can be
found relatively easily. All three methods can be used for higher order problems with similar
properties.

1.5.1 Constant coefficients

If P2, P1 and P0 are constants, then (H) admits exponential solutions of the form y(x) = emx,
where m satisfies the quadratic equation P2m

2 + P1m + P0 = 0, known as the auxiliary
equation. The general solution can then easily be found as a linear combination of solutions
with different values of m. Care must be taken for cases where the roots m are complex or
are repeated.

1.5.2 Cauchy–Euler equation

In a Cauchy–Euler equation, the coefficients are of the form P2(x) = αx2, P1(x) = βx,
P0(x) = γ, with α, β, γ constants, so (H) takes the form

αx2
d2y

dx2
+ βx

dy

dx
+ γy = 0. (1.20)

(Note that the “power of x” is the same in each term.) In this case, solutions can be found
of the form y(x) = xm, and m again satisfies a quadratic equation, αm(m− 1) +βm+ γ = 0.
Again, extra care is needed if the roots m are repeated or complex. An alternative approach
is to make the substitution x = et, which transforms (1.20) into the constant-coefficients
equation

α
d2y

dt2
+ (β − α)

dy

dt
+ γy = 0. (1.21)

1.5.3 Reduction of order

If one solution y1(x) is known, then the general solution can be found by solving an ODE of
reduced order. The method is to express the solution to the ODE (H) in the form

y(x) = v(x)y1(x). (1.22)

We know that the function v(x) = const is a possible answer but we seek something more
general. We substitute (1.22) into (H) and simplify, using the fact that y1 is a solution of
(H), to obtain

P2y1v
′′ + (2P2y

′
1 + P1y1)v

′ = 0, (1.23)
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which is a separable first-order ODE for v′ with solution

v′(x) =
const

y1(x)2
exp

(
−
∫
P1(x)

P2(x)
dx

)
. (1.24)

One further integration then gives v and thus the general solution y(x) = v(x)y1(x).

This method of constructing the general solution from a single known solution may also
be derived from the expression (1.15) for the Wronskian, i.e.

W (x) = y1(x)y′2(x)− y2(x)y′1(x) = y1(x)2
d

dx

(
y2(x)

y1(x)

)
= const× exp

(
−
∫
P1(x)

P2(x)
dx

)
,

(1.25)
from which we can construct y2(x) given y1(x).

1.6 Variation of parameters

We now know a good deal about the solutions of the homogeneous ODE (H). The general
solution to the inhomogeneous version (N) given by (1.6) seems to rely on us spotting a
particular integral yPI(x). The method of variation of parameters allows us to construct a
solution to (N) for any forcing function f without any guesswork, provided we already know
the general solution to the homogeneous equation (H).

Suppose that (H) is solved by y(x) = c1y1(x) + c2y2(x) with linearly independent y1, y2.
We seek a solution to (N) of the form

y(x) = c1(x)y1(x) + c2(x)y2(x), (1.26)

i.e. we “vary the parameters” c1 and c2. First, differentiate (1.26) to find

y′ = c1y
′
1 + c2y

′
2 + c′1y1 + c′2y2. (1.27)

Now to eliminate the highest derivatives of ci, we impose the condition

c′1y1 + c′2y2 = 0 (1.28)

on c1 and c2. Note, since we are using two functions c1 and c2 to define one function y, we
should have enough freedom to satisfy the additional constraint (1.28). Under the assumption
(1.28), the expression (1.27) for y′ simplifies to

y′ = c1y
′
1 + c2y

′
2. (1.29)

We differentiate once more and substitute into (1.2) to get

Ly = P2

(
c1y
′′
1 + c2y

′′
2 + c′1y

′
1 + c′2y

′
2

)
+ P1

(
c1y
′
1 + c2y

′
2

)
+ P0(c1y1 + c2y2)

= c1Ly1 + c2Ly2 + P2

(
c′1y
′
1 + c′2y

′
2

)
. (1.30)

But, since the yi satisfy (H), the inhomogeneous ODE (N) becomes

Ly = P2

(
c′1y
′
1 + c′2y

′
2

)
= f. (1.31)
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Together, (1.28) and (1.31) give two simultaneous linear equations for c′1 and c′2, namely(
y1 y2
y′1 y′2

)(
c′1
c′2

)
=

(
0

f/P2.

)
(1.32)

Note that the determinant of the matrix on the left-hand side is the Wronskian W , which we
know is nonzero by the assumed linear independence of y1 and y2. We can therefore invert
(1.32) to get (

c′1
c′2

)
=

1

W

(
y′2 −y2
−y′1 y1

)(
0

f/P2.

)
=

f

P2W

(
−y2
y1

)
. (1.33)

We can thus integrate to obtain

c1(x) = −
∫ x f(ξ)y2(ξ)

P2(ξ)W (ξ)
dξ, c2(x) =

∫ x f(ξ)y1(ξ)

P2(ξ)W (ξ)
dξ, (1.34)

and, by substituting into (1.26)

y(x) = −
∫ x f(ξ)y2(ξ)y1(x)

P2(ξ)W (ξ)
dξ +

∫ x f(ξ)y1(ξ)y2(x)

P2(ξ)W (ξ)
dξ. (1.35)

In principle, (1.35) allows us to construct a particular solution to (N) for any right-hand
side f . There is some freedom in the construction (1.35): firstly in the choice of two linearly
independent solutions (y1, y2) of (H); and secondly in setting the lower limits in the integrals.
We will show below how to use this freedom to fit boundary conditions, after doing an example.

Example 1.2. Consider the equation

y′′(x) + y(x) = tanx for − π

2
< x <

π

2
. (1.36)

The corresponding homogeneous equation is y′′ + y = 0, for which we may choose two linearly-
independent solutions as

y1(x) = cosx, y2(x) = sinx. (1.37)

The Wronskian turns out to be

W (x) = y1(x)y′2(x)− y2(x)y′1(x) = cos2 x+ sin2 x = 1, (1.38)

and so by (1.34) we have

c1(x) = −
∫

tanx sinxdx = sin(x)− log(secx+ tanx), (1.39a)

c2(x) =

∫
tanx cosx dx = − cosx. (1.39b)

Thus a particular integral of the inhomogeneous ODE (1.36) is given by

y(x) = c1(x)y1(x) + c2(x)y2(x) = − cos(x) log(secx+ tanx). (1.40)

It would have been very difficult to “spot” this from (1.36)!
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Chapter 2

Second-order linear boundary value
problems - Part 2

These lecture notes are based on material written by Derek Moulton and Peter
Howell. Please send any corrections or comments to Renaud Lambiotte.

2.1 Fitting boundary conditions

We now develop a general method to solve the inhomogeneous ODE (N) with homogeneous
boundary conditions. We consider the BVP

P2(x)y′′(x) + P1(x)y′(x) + P0(x)y(x) = f(x) a < x < b, (2.1a)

with boundary data
y(a) = 0 = y(b). (2.1b)

We will see later on how generalised boundary conditions more complicated than (2.1b) may
be handled. We follow the Variation of Parameters recipe (1.26), but now making specific
choices of the two basis solutions y1 and y2 such that y1(a) = 0 and y2(b) = 0. We assume
for the moment that such y1 and y2 exist and are linearly independent so that W [y1, y2] 6= 0,
and it follows that y1(b) 6= 0 and y2(a) 6= 0.

So the solution takes the form y(x) = c1(x)y1(x) + c2(x)y2(x), with the ci as in (1.34),
and the boundary conditions (2.1b) lead to

y(a) = c1(a)y1(a) + c2(a)y2(a) = c2(a)y2(a) = 0, (2.2a)

y(b) = c1(b)y1(b) + c2(b)y2(b) = c1(b)y1(b) = 0 (2.2b)

with the choices made for yi. This requires that we take c2(a) = 0 = c1(b) and, by imposing
these conditions on (1.34), we obtain explicit unique forms for c1 and c2, namely

c1(x) =

∫ b

x

f(ξ)y2(ξ)

P2(ξ)W (ξ)
dξ, c2(x) =

∫ x

a

f(ξ)y1(ξ)

P2(ξ)W (ξ)
dξ (2.3)

(note the switching of the limits in the integral for c1).
The solution to the BVP (2.1) can thus be written as

y(x) =

∫ x

a

f(ξ)y1(ξ)y2(x)

P2(ξ)W (ξ)
dξ +

∫ b

x

f(ξ)y2(ξ)y1(x)

P2(ξ)W (ξ)
dξ, (2.4)

2–1

http://people.maths.ox.ac.uk/moulton/
http://people.maths.ox.ac.uk/howell/
http://people.maths.ox.ac.uk/howell/
mailto:lambiotte@maths.ox.ac.uk
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which we can write concisely as

y(x) =

∫ b

a
g(x, ξ)f(ξ) dξ, (2.5)

where

g(x, ξ) =


y1(ξ)y2(x)

P2(ξ)W (ξ)
a < ξ < x < b,

y2(ξ)y1(x)

P2(ξ)W (ξ)
a < x < ξ < b,

(2.6)

is called the Green’s function. We will return to study the properties of g in more detail in
Section 2.

Example 2.3. We illustrate the construction of g for the BVP

y′′(x) + y(x) = f(x) for 0 < x <
π

2
, (2.7a)

with boundary conditions

y(0) = 0 = y
(π

2

)
. (2.7b)

1. Identify (H) as y′′ + y = 0.

2. Choose solutions y1 and y2 such that y1(0) = 0 and y2(π/2) = 0: y1(x) = sinx and y2(x) = cosx
will do.

3. Note P2 = 1 and calculate W =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ = −1.

Therefore (2.6) gives the Green’s function as

g(x, ξ) =

{
− sin ξ cosx 0 < ξ < x < π

2 ,

− cos ξ sinx 0 < x < ξ < π
2 .

(2.8)

By (2.5), the solution of the BVP (2.7) is then given by

y(x) =

∫ π
2

0

g(x, ξ)f(ξ) dξ. (2.9)

Example 2.4.: Nonexistence/nonuniqueness of solution
Here we consider the same ODE as in Example 2.3 but with modified boundary conditions, namely

y′′(x) + y(x) = f(x) for 0 < x <
π

2
, (2.10a)

subject to

y(0) = 0 = y′
(π

2

)
. (2.10b)

The problem here is that y1(x) = sin(x) satisfies both boundary conditions (2.10b), and it is impossible
to find linearly independent y1 and y2 satisfying one boundary condition each. The construction that
led to (2.4) therefore fails.

However, from the discussion in §1.4, we know that any solution of (2.10a) can be written in the
form “particular integral + complementary function”, that is,

y(x) = c1(x)y1(x) + c2(x)y2(x)︸ ︷︷ ︸
PI

+αy1(x) + βy2(x)︸ ︷︷ ︸
CF

, (2.11)
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where, as before,

c1(x) = −
∫ π/2

x

f(ξ)y2(ξ) dξ, c2(x) = −
∫ x

0

f(ξ)y1(ξ) dξ, (2.12)

and α, β are arbitrary constants. Here we use variation of parameters just to find the particular
integral: we have not yet attempted to apply the boundary conditions. Given the condition (1.28)
satisfied by c1 and c2, we can easily calculate

y′(x) =
[
c1(x)y′1(x) + c2(x)y′2(x)

]
+
[
αy′1(x) + βy′2(x)

]
. (2.13)

Now we impose the boundary conditions (2.10b). Using the particular forms y1(x) = sinx and
y2(x) = cosx and the conditions c2(0) = 0 = c1(π/2), we calculate

y(0) = β and y′(π/2) = −β − c2(π/2), (2.14)

and substitution into (2.10b) gives β = 0 and c2(π/2) = 0, i.e.∫ π/2

0

f(ξ) sin(ξ) dξ = 0. (2.15)

The BVP (2.10) has no solution unless f satisfies the solvability condition (2.15). If (2.15) is
satisfied, then the solution of (2.10) exists but is not unique, since the value of α in (2.13) remains
arbitrary.

2.2 Analogy with linear algebra

The difficulty encountered in Example 2.4 is reminiscent of a difficulty that can occur in
the solution of systems of linear equations. Consider the homogeneous and inhomogeneous
problems

Ax = 0, (H)

Ax = b, (N )

where A ∈ Rn×n and x, b ∈ Rn. If A is invertible (i.e. has nonzero determinant), then (H)
has only the trivial solution x = 0. In this case, (N ) has a unique solution x = A−1b.

However, if (H) has a solution x = x1 6= 0, then A must be singular and, for general b,
the solution of (N ) does not exist. If for some particular choice of b a solution of (N ) for x
does exist, then it is non-unique, since any vector of the form x + αx1 is also a solution. In
summary, if the homogeneous problem admits non-trivial solutions, then the inhomogeneous
problem has either no solution or an infinite number of solutions, but how can we determine
which it is?

One option is to note that (since the row and column ranks of A are equal) A∗ is singular
if and only if A is, where A∗ here denotes the transpose of A. Thinking of A as a linear
transformation on Rn, we can also identify A∗ as the corresponding adjoint transformation,
in the sense that

〈Ax,w〉 ≡ 〈x, A∗w〉 , (2.16)

where 〈x,w〉 ≡ x ·w denotes the usual Cartesian inner product.
If (H) admits non-trivial solutions for x, then the corresponding adjoint problem

A∗w = 0, (H∗)
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also admits non-trivial solutions for w. By taking the inner product of (N ) with w and using
(2.16), we deduce that a necessary condition for (N ) to be solvable is that

〈b,w〉 = 0 for all w satisfying (H∗). (2.17)

It can be shown that the solvability condition (2.17) is also sufficient, and hence that (N ) is
solvable for x if and only if b is orthogonal to every vector in the kernel of A∗. Indeed, this
is really just a re-phrasing of the standard result for finite-dimensional inner product spaces
im(A) = ker(A∗)⊥: “the image of A is the orthogonal complement of the kernel of A∗”.

Collecting all the above together, we see that there are three alternative outcomes for
the inhomogeneous problem (N ): there is either a unique solution, no solution, or an infinite
number of solutions. These can be summarised as follows in the so-called Fredholm Alternative
Theorem (FAT).

Theorem 2.1. Fredholm Alternative (Rn version)
Exactly one of the following possibilities occurs.

1. The homogeneous equation (H) Ax = 0 has only the zero solution. In this case the
solution of (N ) Ax = b is unique.

2. The homogeneous equation (H) Ax = 0 admits non-trivial solutions, and so does
(H∗) A∗w = 0. In this case there are two sub-possibilities:

2(a) if 〈b,w〉 = 0 for all w satisfying (H∗), then (N ) has a non-unique solution;

2(b) otherwise, (N ) has no solution.

Now let us see how Theorem 2.1 relates to Examples 2.3 and 2.4.
Example 2.3 corresponds to alternative 1 of Theorem 2.1. The homogeneous problem

Ly = y′′ + y = 0, subject to the boundary conditions y(0) = y(π/2) = 0 has no non-trivial
solutions. In this case, we are able to find two linearly independent solutions satisfying
y1(0) = 0 = y2(π/2), and the construction in §2.1 provides a unique solution to the inhomo-
geneous problem Ly = f for arbitrary f .

In Example 2.4, the homogeneous problem Ly = y′′ + y, subject to the new boundary
conditions y(0) = y′(π/2) = 0 does admit a non-trivial solution y1(x) = sinx. In this case, it
is impossible to find two linearly independent solutions satisfying y1(0) = 0 = y′2(π/2), and
the construction of the Green’s function given in §2.1 fails. This corresponds to alternative 2
of Theorem 2.1: the inhomogeneous problem Ly = f either has (2a) a non-unique solution,
if f satisfies the solvability condition (2.15); or (2b) no solution, if (2.15) is not satisfied.
However, to understand how (2.15) relates to (2.17), we need to define the adjoint of a
differential operator.

2.3 Adjoint operator and boundary conditions

We define the inner product between two (suitably smooth) functions defined on an interval
[a, b] by

〈u, v〉 :=

∫ b

a
u(x)v(x) dx, (2.18)

where the overbar denotes complex conjugate. Where it is clear that we are dealing with
real-valued functions, we will generally drop the overbar for simplicity.
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In general, for a given linear operator L, the corresponding adjoint operator L∗ is defined
by the inner product relation

〈Ly, w〉 = 〈y,L∗w〉 (2.19)

for all y, w in a suitable inner product space. To determine the adjoint of a linear differential
operator, one needs (i) to move the derivatives of the operator from y to w, using integration
by parts, and (ii) to set the boundary conditions to ensure that all boundary terms vanish.

Example 2.5. Let
Ly = y′′ (2.20)

for a ≤ x ≤ b. We use integration by parts to calculate

〈Ly, w〉 =

∫ b

a

y′′(x)w(x) dx = −
∫ b

a

y′(x)w′(x) dx+ [y′(x)w(x)]
b
a

=

∫ b

a

y(x)w′′(x) dx+ [y′(x)w(x)− y(x)w′(x)]
b
a ≡ 〈y,L

∗w〉 . (2.21)

To enforce this identity, we identify the integrand in (2.21) with L∗w, i.e.

L∗w = w′′. (2.22)

We note in this case that L ≡ L∗: the operator is self-adjoint.
We must also ensure that the boundary terms in (2.21) vanish. Thus, the boundary conditions

imposed on y imply corresponding adjoint boundary conditions to be imposed on w.
As a first illustration, suppose that y satisfies the boundary conditions

B1y = y(a) = 0, B2y = y(b) = 0. (BC1)

Then the boundary terms in (2.21) reduce to

y′(b)w(b)− y′(a)w(a)− y(b)w′(b) + y(a)w′(a) = y′(b)w(b)− y′(a)w(a) (2.23)

and, to ensure that this vanishes for all y′(a) and y′(b), we deduce the adjoint boundary conditions

B∗1w = w(a) = 0, B∗2w = w(b) = 0. (BC1∗)

Alternatively, if we impose the more complicated boundary condtions

B1y = y′(a) = 0, B2y = 3y(a)− y(b) = 0 (BC2)

on y, then the boundary terms in (2.21) may be expressed in the form

y′(b)w(b)− y′(a)w(a)− y(b)w′(b) + y(a)w′(a) = y(a)w′(a)− 3y(a)w′(b) + y′(b)w(b). (2.24)

To ensure that this expression vanishes for all y(a) and y′(b), we deduce the adjoint boundary conditions

B∗1w = w′(a)− 3w′(b) = 0, B∗2w = w(b) = 0. (BC2∗)

Example 2.5 illustrates the following general points about the adjoint of a linear differential
operator.

(i) We can calculate the adjoint L∗ of an operator L without worrying about the boundary
conditions.

(ii) If L∗ = L, then the operator L is self-adjoint.
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(iii) When L is supplemented with homogeneous boundary conditions to give a problem of
the form (L + BC), then corresponding adjoint boundary conditions are generated to
gave an adjoint problem (L∗ + BC∗).

(iv) If L = L∗ and BC = BC∗ then the problem is said to be fully self-adjoint (as in the
case (BC1) above).

(v) As illustrated by (BC2) and (BC2∗), it is possible for the operator to be self-adjoint but
the boundary conditions not to be (sometimes this case is called “formally self-adjoint”).

By following through the integration by parts procedure, one can find a general form for
the adjoint operator:

Ly = P2y
′′ + P1y

′ + P0y (2.25a)

⇔ L∗w = (P2w)′′ − (P1w)′ + P0w. (2.25b)

One can easily check that an analagous procedure works for higher-order operators: to find the
adjoint, move all the coefficients inside the derivatives, and switch the sign of any odd-ordered
derivatives. Using (2.25), we calculate

wLy − yL∗w = w
[
P2y

′′ + P1y
′ + P0y

]
− y

[
(P2w)′′ − (P1w)′ + P0w

)
]

=
[
P2wy

′ − (P2w)′y + P1wy
]′

(2.26)

and therefore
〈Ly, w〉 − 〈y,L∗w〉 =

[
P2wy

′ − (P2w)′y + P1wy
]b
a
. (2.27)

Given appropriate homogeneous boundary conditions for y, we can deduce the correspond-
ing adjoint boundary conditions for w by setting the final integrated term in (2.27) equal to
zero. This integrated term must then be expressible in the form

〈Ly, w〉 − 〈y,L∗w〉 =
[
P2wy

′ − (P2w)′y + P1wy
]b
a

= (K∗1w)(B1y) + (K∗2w)(B2y) + (K1y)(B∗1w) + (K2y)(B∗2w), (2.28)

where K1y and K2y are linearly independent of B1y and B2y, and likewise K∗1w and K∗2w are
linearly independent of B∗1w and B∗2w. For example, in the case of (BC2) from Example 2.5,
we can write[

y′w − yw′
]b
a

= −w(a)︸ ︷︷ ︸
K∗

1w

y′(a)︸ ︷︷ ︸
B1y

+w′(b)︸ ︷︷ ︸
K∗

2w

(
3y(a)− y(b)

)︸ ︷︷ ︸
B2y

+ y(a)︸︷︷︸
K1y

(
w′(a)− 3w′(b)

)︸ ︷︷ ︸
B∗

1w

+ y′(b)︸︷︷︸
K2y

w(b)︸︷︷︸
B∗

2w

.

(2.29)
We then see how the given boundary conditions B1y = B2y = 0 enforce the corresponding
ajoint conditions B∗1w = B∗2w = 0.

Expanding out L∗ in (2.25), we find

L∗w = P2w
′′ +

(
2P ′2 − P1

)
w′ +

(
P ′′2 − P ′1 + P0

)
w, (2.30)

and, by comparing with L, we deduce that L is self-adjoint if and only if P1 = P ′2. If so then,
setting P2 = −p, P1 = −p′ and P0 = q, we can write L as

Ly = −
(
py′
)′

+ qy, (2.31)
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which is the most general formally self-adjoint second-order differential operator.
Finally, we are ready for a statement (without proof!) of the Fredholm Alternative The-

orem (FAT) for linear differential operators of the form (2.25a).

Theorem 2.2. Fredholm Alternative (linear ODE version)
We consider the linear homogeneous and inhomogeneous ODEs

Ly = 0, (H)

Ly = f 6≡ 0, (N)

for 0 < x < a, supplemented by linear homogeneous boundary conditions of the form

B1y = α1y(a) + α2y
′(a) + β1y(b) + β2y

′(b) = 0,
B2y = α3y(a) + α4y

′(a) + β3y(b) + β4y
′(b) = 0,

}
(BC)

(with (α1, α2, β1, β2) and (α3, α4, β3, β4) linearly independent). We also define the homoge-
neous adjoint equation

L∗w = 0, (H∗)

and corresponding adjoint boundary conditions (BC∗), computed as described above.
Exactly one of the following possibilities occurs.

1. The homogeneous problem (H+BC) has only the zero solution. In this case the solution
of (N+BC) is unique.

2. The homogeneous problem (H+BC) admits non-trivial solutions, and so does (H∗+BC∗).
In this case there are two sub-possibilities:

2(a) if 〈f, w〉 = 0 for all w satisfying (H∗+BC∗), then (N+BC) has a non-unique
solution;

2(b) otherwise, (N+BC) has no solution.

Exercise: Demonstrate that Examples 2.3 and 2.4 are consistent with FAT.

2.4 Inhomogeneous boundary conditions and FAT

Our statement of the Fredholm Alternative in Theorem 2.2 concerns ODEs subject to homo-
geneous boundary conditions. A little more work is required to apply the results to problems
with inhomogeneous boundary conditions. Suppose that we replace the boundary conditions
(BC) with

B1y = α1y(a) + α2y
′(a) + β1y(b) + β2y

′(b) = γ1,
B2y = α3y(a) + α4y

′(a) + β3y(b) + β4y
′(b) = γ2,

}
(NBC)

for some constants γ1 and γ2. First we note that the condition for a unique solution of the
modified problem (N+NBC) is exactly the same as case 1 in Theorem 2.2. To see this, let
v(x) be any twice differentiable function that satisfies the conditions (NBC): it need not be
a solution of the ODE (H). We can then make the boundary conditions homogeneous by
subtracting off v(x), i.e. defining ỹ(x) = y(x)− v(x), so that ỹ satisfies the problem

Lỹ = f − Lv = f̃ , (2.32)
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say, with homogeneous boundary conditions B1ỹ = 0 = B2ỹ. We can now apply FAT to
deduce that there is a unique solution for ỹ, and therefore also for y, if and only if the
homogeneous problem (H+BC) has no non-trivial solutions.

If (H+BC) does admit non-trivial solutions, then we can apply Case 2 of FAT to deduce
that there is no solution unless 〈f̃ , w〉 = 0 for all w in the kernel of (H∗+BC∗), in which case
the solution is non-unique. The solvability condition in this case may be expressed as

0 = 〈f̃ , w〉 = 〈f, w〉 − 〈Lv, w〉
= 〈f, w〉 − 〈v,L∗w〉 − (K∗1w)(B1v)− (K∗2w)(B2v)− (K1v)(B∗1w)− (K2v)(B∗2w), (2.33)

when we apply the decomposition (2.28). Since w satisfies the homogeneous adjoint problem
(H∗+BC∗), the right-hand side of (2.33) only involves functions of v that are known by the
given boundary conditions B1v = γ1 and B2v = γ2, and we thus deduce the solvability
condition

〈f, w〉 = γ1K
∗
1w + γ2K

∗
2w. (2.34)

We note that (2.34) does not involve the function v that was introduced to make the
boundary conditions homogeneous, and indeed one can obtain (2.34) directly without first
simplifying the boundary conditions. As above, let w be any solution of the homogeneous
adjoint problem (H∗+BC∗), and take the inner product of (N) with w to get

〈f, w〉 = (K∗1w)(B1y) + (K∗2w)(B2y) + (K1y)(B∗1w) + (K2y)(B∗2w). (2.35)

Application of the relevant boundary conditions then immediately produces (2.34).
In summary, when the boundary conditions are inhomogeneous, we have shown the fol-

lowing.

• The condition for a unique solution to exist (Case 1 of FAT) is unaffected.

• For cases where there is not a unique solution, the solvability condition is still obtained
by taking the inner product with a non-trivial solution w of the homogeneous adjoint
problem. Now the boundary terms produced by integration by parts do not disappear
identically but do only involve quantites that are in principle known from the specified
boundary conditions.

Example 2.6. Solve y′′(x) = f(x) on 0 < x < 1 with y(0) = 0 and y′(1) = 7.
Here L is self-adjoint, and the homogeneous adjoint problem is L∗w = w′′ = 0 with w(0) = w′(1) = 0.

This only has the trivial solution w ≡ 0, so original BVP has a unique solution for any f(x).
For this simple ODE, we can construct the solution straightforwardly as follows. First let’s make

the boundary conditions homogeneous by subtracting off a suitable solution of the homogeneous problem,
namely u(x) = 7x. Thus ỹ = y − u satisfies

ỹ′′(x) = f(x) on 0 < x < 1, ỹ(0) = 0 = ỹ′(1). (2.36)

We can easily integrate this simple ODE directly; alternatively, the Green’s function for this problem
is easily found to be given by

g(x, ξ) =

{
−x 0 < x < ξ < 1,

−ξ 0 < ξ < x < 1,
(2.37)

and the solution of the BVP is then

y(x) = 7x+

∫ 1

0

g(x, ξ)f(ξ) dξ. (2.38)
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Example 2.7. Solve the same ODE y′′ = 3 with boundary conditions y′(0) = 0 and y′(1) = β.
The problem is again self-adjoint. The homogeneous adjoint problem w′′ = 0, w′(0) = 0 = w′(1)

has the non-trivial solution w = 1 (or any multiple thereof). Now calculate

〈y′′, w〉 = 〈f, w〉

⇒
∫ 1

0

y′′(x) dx =

∫ 1

0

3 dx = 3

⇒
[
y′
]1
0

= β = 3 (2.39)

Thus if β 6= 3, we have a contradiction and no solution exists, while if β = 3, we have a non-unique
solution.

Example 2.8. When is the BVP

y′′(x) + y(x) = f(x) for 0 < x <
π

2
, y(0) = 1, y′

(π
2

)
= 0 (2.40)

solvable for y?
This is a very slightly altered version of Example 2.4. The problem is again self-adjoint, and we

know that w(x) = sinx satisfies the homogeneous problem. So take the inner product with sinx and
integrate by parts to get∫ π/2

0

(
y′′(x) + y(x)

)
sinxdx ≡ [y′(x) sinx− y(x) cosx]

π/2
0 = 1, (2.41)

when we evaluate the right-hand side using the given boundary conditions. The solvability condition
in this case is therefore ∫ π/2

0

f(x) sinxdx = 1. (2.42)
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Chapter 3

The Green’s function

These lecture notes are based on material written by Derek Moulton and Peter
Howell. Please send any corrections or comments to Renaud Lambiotte.

3.1 Properties of the Green’s function

We recall from §2.1 that the solution of the second-order inhomogeneous ODE

Ly = P2y
′′ + P1y

′ + P0y = f a < x < b, (3.1)

subject to the simple boundary conditions

y(a) = 0 = y(b), (3.2)

may be written as

y(x) =

∫ b

a
g(x, ξ)f(ξ) dξ, (3.3)

where the Green’s function is given by

g(x, ξ) =


y1(ξ)y2(x)

P2(ξ)W (ξ)
a < ξ < x < b,

y2(ξ)y1(x)

P2(ξ)W (ξ)
a < x < ξ < b.

(3.4)

Here y1 and y2 are linearly independent solutions of the homogeneous ODE Ly = 0 satisfying
one boundary condition each, i.e. y1(a) = 0 = y2(b).

We note that the construction of g depends only on the solution of the homogeneous ODE
(3.1) and the imposed boundary conditions: it does not depend at all on f . If we are given
the linear operator L and suitable boundary conditions, in principle we can solve for g “once
and for all”, and then use (3.3) to give us the solution for arbitrary right-hand side f .Thus
the Green’s function provides a kind of inverse to the differential operator L in the sense that
Ly = f (plus suitable boundary conditions) is equivalent to y = L−1f , with L−1 defined by
(3.3).

It is easily verified that the Green’s function defined by (3.4) has the following properties.

3–1

http://people.maths.ox.ac.uk/moulton/
http://people.maths.ox.ac.uk/howell/
http://people.maths.ox.ac.uk/howell/
mailto:lambiotte@maths.ox.ac.uk
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(i) g(x, ξ) (viewed as a function of x) satisfies the homogeneous ODE (H) everywhere other
than the special point x = ξ, i.e.

Lxg = P2(x)gxx + P1(x)gx + P0(x)g = 0 (3.5)

in a < x < ξ < b and in a < ξ < x < b. (Note here for clarity the subscript x indicates
that the derivatives are with respect to x rather than ξ.)

(ii) g(x, ξ) (again viewed as a function of x) satisfies the same boundary conditions as y,
i.e. g(a, ξ) = g(b, ξ) = 0.

(iii) g(x, ξ) is continuous at x = ξ, i.e.

lim
x→ξ+

g(x, ξ) = lim
x→ξ−

g(x, ξ). (3.6)

However, the first derivative of g is discontinuous, with a jump given by

lim
x→ξ+

gx(x, ξ)− lim
x→ξ−

gx(x, ξ) =
1

P2(ξ)
. (3.7)

3.2 Reverse-engineering g

Suppose we start from the form of the solution (3.3), and try to work out what properties
g must have to make (3.3) satisfy the given BVP. Considering first the boundary conditions
(3.2), we get ∫ b

a
g(a, ξ)f(ξ) dξ = 0 =

∫ b

a
g(b, ξ)f(ξ) dξ for all functions f(ξ), (3.8)

which indeed leads us to property (ii) above.

Second, let us substitute (3.3) into the ODE (3.1), assuming (a risky assumption as we
will see) that the x-derivatives may be passed through the integral sign so that

L

∫ b

a
g(x, ξ)f(ξ) dξ =

∫ b

a
Lxg(x, ξ)f(ξ) dξ = f(x). (3.9)

To make this work, we apparently need g to satisfy

Lxg(x, ξ) = δ(x− ξ), (3.10)

where δ is a function (if one exists) with the property that∫ b

a
δ(x− ξ)φ(ξ) dξ ≡ φ(x), (3.11)

for any (suitably smooth) function φ. The property (3.11) is known as the sifting property —
δ is somehow supposed to pick out the value of the test function φ at a specific point. Luckily,
a function with the property (3.11) does exist (though it isn’t really a function) and is called
the Dirac delta function.
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3.3 The delta function

3.3.1 Definition

The delta function may be thought of as describing a point source, and may be characterised
by the properties

δ(x) = 0 for all x 6= 0, (3.12a)∫ ∞
−∞

δ(x) dx = 1. (3.12b)

The first property (3.12a) captures the notion of a point function. The second property
(3.12a) constrains the area under the graph (which you might think of as infinitely thin and
infinitely high). An idealized unit point source at x = 0 is described by δ(x); a point source
at some other point x = ξ would be given by δ(x− ξ).

If a δ existed satisfying (3.12), then it would also have the desired sifting property (3.11).
By property (3.12), for any x ∈ (a, b) we can write∫ b

a
δ(x− ξ)φ(ξ) dξ =

∫ x+ε

x−ε
δ(x− ξ)φ(ξ) dξ, (3.13)

where ε is an arbitrarily small positive parameter. For sufficiently smooth φ, we can thus
approximate ∫ b

a
δ(x− ξ)φ(ξ) dξ ∼

[
φ(x) +O(ε)

] ∫ x+ε

x−ε
δ(x− ξ) dξ, (3.14)

and by letting ε→ 0, we find that the right-hand side is equal to φ(x) as required.

3.3.2 Approximating the delta function

The problem is that no classical function satisfies both properties (3.12) (any function that is
non-zero only at a point either is not integrable or integrates to zero). One way around this
difficulty is to replace δ by an approximating sequence of increasingly narrow functions with
normalised area, i.e. δn(x) where∫ ∞

−∞
δn(x) dx = 1 for all n = 1, 2, . . . , (3.15a)

lim
n→∞

δn(x) = 0 for all x 6= 0. (3.15b)

One possibility is “hat” functions of the form

δn(x) =

{
0 for |x| > 1/n,

n/2 for |x| ≤ 1/n.
(3.16)

It is easily verified that the sequence of functions δn(x) defined by (3.16) has the desired
properties (3.15). As illustrated in figure 3.1, as n increases, δn(x) approaches a “spike”,
equal to zero everywhere apart from a neighbourhood of the origin but nevertheless with unit
area under the graph.
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Figure 3.1: Hat functions defined by equation (3.16).

3.3.3 Properties of delta function

Approximating sequences like (3.16) can be used to establish various properties of the delta
function.

Sifting property Let φ(x) be a smooth function, and Φ(x) =
∫
φ(x) dx its antiderivative.

If we use the particular approximating sequence (3.16), then∫ ∞
−∞

δn(x− a)φ(x) dx =

∫ a+1/n

a−1/n
(n/2)φ(x) dx =

n

2
[Φ(a+ 1/n)− Φ(a− 1/n)] . (3.17)

Now letting n→∞ we get∫ ∞
−∞

δn(x− a)φ(x) dx→ Φ′(a) = φ(a). (3.18)

Therefore δ does have the desired sifting property∫ ∞
−∞

δ(x− a)φ(x) dx ≡ φ(a) (3.19)

(for suitably smooth test functions φ) if we make the identification that∫ ∞
−∞

δ(x− a)φ(x) dx ≡ lim
n→∞

∫ ∞
−∞

δn(x− a)φ(x) dx. (3.20)

This final identification (3.20) is not valid in the space of classical functions (the con-
vergence of δn to δ is non-uniform) but it does hold for so-called distributions. Rather than
trying to approximate δ with a classical function, instead, one defines it as a linear functional
on the space of “test functions” T :

δ : T → R, (3.21a)

δ : φ(x) 7→ φ(0). (3.21b)

See ASO Integral Transforms for more details about this more systematic approach.

https://courses.maths.ox.ac.uk/node/37757
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Antiderivative of δ The antiderivative of the delta function is the so-called Heaviside
function: ∫ x

−∞
δ(s) ds = H(x) :=

{
0 x < 0

1 x > 0.
(3.22)

(The value of H(x) at x = 0 is indeterminate: it is sometimes taken to be 1 and sometimes
taken to be 1/2.)

Note that (3.22) may be obtained by integrating the sequence (3.16) of approximating
functions and showing that the limit is the Heaviside function, that is [Exercise]

lim
n→∞

∫ x

−∞
δn(s)ds = H(x) (3.23)

(with the same caveat as above about the validity of taking the limit through the integral).
Alternatively, one can convince oneself that H ′(x) = 0 for x 6= 0 but∫ ∞

−∞
H ′(x) dx =

∫ ε

−ε
H ′(x) dx =

[
H
]ε
−ε = 1, (3.24)

for any ε > 0. Thus H ′ has the defining properties (3.12) of δ. Again, all of these arguments
can be made more watertight using the theory of distributions.

3.4 Green’s function via delta function

Now let us return to the problem of finding a Green’s function g(x, ξ) satisfying (3.10). We
start by doing a very simple case with Ly = y′′ and y(0) = 0 = y(1).

Example 3.9. Find g(x, ξ) satisfying

gxx(x, ξ) = δ(x− ξ) for 0 < x, ξ < 1, (3.25a)

g(0, ξ) = 0 = g(1, ξ). (3.25b)

Since its right-hand side is zero for x 6= ξ, we can easily integrate (3.25a) to obtain the solution in
x < ξ and in x > ξ. By applying the boundary conditions (3.25b) we deduce that

g(x, ξ) =

{
A(ξ)x 0 < x < ξ < 1,

B(ξ)(1− x) 0 < ξ < x < 1,
(3.26)

where A and B are two arbitrary functions of integration. To evaluate A and B we need to decide how
to join the two solutions together across x = ξ. To do this, we integrate (3.25a) across the singularity
at x = ξ, that is, ∫ ξ+

ξ−
gxx(x, ξ) dx =

∫ ξ+

ξ−
δ(x− ξ) dx

⇒
[
gx(x, ξ)

]x=ξ+
x=ξ−

= 1, (3.27)

where ξ− and ξ+ refer to the limits as x approaches ξ from below and from above, respectively. From
(3.27) we deduce that there must be a unit jump in the derivative of g across the point x = ξ. The
second condition to determine A and B is that g itself must be continuous (more about this below).

So we impose the jump conditions[
g(x, ξ)

]x=ξ+
x=ξ−

= 0,
[
gx(x, ξ)

]x=ξ+
x=ξ−

= 1, (3.28)
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Figure 3.2: The Green’s function defined by (3.30) and its first two derivatives (with ξ = 0.65).

to obtain

B(1− ξ)−Aξ = 0, (3.29a)

−B −A = 1, (3.29b)

and hence A(ξ) = −(1− ξ), B(ξ) = −ξ, and the Green’s function in this case is given by

g(x, ξ) =

{
−x(1− ξ) 0 < x < ξ < 1,

−(1− x)ξ 0 < ξ < x < 1.
(3.30)

The Green’s function given by (3.30) is sketched in Figure 3.2(a). As we imposed, g
satisfies the boundary conditions g = 0 at x = 0 and x = 1, and is continuous everywhere.
The first x-derivative of g undergoes a unit jump across x = ξ, as shown in Figure 3.2(b),
and in fact resembles a Heaviside function. It follows that the second derivative has a delta
function at x = ξ, as illustrated in Figure 3.2(c).

Now: what would have happened if we didn’t impose continuity of g across x = ξ? In that
case gx would have a delta function at x = ξ and gxx would have an even worse singularity
(δ′(x), the derivative of the delta function, which is a well-defined distribution). So, continuity
of g ensures that we only have a delta-function singularity at x = ξ and nothing stronger.

We illustrate the approach more generally with a less trivial example.

Example 3.10. Find the Green’s function for the problem

y′′(x) + y(x) = f(x) for 0 < x <
π

2
, y(0) = 0 = y

(π
2

)
. (3.31)

So we have to solve

gxx + g = δ(x− ξ) for 0 < x, ξ <
π

2
, g(0, ξ) = 0 = g (π/2, ξ) . (3.32)

Since the right-hand side is zero for x 6= ξ, we can find the solution on either side of the singularity
and thus, applying the boundary conditions, we get

g(x, ξ) =

{
A(ξ) sinx 0 < x < ξ < 1,

B(ξ) cosx 0 < ξ < x < 1.
(3.33)

To derive the appropriate jump conditions, we again integrate (3.32) across x = ξ, as follows:∫ ξ+

ξ−
gxx(x, ξ) + g(x, ξ) dx =

∫ ξ+

ξ−
δ(x− ξ) dx

⇒
[
gx(x, ξ)

]x=ξ+
x=ξ−

= 1, (3.34)
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since the integral of g over the infinitesimal interval [ξ−, ξ+] is zero. Again, we impose continuity of g
itself (to eliminate any stronger singularity than δ) and thus we have exactly the same jump conditions
(3.28) as above.

We can then easily solve for A and B and hence obtain

g(x, ξ) =

{
− cos ξ sinx 0 < x < ξ < π

2 ,

− sin ξ cosx 0 < ξ < x < π
2 ,

(3.35)

which agrees exactly with the solution found in Example 2.3 using variation of parameters.

We can generalise the above arguments to obtain the appropriate jump conditions for a
general second-order linear operator of the form

Lxg(x, ξ) = P2(x)gxx(x, ξ) + P1(x)gx(x, ξ) + P0(x)g(x, ξ) = δ(x− ξ), (3.36)

namely

[
g(x, ξ)

]x=ξ+
x=ξ−

= 0,
[
gx(x, ξ)

]x=ξ+
x=ξ−

=
1

P2(ξ)
. (3.37)

These conditions reproduce property (iii) of g noted in §3.4. Note once again the importance
of P2 being nonzero on the interval of interest.

Exercise: (i) derive (3.37); (ii) hence obtain the general formula (3.4) for g.

3.5 Generalisation

We now show how to generalise the concepts developed above to linear ODEs of arbitrary
order and with more complicated (but still linear) boundary conditions. A general linear
differential operator of order n ∈ N may be written as

Ly(x) ≡ Pn(x)y(n)(x) + Pn−1(x)y(n−1)(x) + · · ·+ P1(x)y′(x) + P0(x)y(x) (3.38a)

≡ Pn(x)
dny

dxn
+ Pn−1(x)

dn−1y

dxn−1
+ · · ·+ P1(x)

dy

dx
+ P0(x)y(x), (3.38b)

for some given coefficients P0, . . . , Pn; (3.38) is equivalent to (1.2) when n = 2. As in
Section 1, we assume that all Pi are at least continuous and that the coefficient Pn of the
highest derivative is nonzero.

In terms of L, we define homogeneous and inhomogeneous linear ODEs of order n by

Ly = 0, (H)

Ly = f 6≡ 0. (N)

In a general nth-order linear BVP, the ODE (N) is supplemented by n boundary condi-
tions, each of which consists of a linear combination of y and its derivatives up to order n−1,
evaluated at the boundary points x = a and x = b. We will write these generically as

Biy
∣∣∣
x=a,b

= γi, i = 1, 2, . . . , n, (BCN)
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where γi are constants and each Bi is of the form

Biy =
n∑
j=1

(
αijy

(j−1)(a) + βijy
(j−1)(b)

)
, (3.39)

for some constants αij , βij (which must be such that (BCN) comprises n independent equa-
tions). For instance, for a 2nd order system, with n = 2 the most general linear boundary
conditions would have the form

B1y = γ1, B2y = γ2, (3.40)

where

B1y = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b), (3.41a)

B2y = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b), (3.41b)

which is equivalent to (BC) in the homogeneous case where γ1 = γ2 = 0.
The boundary conditions (BCN) are homogeneous if γi = 0 for all i, in which case we have

Biy
∣∣∣
x=a,b

= 0, i = 1, 2, . . . , n, (BCH)

We assume that

the homogeneous problem (H + BCH) has no non-trivial solutions, (?)

and then by FAT (Theorem 2.2), we expect the inhomogeneous problem to have a unique
solution.

We can reduce the full problem (N+BCN) to one with homogeneous boundary conditions
by subtracting off a suitable solution of the homogeneous problem (H). Let u be the solution
of the problem (H + BCN), i.e.

Lu(x) = 0, a < x < b, (3.42a)

Biu
∣∣∣
x=a,b

= γi, i = 1, 2, . . . , n. (3.42b)

It may be shown that, under the assumption (?), a unique solution for u exists. Then defining
ỹ = y − u, we see that ỹ satisfies the inhomogeneous ODE (N) but with the homogeneous
boundary conditions (BCH). We may therefore focus on the problem (N+BCH).

3.6 Green’s function for a general BVP

As above, we assume that the boundary conditions have been made homogeneous so we can
consider a general nth-order BVP of the form (N+BCH), i.e.

Ly(x) =

n∑
j=1

Pi(x)y(j−1)(x) = f(x) a < x < b, (3.43a)

subject to n linearly independent homogeneous boundary conditions

Biy
∣∣
x=a,b

=
n∑
j=1

(
αijy

(j−1)(a) + βijy
(j−1)(b)

)
= 0, i = 1, 2, . . . , n. (3.43b)
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The corresponding problem for g is

Lxg(x, ξ) = δ(x− ξ) a < x, ξ < b, (3.44a)

with boundary conditions

Big(x, ξ)
∣∣
x=a,b

= 0, i = 1, 2, . . . , n. (3.44b)

Since δ(x − ξ) is zero for x 6= ξ, we can in principle solve (3.44a) to get two distinct
solutions in each of the sub-intervals a < x < ξ and a < ξ < x < b. Given that L is of
order n, we will then have 2n degrees of freedom, i.e. n arbitrary integration constants. After
applying the n independent boundary conditions (3.44b) we will have n remaining constants
(actually functions of ξ) to determine. We therefore need n jump conditions at x = ξ, which
come as above by integrating across x = ξ:∫ ξ+

ξ−

[
Pn(x)

∂n

∂xn
g(x, ξ) + · · ·+ P0(x)g(x, ξ)

]
dξ =

∫ ξ+

ξ−
δ(x− ξ) dξ = 1. (3.45)

By integrating the first term on the left-hand side by parts, we obtain∫ ξ+

ξ−

[(
Pn−1(x)− P ′n(x)

) ∂n−1

∂xn−1
g(x, ξ) + · · ·+ P0(x)g(x, ξ)

]
dξ

+

[
Pn(x)

∂n−1

∂xn−1
g(x, ξ)

]x=ξ+
x=ξ−

= 1. (3.46)

This equation is balanced by setting a jump condition on the (n− 1)th derivative:[
∂n−1

∂xn−1
g(x, ξ)

]x=ξ+
x=ξ−

= 1/Pn(ξ), (3.47)

and taking all lower derivatives to be continuous across x = ξ:

[
g(x, ξ)

]x=ξ+
x=ξ− =

[
gx(x, ξ)

]x=ξ+
x=ξ− = · · · =

[
∂n−2

∂xn−2
g(x, ξ)

]x=ξ+
x=ξ−

= 0. (3.48)

Once the Green’s function is determined, following the above procedure, the solution to
the BVP (3.43) is given by

y(x) =

∫ b

a
g(x, ξ)f(ξ) dξ. (3.49)

It can be verified by direct substitution that (3.49) satisfies (3.44), provided (i) g satisfies
(3.44) and (ii) it is legitimate to pass the differential operator L through the integral in
(3.49).

3.7 Green’s function in terms of adjoint

There is an alternative way to construct the Green’s function that eliminates the need for any
dicey differentiating through integrals. Start from the ODE (3.43) and take an inner product
with an a priori unknown function G(x, ξ) on both sides of the equation to obtain

〈Ly,G〉 = 〈G(x, ξ), f(x)〉 =

∫ b

a
G(x, ξ)f(x) dx. (3.50)
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(Note here the integration is with respect to x). Now, using the adjoint, we can write

〈Ly,G〉 = 〈y,L∗G〉 =

∫ b

a
y(x)L∗xG(x, ξ) dx, (3.51)

provided G satisfies the adjoint boundary conditions corresponding to the boundary condi-
tions (3.43b) imposed on y.

The idea now is to isolate y. This can be accomplished if G satisfies

L∗xG(x, ξ) = δ(x− ξ) (3.52)

(as well as the corresponding adjoint boundary conditions), in which case the right-hand side
of (3.51) leaves just y(ξ), and we have the solution

y(ξ) =

∫ b

a
G(x, ξ)f(x) dx. (3.53)

To make comparison with our previous construction easier, we can switch the roles of x
and ξ to write (3.53) in the equivalent form

y(x) =

∫ b

a
G(ξ, x)f(ξ) dξ =

∫ b

a
g(x, ξ)f(ξ) dξ. (3.54)

We deduce that G(ξ, x) ≡ g(x, ξ): we might say that G is the transpose of g (cf §2.2). In
summary, if

• g(x, ξ) satisfies Lxg(x, ξ) = δ(x− ξ) with homogeneous boundary conditions (BC),

then

• g(ξ, x) satisfies the corresponding adjoint equation L∗xg(ξ, x) = δ(x − ξ) and boundary
conditions (BC∗).

In particular,

• if (L + BC) is fully self-adjoint, then g is symmetric, i.e. g(x, ξ) ≡ g(ξ, x) (and vice
versa).

3.8 FAT and Green’s function

As we have seen, the Green’s function approach apparently gives the explicit constructive
solution to Ly = f with homogeneous boundary conditions (BC). So, if the Green’s function
approach works, i.e. if we can find g, then we have both existence and uniqueness of the
solution y. But we know from FAT (Theorem 2.2) that, when there is a non-trivial solution
of the homogeneous problem (Ly = 0+BC), the solution of the inhomogeneous problem
should either not exist or not be unique. Clearly, in such cases something must go wrong
with the construction of the Green’s function. So, let us suppose that (Ly = 0+BC) admits
non-zero solutions and thus, similarly, the adjoint problem (L∗w = 0+BC∗) admits a non-zero
solution w. Then, starting from the delta function formulation

Lxg(x, ξ) = δ(x− ξ), (3.55)
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and taking the inner product with w, we get the solvability condition

0 = 〈G(x, ξ),L∗w(x)〉 = 〈LxG(x, ξ), w(x)〉 = 〈δ(x− ξ), w(x)〉 = w(ξ) (3.56)

which clearly does not hold since w 6≡ 0 (by assumption).
Thus, in situations where (L+BC) has a non-trivial kernel, we can’t construct the Green’s

function. (One can instead construct a so-called modified Green’s function, and thus obtain
the non-unique form of the solution in case 2(a) of FAT, but we won’t go into details here).
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Chapter 4

Eigenfunction expansions

These lecture notes are based on material written by Derek Moulton and Peter
Howell. Please send any corrections or comments to Renaud Lambiotte.

4.1 Introduction

Our next approach to solving linear inhomogeneous BVP’s is through an eigenfunction ex-
pansion. The idea is to exploit the linearity of the operator by constructing a solution as
a superposition of a set of basis functions. In an n-dimensional vector space, we know that
any set of n linearly independent vectors will serve as a basis, and then any other vector
can always be expressed as a linear combination of the basis vectors. Here we are dealing
with a space of functions, for example the set of twice continuously differentiable functions,
which is an infinite dimensional vector space. So we expect to need an infinite set of linearly
independent basis functions {yn(x)}n=1, 2,... such that any “reasonable” function φ(x) can be
written as a linear combination of these functions

φ(x) =
∞∑
n=0

cnyn(x), (4.1)

for some choice of the coefficients cn.

Many subtleties are involved in passing from finite to infinite dimensions. For example, we
could ask ourselves whether the series (4.1) is guaranteed to converge, either pointwise or uni-
formly. Another key issue is the completeness of the set {yi}, i.e. whether every “reasonable”
function can be expressed as such a linear combination: indeed, what does “reasonable”
mean? We are not going to get into such questions in this course (see Part B Functional
Analysis if you’re interested).

You have already seen in Fourier series the idea that any (periodic, piecewise continuous)
function can be written as an infinite sum of sines and cosines; (4.1) generalises this idea to
an alternative set of basis functions. Still, the issues that can be encountered in Fourier series
(e.g. nonuniform convergence, Gibbs phenomenon) give some hints of the subtleties alluded
to above.
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4.2 Eigenfunctions of linear BVP

We will perform the decomposition (4.1) using a particular set of basis functions, namely
solutions of the BVP

Ly = λy, (E)

along with homogeneous boundary conditions. We observe that the trivial solution y ≡ 0
always satisfies (E). We are interested in particular values of the parameter λ, known as
eigenvalues, for which (E) admits non-trivial solutions. For the linear BVPs considered in this
course, it may be shown that the eigenvalues form a discrete countable set, say {λi}i=1,, 2, ...,
and the corresponding non-trivial solutions {yi(x)}i=1,, 2, ... are known as eigenfunctions.

This approach is analogous to the linear algebra eigenproblem

Ax = λx (4.2)

where A ∈ Rn×n and x ∈ Rn. The trivial solution x = 0 always satisfies (4.2). Non-trivial
solutions exist if and only if λ is an eigenvalue of A, and then x is the corresponding eigenvec-
tor. Moreover (provided A is diagnonalisable), the eigenvectors form a linearly independent
set of n vectors, which can be used as a basis of Rn.

We will show how to construct the solution of an inhomogeneous BVP as a linear com-
bination of eigenfunctions yi satisfying (E), by exploiting the following two fundamental
properties.

Proposition 4.4. The adjoint problem has the same eigenvalues as the original problem.

Here, the “original problem” refers to the ODE (E) plus homogeneous boundary conditions
(BC); the adjoint problem is

L∗w = λw, (E∗)

subject to the corresponding adjoint boundary conditions (BC∗), where the overbar denotes
complex conjugate. For the moment we do not assume that the eigenvalues are real, although
we will see below that it is usually a reasonable assumption. The proposition (which we will
not prove here: see §4.7.5 though) states that (E+BC) has non-trivial solutions for y if and
only if (E∗+BC∗) has non-trivial solutions for w.

Proposition 4.5. The eigenfunction and adjoint eigenfunction corresponding to distinct
eigenvalues are orthogonal.

That is, if Lyj = λjyj (so L∗wj = λjwj) and Lyk = λkyk (so L∗wk = λkwk), then

〈yj , wk〉 = 0 whenever λj 6= λk. (4.3)

Proof. The proof is exactly as for matrix problems.

0 = 〈Lyj , wk〉 − 〈yj ,L∗wk〉
= 〈λjyj , wk〉 −

〈
yj , λkwk

〉
= (λj − λk) 〈yj , wk〉 . (4.4)

But λj 6= λk so 〈yj , wk〉 = 0.
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4.3 Inhomogeneous solution process

We are now in a position to construct the solution of the inhomogeneous BVP

Ly = f, (N)

subject to linear homogeneous boundary conditions (BC).

Step 1: Solve the eigenvalue problem (E+BC) to obtain the eigenvalue-eigenfunction pairs
{(λj , yj)}j=1, 2, ....

Step 2: Solve the adjoint eigenvalue problem (E∗+BC∗) to obtain {(λj , wj)}j=1, 2, ... (easier
since we already know λj).

Step 3: Assume a solution to the inhomogeneous problem (N+BC) of the form

y(x) =
∑
i

ciyi(x). (4.5)

To determine the coefficients ci, start from (N) and take an inner product with wk:

〈f, wk〉 = 〈Ly, wk〉
= 〈y,L∗wk〉
=
〈
y, λkwk

〉
= λk

〈∑
i

ciyi, wk

〉
= λkck 〈yk, wk〉 . (4.6)

We can solve the last equality for the ck, and we are done! Note that in the last step we have
assumed that the inner product may be interchanged with the sum and used the orthogonality
property (4.3).

4.4 Eigenfunction expansion and Green’s function

Taking (4.6) one step further, we have

y(x) =

∞∑
k=1

〈f, wk〉
λk 〈yk, wk〉

yk(x) (4.7)

Let nk denote the constant 〈yk, wk〉 (one could normalise yk and wk such that nk ≡ 1), then:

y(x) =

∞∑
k=1

1

λknk

(∫ b

a
f(ξ)wk(ξ) dξ

)
yk(x)

=

∫ b

a

( ∞∑
k=1

1

λknk
wk(ξ)yk(x)

)
f(ξ) dξ

=

∫ b

a
g(x, ξ)f(ξ) dξ, (4.8)
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where

g(x, ξ) =

∞∑
k=1

wk(ξ)yk(x)

λknk
. (4.9)

Thus we have derived an alternative form for the Green’s function. One can also derive (4.9)
by solving the problem Lxg(x, ξ) = δ(x − ξ) (or indeed the problem L∗ξg(x, ξ) = δ(x − ξ))
using an eigenfunction expansion. Note in particular that, if L is self-adjoint, then wk ≡ yk
and therefore g is symmetric, as we already showed in §3.7.

4.5 Eigenfunction expansion and FAT

Note that there is a difficulty in calculating the coefficients ck if one of the eigenvalues is zero.
If λk = 0, then (4.6) cannot be solved for ck. In this case either

(a) 〈f, wk〉 = 0, in which case ck is arbitrary: the solution is non-unique; or

(b) 〈f, wk〉 6= 0, in which case (4.6) is inconsistent: the solution does not exist.

We see that this behaviour is exactly in line with FAT. If λk = 0, then Ly = 0 has a
non-trivial solution yk, and likewise L∗wk = 0 has a non-trivial solution wk. Then case (a)
and (b) above correspond precisely to 2(a) and 2(b) of Theorem 2.2.

4.6 Inhomogeneous boundary conditions

In the construction in §4.3 we assumed homogeneous boundary conditions. In the general
case of an inhomogeneous system with inhomogenous boundary conditions,

Ly = f, Biy = γi (i = 1, 2, . . . , n), (4.10)

one possibility is to make the boundary conditions homogeneous by subtracting a suitable
solution of the homogeneous ODE, as described in §3.5. That is, we write ỹ = y − u, where
u satisfies

Lu = 0, Biu = γi (i = 1, 2, . . . , n). (4.11)

Then ỹ satisfies homogeneous boundary conditions and can thus be constructed exactly as
described in §4.3.

For completeness it is worth noting that one can solve BVPs with inhomogeneous bound-
ary conditions using an eigenfunction expansion and without needing to perform the above
decomposition. The key steps are as follows.

1. The eigenfunctions are always determined using homogeneous boundary conditions.
Thus, eigenfunctions won’t change whether you “decompose” or not.

2. However, in going from Line 1 to Line 2 of (4.6), care must be taken in the integration
by parts, as boundary terms will generally still be present. These extra boundary terms
then carry through to the formula for the coefficients ck.

Example 4.11. BCs incorporated solution route
Solve y′′(x) = f(x) on 0 < x < 1 with y(0) = α and y(1) = β.
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1. To determine eigenvalues and eigenvectors, solve y′′ = λy, with y(0) = 0 and y(1) = 0.

We get yk(x) = sin(kπx) and λk = −k2π2 with k = 1, 2, 3, . . ..

2. The problem is self-adjoint [Check!], so wk(x) = yk(x) = sin(kπx).

3. Note that

〈Ly, wk〉 − 〈y,L∗wk〉 =

∫ 1

0

y′′(x)wk(x)− y(x)w′′k(x) dx =
[
y′wk − yw′k

]1
0

(4.12)

and, when we put in wk(x) = sin(kπx) and the boundary conditions for y,

〈Ly, wk〉 − 〈y,L∗wk〉 =
[
y′wk − yw′k

]1
0

= w′k(0)y(0)− w′k(1)y(1) = kπ
(
α− (−1)kβ

)
. (4.13)

4. So, following the approach of (4.6), we get

〈f, wk〉 = 〈Ly, wk〉
= 〈y,L∗wk〉+ kπ

(
α− (−1)kβ

)
= · · · = λkck 〈yk, wk〉+ kπ

(
α− (−1)kβ

)
. (4.14)

5. Now substitute for λk, yk and wk; note that

〈yk, wk〉 = ||yk||2 =

∫ 1

0

sin2(kπx) dx =
1

2
. (4.15)

Thus obtain the solution for y(x) as a Fourier series:

y(x) =

∞∑
k=1

ck sin(kπx) (4.16a)

with ck =
2

kπ

(
α− (−1)kβ

)
− 2

k2π2

∫ 1

0

f(x) sin(kπx) dx. (4.16b)

Example 4.12. Decomposed solution route
We solve the same problem, this time by first making the boundary conditions homogeneous.

1. Solve the homogeous ODE with inhomgeneous BCs:

u′′ = 0, u(0) = α, u(1) = β, (4.17)

to get u(x) = α(1− x) + βx.

2. Solve for ỹ = y− u. Since the boundary conditions are now homogeneous, we can jump straight
to the formula (4.6) to determine the coefficients:

ck =
〈f, wk〉

λk 〈yk, wk〉
= − 2

k2π2

∫ 1

0

f(x) sin(kπx) dx. (4.18)

3. The full solution is then

y(x) = α(1− x) + βx+

∞∑
k=1

ckyk(x). (4.19)

Although they look different, the solutions (4.16) and (4.19) produced using the two ap-
proaches are the same. Either way, we see that self-adjoint problems are very convenient,
since the adjoint eigenfunctions wk are the same as yk.



4–6 Mathematical Institute University of Oxford

4.7 Sturm–Liouville theory

4.7.1 Homogeneous SL problem

Sturm–Liouville (SL) theory concerns self-adjoint linear ODEs of the form

Ly(x) = λr(x)y(x), (4.20)

where r(x) ≥ 0 is a weighting function, and the operator L is of the form

Ly(x) = − d

dx

(
p(x)

dy(x)

dx

)
+ q(x)y(x) a < x < b. (4.21)

It is easy to check (and we already saw in §2.3) that the operator L is formally self-adjoint.
It is fully self-adjoint if the boundary conditions take the separated form

α1y(a) + α2y
′(a) = 0, (4.22a)

β1y(b) + β2y
′(b) = 0. (4.22b)

4.7.2 Properties of SL eigenfunctions and eigenvalues

Orthogonality Due to the presence of the weighting function, the orthogonality relation
for SL eigenfunctions is ∫ b

a
yj(x)yk(x)r(x) dx ≡ 〈yj , ryk〉 = 0. (4.23)

One can (though we won’t) incorporate r into the definition of the inner product, i.e.

〈yj , yk〉r :=

∫ b

a
yj(x)yk(x)r(x) dx. (4.24)

This does indeed define an inner product provided r > 0 (almost everywhere) on [a, b].

Eigenvalues The functions p, q, r are assumed to be real, so L = L. Thus, when yk is an
eigenfunction of L with eigenvalue λk, we have

0 = 〈Lyk, yk〉 − 〈yk,Lyk〉
= 〈λkryk, yk〉 − 〈yk, λkryk〉
= λk 〈ryk, yk〉 − λk 〈yk, ryk〉 . (4.25)

Since

〈ryk, yk〉 = 〈yk, ryk〉 =

∫ b

a
|yk(x)|2r(x) dx > 0 (4.26)

(this is just ||yk||2r := 〈yk, yk〉r), we must have λk = λk and thus, all eigenvalues are real.
Moreover, if a ≤ x ≤ b is a finite domain, then the eigenvalues λ are discrete and countable.

They can be ordered such that

λ1 < λ2 < λ3 < · · · < λk < · · ·

with limk→∞ λk =∞.
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“Regular” Sturm–Liouville problems

Proposition 4.6. If a SL system satisfies the additional conditions

(i) p(x) > 0 and r(x) > 0 on a ≤ x ≤ b;

(ii) q(x) ≥ 0 on a ≤ x ≤ b;

(iii) the boundary conditions (4.22) have α1α2 ≤ 0 and β1β2 ≥ 0,

then all eigenvalues λk ≥ 0.

Proof. Using 〈yk,Lyk − λkryk〉 = 0, we have

−
∫ b

a
yk(x)

(
p(x)y′k(x)

)′
dx+

∫ b

a
q(x)yk(x)2 dx−

∫ b

a
λkr(x)yk(x)2 dx = 0

⇒ −
[
pyy′

]b
a

+

∫ b

a
p(x)y′k(x)2 dx+

∫ b

a
q(x)yk(x)2 dx− λk

∫ b

a
r(x)yk(x)2 dx = 0 (4.27)

and hence

λk =

∫ b

a
p(x)y′k(x)2 dx+

∫ b

a
q(x)yk(x)2 dx−

[
pyy′

]b
a∫ b

a
r(x)y(x)2 dx

≥ 0. (4.28)

4.7.3 Singular SL problems

Suppose that the function p(x) in the SL operator (4.21) is zero at one of the end points of
the interval, say p(a) = 0 but p > 0 on (a, b]. Then the ODE (4.20) is singular at x = a — we
will see in Section 4 how to analyse the behaviour of the solutions at such a singular point.
Now when we use integration by parts to calculate the adjoint boundary conditions, we find

〈Ly, w〉 − 〈y,Lw〉 =
[
p
(
yw′ − wy′

)]b
a

= p(b)
(
y(b)w′(b)− w(b)y′(b)

)
, (4.29)

and the contribution from x = a is zero regardless of the boundary conditions imposed on y
or w. We only need to impose that y(x), y′(x), w(x) and w′(x) are bounded as x→ a (along
with suitable boundary conditions at x = b) to ensure that 〈Ly, w〉 = 〈y,Lw〉. If p is zero at
both end points, i.e. p(a) = 0 = p(b) but p(x) > 0 for x ∈ (a, b), then 〈Ly, w〉 = 〈y,Lw〉 with
no boundary conditions needing to be imposed on y or w (provided they are bounded). In
such cases, [a, b] is called the natural interval for the problem.

4.7.4 Inhomogeneous SL problems

Since a SL operator is self-adjoint, the eigenfunction expansion process is quite straightfor-
ward. Consider Ly = f , with L as in (4.21) and homogeneous boundary conditions (4.22).
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The problem can be solved with an eigenfunction expansion in the same manner as in §4.3,
exploiting the fact that L∗ ≡ L and wk ≡ yk. With y =

∑
ckyk, we get

〈f, yk〉 = 〈Ly, yk〉
= 〈y,Lyk〉
= 〈y, λkryk〉

= λk

〈∑
i

ciyi, ryk

〉
= λkck 〈yk, ryk〉 , (4.30)

where we have used the orthogonality property (4.23). Thus we obtain the coefficients in the
eigenfunction expansion in the form

ck =
〈f, yk〉

λk 〈yk, ryk〉
. (4.31)

4.7.5 Transforming an operator to SL form

Any 2nd order linear operator

Ly ≡ P2y
′′ + P1y

′ + P0y (4.32)

with P2 6= 0 can be converted to a SL operator as follows. We multiply by an integrating
factor function r(x):

rLy = rP2y
′′ + rP1y

′ + rP0y, (4.33)

and then choose r so that the right-hand side can be expressed in the form rLy = − (py′)′+qy.

Exercise: show that

r(x) = − 1

P2(x)
exp

(∫
P1(x)

P2(x)
dx

)
. (4.34)

Suppose we are considering an eigenvalue problem

Ly = λy, (4.35)

where L is not self-adjoint. We could instead convert (4.35) into the equivalent SL form

L̂y = rLy = −
(
py′
)′

+ qy = λry, (4.36)

and the transformed problem is fully self-adjoint provided the boundary conditions are of
the self-adjoint form (4.22). The eigenvalues λk and eigenfunctions yk of (4.35) and (4.36)
must be identical (because they are essentially the same equation). Thus, although L is not
self-adjoint, nevertheless its eigenvalues must be real provided the boundary conditions are
of self-adjoint form.

Because L is not self-adjoint, its eigenfunctions yk are not orthogonal; instead they satisfy
the orthogonality relation

〈yj , wk〉 = 0 for j 6= k, (4.37)



Differential Equations II Draft date: 31 December 2020 4–9

with the eigenfunctions wk of the corresponding adjoint problem. In contrast, the eigenfunc-
tions of (4.36) (which are the same functions yk) are orthogonal, albeit with respect to a
modified inner product

〈yj , ryk〉 = 0 for j 6= k. (4.38)

It may be verified that the adjoint eigenfunctions are given by wk = ryk so that (4.37) and
(4.38) are consistent.

Exercise: Show that
L∗(ry) ≡ rLy, (4.39)

where L is given by (4.32) and r is as in (4.34).
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Chapter 5

Power series solution of linear
ODEs

These lecture notes are based on material written by Derek Moulton and Peter
Howell. Please send any corrections or comments to Renaud Lambiotte.

5.1 Singular points of ODEs

5.1.1 Introduction

This section concerns nth order homogeneous linear ODEs of the form

Ly(x) = y(n)(x) + Pn−1(x)y(n−1)(x) + · · ·+ P1(x)y(n)(x) + P0(x)y(x) = 0. (5.1)

Note, in comparison with (3.38), we have divided through by Pn(x) so that the coefficient
of the highest-order derivative y(n)(x) is equal to 1. We will seek the solution to (5.1) in
the form of a power series expansion in the neighbourhood of some point x = x0. Both the
procedure and the nature of the solution depend on how well-behaved the functions Pj(x) are
as x→ x0.

5.1.2 Ordinary points

The point x0 is an ordinary point of the ODE (5.1) if all Pj(x) are analytic in a neighbourhood
of x = x0, i.e. they each have a convergent power series expansion of the form

∑∞
k=0 ck(x−x0)k.

In this case, it may be shown that:

1. all n linearly independent solutions of (5.1) are also analytic in a neighbourhood of
x = x0, i.e. can be expressed in the form

y(x) =
∞∑
k=0

ak(x− x0)k; (5.2)

2. the radius of convergence of the series solution (5.2) ≥ distance (in C) to nearest singular
point of the coefficent functions Pj(x).
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The procedure at an ordinary point is straightforward: just (i) plug the expansion (5.2)
into the ODE (5.1), using the power series expansions of each of the Pj , then (ii) by equating
the coefficient of each power of x to zero, obtain a sequence of equations for the coefficients
ak that can be solved recursively.

Example 5.13. Find the solution of

y′(x) +
2x

(1 + x2)
y(x) = 0 (5.3)

as a power series expansion about x = 0.
Here x0 = 0 is an ordinary point. The nearest singular points of P0(x) = 2x/

(
1 + x2

)
are at

x = ±i, distance 1 from 0, so the solution of (5.3) can be written as a regular power series expansion
whose radius of convergence R ≥ 1.

By substituting (5.2) into (5.3) and multiplying through by
(
1 + x2

)
, we obtain

0 =

∞∑
k=0

[(
1 + x2

)
kakx

k−1 + 2akx
k+1
]

=

∞∑
k=0

[
kakx

k−1 + (k + 2)akx
k+1
]
. (5.4)

Now we want to increase k by 2 in the first term in the sum so that the exponents of x agree: we have
to take care of the cases k = 0 and k = 1 separately and so end up with

0 = 0× a0x−1 + 1× a1 +

∞∑
k=0

[
(k + 2)ak+2x

k+1 + (k + 2)akx
k+1
]
. (5.5)

The coefficient of x−1 is zero identically. By setting the coefficient of x0 to zero, we deduce that a1
must be zero. Then by setting to zero all the coefficients of x, x2, x3, . . ., we get the recurrence relation

ak+2 = −ak (k = 0, 1, 2, . . .). (5.6)

Since a1 = 0, it follows that the odd coefficients a3, a5, . . . are all equal to zero, and the even
coefficients are given by a2k = (−1)ka0. The solution of (5.3) is thus given by

y(x) = a0

∞∑
k=0

(−1)kx2x. (5.7)

One can easily verify that the radius of convergence of the series (5.7) is equal to 1. Indeed, it is
easy to solve the simple ODE (5.3) exactly to get y(x) = const/

(
1 + x2

)
, of which (5.7) is just the

Maclaurin expansion.

5.1.3 Singular points

The point x0 is called a singular point of the ODE (5.1) if at least one of the coefficient
functions Pj(x) is not analytic there. In this case, the general solution y(x) may not be
analytic at x0: y(x) or its derivatives might “blow-up” as x → x0. The following simple
example illustrates how solutions can behave near a singular point.

Example 5.14. Consider the first-order ODE

y′(x)− λx−my(x) = 0, (5.8)

where λ ∈ R and m is a non-negative integer. The general solution of (5.8) can easily be found via
separation of variables, and the generic behaviour as x→ 0 depends on the value of m.
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(i) For m = 0, the point x = 0 is ordinary. The solution y(x) = const× eλx can be expanded as a
power series about x = 0 which converges for all x ∈ C.

(ii) For m = 1, the point x = 0 is singular. The solution in this case is y(x) = const × xλ, which
is analytic if λ is a non-negative integer (despite 0 being a singular point). For any other λ,
the solution is singular at x = 0, but with a relatively benign singularity: either a pole (if λ is a
negative integer) or a branch point (otherwise).

(iii) For m = 2, the behaviour is much worse: the solution of (5.8) is y(x) = const× exp(−λ/x),
which has an essential singularity at x = 0. Similarly, there is an essential singularity at x = 0
for any value of m ≥ 2.

Example 5.14 suggests that the strength of the singularity in the solution at a singular
point tends to increase the higher the order of the poles in the coefficients in front of the
lower order terms of the ODE. Indeed, this is the key idea behind the classification of singular
points.

5.1.4 Regular singular points

If the coefficients Pj(x) are not all analytic at x = x0, but the modified coefficients

pj(x) ≡ Pj(x)(x− x0)n−j are all analytic at x = x0, (5.9)

then x = x0 is a regular singular point of the ODE (5.1). For example, Case (ii) of Exam-
ple 5.14 has a regular singular point at x = 0. For the general second-order ODE

y′′(x) + P (x)y′(x) +Q(x)y(x) = 0, (5.10)

there is a regular singular point at x = x0 if at least one of P (x) and Q(x) is not analytic at
x = x0 but both p(x) = (x− x0)P (x) and q(x) = (x− x0)2Q(x) are.

Any singular point that does not satisfy the criterion (5.9) is an irregular singular points.
At a regular singular point, the singularity in the solution is “not too bad”, and a modification
of the power series approach can be used. For irregular singular points, though, there is no
general theory!

Example 5.15. Cauchy–Euler equation
The Cauchy–Euler equation

y′′(x) +
a

x
y(x) +

b

x2
y(x) = 0 (5.11)

has a regular singular point at x = 0. The general solution can be found via the ansatz y = xα, where
α satisfies the characteristic equation α(α− 1) + aα+ b = 0, and there are two cases to consider.

(i) If the characteristic equation has two distinct roots α1 and α2, then, the general solution of
(5.11) is given by

y(x) = C1x
α1 + C2x

α2 (5.12)

(where C1 and C2 are arbitrary constants).

(ii) If the characteristic equation has a double root α, then the general solution is

y(x) = C1x
α + C2x

α log x. (5.13)

Note that if the roots are two distinct non-negative integers, then the general solution in case (i)
is analytic (even though the ODE has a singular point). In general, however, the behaviour as x→ 0
could be a negative, fractional or even complex power of x, and the solution generically has a pole or
a branch point at x = 0.
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The behaviour illustrated by Example 5.15 carries over to regular singular points in gen-
eral, except that the functions xα1 and xα2 are each multiplied by an analytic function (i.e.
a regular power series in x). The general theory for regular singular points will be explained
below, but first we show how the point at infinity can be analysed.

5.1.5 The point at infinity

The point x0 =∞ can also be classified by changing the independent variable via the substi-
tution

t = 1/x, u(t) = y(x), (5.14)

and classifying the point t = 0 for the resulting ODE for u(t).

Example 5.16. Find and classify the singular points of the ODEs

(i) y′(x)− y(x) = 0,

(ii) y′′(x) +
1

x2
y(x) = 0.

In case (i), the coefficient P0(x) = −1 is analytic everywhere, and there don’t appear to be any
singular points. But if we make the change of variables (5.14) then, by the chain rule, we have
u̇(t) = −

(
1/t2

)
y′(x). The ODE (i) therefore becomes

u̇(t) +
1

t2
u(t) = 0, (5.15)

which has an irregular singular point at t = 0, and it follows that (i) has an irregular singular point
at x =∞. Indeed, the solution y(x) = ex has an essential singularity as x→∞.

In case (ii), there is a regular singular point at x = 0 (since x2×
(
1/x2

)
= x is analytic at x = 0).

Again making the substitution (5.14), we get [exercise]

ü(t) +
2

t
u̇(t) +

1

t2
u(t) = 0, (5.16)

which likewise has a regular singular point at t = 0. Therefore the ODE (ii) has regular singular points
at x = 0 and at x =∞.

5.2 Frobenius method for 2nd order ODEs

5.2.1 The indicial equation

From now on, we restrict attention to regular singular points of 2nd order ODEs. If x = x0
is a regular singular point, then we can write the ODE in the form

Ly(x) = y′′(x) +
p(x)

(x− x0)
y′(x) +

q(x)

(x− x0)2
y(x) = 0, (5.17)

where p and q are analytic, and can therefore be expanded as convergent power series:

p(x) =

∞∑
k=0

pk(x− x0)k, q(x) =

∞∑
k=0

qk(x− x0)k. (5.18)

The idea is to seek a solution in the form of a Frobenius series

y(x) = (x− x0)α
∞∑
k=0

ak(x− x0)k. (5.19)



Differential Equations II Draft date: 31 December 2020 5–5

Note the similarity to the Cauchy–Euler Example 5.15: y(x) ∼ a0(x−x0)α as x→ 0, but now
the power of x is multiplied by an a priori unknown analytic function

∑
k ak(x− x0)k, with

coefficients ak to be determined. We may assume that a0 6= 0 by choosing α appropriately.

Now we plug (5.19) into the ODE (5.17), to get

∞∑
k=0

(α+ k)(α+ k − 1)ak(x− x0)α+k−2 +

∞∑
k=0

∞∑
j=0

(α+ k)pjak(x− x0)α+k+j−2

+
∞∑
k=0

∞∑
j=0

qjak(x− x0)α+k+j−2 = 0, (5.20)

and equate coefficients. At the lowest power, namely (x− x0)α−2, we find[
α(α− 1) + p0α+ q0

]
a0 = 0. (5.21)

Since a0 is defined to be non-zero, the quadratic function in brackets must be zero. This
polynomial plays an important role, and we will denote it by

F (α) = α(α− 1) + p0α+ q0. (5.22)

The equation F (α) = 0 is called the indicial equation, and it determines the possible indicial
exponents α1, α2. Note that in general these exponents can be complex! In any case, we
order them such that Re[α1] ≥ Re[α2].

5.2.2 The first series solution

Let us continue equating coefficients of powers of (x − x0). We find after some algebra that
the coefficients of (x− x0)k+α−2 satisfy

F (α+ k)ak = −
k−1∑
j=0

[(α+ j)pk−j + qk−j ]aj (5.23)

To generate the first series solution, we take α = α1: the solution of the indicial equation
with the larger real part. Since F is a quadratic function with roots at α1 and α2, with
Re[α2] ≤ Re[α1], it follows that F (α1 + k) 6= 0 for any integer k ≥ 1 We can therefore
rearrange (5.23) to

ak = − 1

F (α1 + k)

k−1∑
j=0

[(α1 + j)pk−j + qk−j ]aj (5.24)

and thus solve successively for all the coefficients a1, a2, . . ., and we obtain one solution

y1(x) = (x− x0)α1

∞∑
k=0

ak(x− x0)k. (5.25)

Therefore at least one solution of (5.17) can always be expressed as a Frobenius series
with indicial exponent α = α1, and we call this the first solution.
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5.2.3 The second solution Case I: α1 − α2 6∈ Z

For the second solution, we have to distinguish between several cases and sub-cases. The
simplest case occurs when the indices α1 and α2 do not differ by an integer (so in particular
they are not equal). In this case, F (α2 + k) 6= 0 for all k ≥ 1, so we can solve (5.23) also with
the second value of the exponent α = α2. We call the coefficients the second solution bn to
distinguish from the previous coefficients ak, and they satisfy the recurrence relations

bk = − 1

F (α2 + k)

k−1∑
j=0

[(α2 + j)pk−j + qk−j ]bj . (5.26)

Thus, we obtain with no problems a second solution also as a Frobenius series, with indicial
exponent α2:

y2(x) = (x− x0)α2

∞∑
k=0

bk(x− x0)k. (5.27)

5.2.4 Case II: α1 = α2

In the case of a double root we apparently only get one solution with the Frobenius method,
and we have to multiply by logs to get a second solution (similar to the case of a double root
in Cauchy–Euler). In particular, the second solution is of the form

y2(x) = y1(x) log(x− x0) + (x− x0)α1

∞∑
k=0

bk(x− x0)k, (5.28)

where y1 is the first solution (5.25).

The form of solution (5.28) can be derived using the so-called derivative method, which
is outlined in §5.2.6. For the moment, we can at least verify that it works in principle by
substituting (5.28) into (5.17). In doing so, note that, with L defined by (5.17),

L
[
y1(x) log(x− x0)

]
= log(x− x0)Ly1(x) +

2

(x− x0)
y′1(x) +

p(x)− 1

(x− x0)2
y1(x) (5.29)

and because Ly1 = 0, when (5.28) is substituted into (5.17), the logs vanish, and one can
solve a sequence of recurrence relations for the coefficients bk as above.

5.2.5 Case III: α1 − α2 a positive integer

If α1 − α2 = N , where N > 0 is an integer, then we will potentially run into trouble in
equation (5.26) when k = N . In this case, there are two sub-possibilities.

Case III(a): For k = N , the right-hand side of (5.26) is non-zero.

Then we have a contradiction, and the standard Frobenius solution method doesn’t work.
To get a second solution, we use the same form as in Case II, i.e.

y2(x) = y1(x) log(x− x0) + (x− x0)α2

∞∑
k=0

bk(x− x0)k. (5.30)
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Again, when we substitute (5.30) into the ODE (5.17), the logs vanish and one obtains a
set of recurrence relations that determine the coefficients bk. Note that the indicial exponent
for the second series in (5.30) is α2, whereas y1 is given by the Frobenius series using the
exponent α1.

Case III(b): When k = N , the right-hand side of RHS of (5.23) is zero.

In this case, there is no contradiction, but any choice for bN will satisfy (5.26), i.e. bN
remains undetermined. The second solution therefore has Frobenius form

y2(x) = (x− x0)α2

∞∑
k=0

bk(x− x0)k, (5.31)

where b0 can be chosen to be b0 = 1 (without loss of generality) and bN is arbitrary. Since
α2 +N = α1, changing bN just corresponds to adding multiples of y1 to (5.31).

Example 5.17. Find a series solution about the regular singular point x = 0 for the differential
equation

4x2y′′(x) + 4xy′(x) + (4x2 − 1)y(x) = 0. (5.32)

Step 1: Assume a solution of form

y(x) = xα
∞∑
k=0

akx
k (5.33)

with a0 6= 0. Compute the corresponding series for y′, y′′ by differentiating term by term.

Step 2: Plug the series (5.33) into the ODE (5.32) and multiply everything out:

0 =

∞∑
k=0

4(α+ k)(α+ k − 1)akx
α+k

︸ ︷︷ ︸
4x2y′′

+

∞∑
k=0

4(α+ k)akx
α+k

︸ ︷︷ ︸
4xy′

−
∞∑
k=0

akx
α+k

︸ ︷︷ ︸
y

+

∞∑
k=0

4akx
α+k+2

︸ ︷︷ ︸
4x2y

=
∞∑
k=0

(
4(α+ k)2 − 1

)
akx

α+k +

∞∑
k=0

4akx
α+k+2. (5.34)

Step 3: The indicial equation comes from the balance at lowest order, in this case xα:

F (α) = 4α2 − 1. (5.35)

The indicial exponents are the roots of F , i.e.

α1 =
1

2
, α2 = −1

2
. (5.36)

Step 4: Shift the terms in the series (5.34) so that the exponents of x are the same in each term.
For this example, we need only shift the index in the last sum, so all the series have terms proportional
to xα+k. Thus, by replacing k with k − 2, we have

∞∑
k=0

4akx
α+k+2 ≡

∞∑
k=2

4ak−2x
k+α, (5.37)
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and thus we obtain

0 = a0F (α)xα + a1F (α+ 1)xα+1 +

∞∑
k=2

[akF (α+ k) + 4ak−2]xk+α. (5.38)

We have chosen the α so that the equation balances at xα, and hence a0 is free. Balancing at all other
orders will determine the coefficients ak for k ≥ 1.

Step 5: First series
Set α = α1 = 1/2 in (5.38); note that

F (α1 + k) = 4

(
1

2
+ k

)2

− 1 = 4k(k + 1) (5.39)

and thus we obtain

a1 = 0, ak =
−1

k(k − 1)
ak−2 k = 2, 3, . . . . (5.40)

Step 6: Use the recursion relation (5.40) to determine a formula for ak in terms of a0. A good
idea is to write out a few terms, and look for a pattern. Here, since a1 = 0, we easily see that
a3 = a5 = · · · = 0, i.e. all the odd coeffients are zero, and we are left with

a2 =
−1

2 · 3
a0,

a4 =
−1

4 · 5
a2 =

1

5 · 4 · 3 · 2
a0,

. . . . . . . . . . . . . . .

a2k =
(−1)ka0
(2k + 1)!

. (5.41)

Step 7: Input the formula (5.41) for the coefficients to obtain the first solution:

y1(x) = a0x
1/2

∞∑
k=0

(−1)k

(2k + 1)!
x2k. (5.42)

Step 8: Second series
Repeat the process for the second root α2 = −1/2. In this case, α1 − α2 = 1 = N is an integer, so

we are in Case III.
The coefficients bk in the second series satisfy

0 = b0F (α2)xα2 + b1F (α2 + 1)xα2+1 +

∞∑
k=2

[bkF (α2 + k) + 4bk−2]xk+α2 . (5.43)

The coefficient of xα2 , namely F (α2), is zero by construction. At order xα2+N = xα2+1, we obtain
F (1/2)b1 = 0× b1 = 0. There is no contradiction, and b1 is arbitrary and can be set to zero: we are
in CaseIII(b).

Step 9: Following the recursion forward with b0 6= 0, analogous computations to the above yield

y2(x) = b0x
−1/2

∞∑
k=0

(−1)k

(2k)!
x2k. (5.44)
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Step 10: The general solution is a linear combination of the two series solutions, i.e.

y(x) = C1x
1/2

∞∑
k=0

(−1)k

(2k + 1)!
x2k + C2x

−1/2
∞∑
k=0

(−1)k

(2k)!
x2k. (5.45)

In this example, we can recognise the series for sine and cosine and thus express the solution in closed
form. In fact, the general solution to (5.32) (which is called Bessel’s equation of order 1/2) is

y(x) = C1
sinx√
x

+ C2
cosx√
x
. (5.46)

5.2.6 Derivative method

Here we discuss Case II, where α1 is a double root of F (α), and give a brief justification for
the form (5.28) of the series solution. Without loss of generality, let a0 = 1. Suppose we solve
(5.23) for the coefficients a1, a2, . . . with arbitrary α, i.e. with F (α) not generally equal to
zero. Thus, each coefficient ak is a function of α, and we can think of α as a parameter in
the series

y(x;α) = (x− x0)α +

∞∑
k=1

ak(α)(x− x0)k+α. (5.47)

The recurrence relation (5.23) ensures that the coefficient of (x− x0)α+k−2 in Ly is zero for
all k ≥ 1, and we are just left with

Ly(x;α) = (x− x0)α−2F (α). (5.48)

Since F (α1) = 0, it follows that Ly(x;α1) = 0 and thus

y1(x) = y(x;α1) =

∞∑
0

ak(α1)(x− x0)α1+k (5.49)

is a solution (as we already know). Now the idea is to differentiate (5.48) with respect to α,
then set α = α1. Since L has no dependence on α,

L

[
∂

∂α
y(x;α)

]
=

∂

∂α

[
Ly(x;α)

]
=

∂

∂α

[
(x− x0)α−2F (α)

]
= (x− x0)α−2 log(x− x0)F (α) + (x− x0)α−2F ′(α). (5.50)

Since α1 is a double root of F , the right-hand side of (5.50) is zero when α = α1, and it
follows that

y2(x) =
∂

∂α
y(x;α)

∣∣∣∣
α=α1

(5.51)

satisfies Ly2 = 0. To get a more explicit form, calculate

∂

∂α
y(x;α) =

∂

∂α

( ∞∑
k=0

ak(α)(x− x0)α+k
)

= log(x− x0)
∞∑
k=0

ak(α)(x− x0)α+k +

∞∑
k=0

a′k(α)(x− x0)α+k (5.52)
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and set α = α1 to get

y2(x) = log(x− x0)y1(x) +

∞∑
k=0

bk(x− x0)α1+k, (5.53)

in agreement with (5.28), where bk = a′k(α1).
In principle, the derivative method allows us to determine the coefficients bk in the second

series solution, as outlined above. However, to do so we require a closed form for ak(α) for
general α. In practice, it is usually easier just to substitute in the appropriate form (5.28) of
the series and compare coefficients.

5.2.7 More examples

Example 5.18. Find a series solution about x = 0 for the differential equation

x(x− 1)y′′(x) + 3xy′(x) + y(x) = 0. (5.54)

First we divide through by x(x− 1) to obtain the standard form

y′′(x) +
3

x− 1
y′(x) +

1

x(x− 1)
y(x) = 0. (5.55)

Since p(x) = 3x/(x − 1) and q(x) = x/(x − 1) are analytic at x = 0, it is a regular singular point.
Thus we expect to find at least one solution in the form of a Frobenius series.

If we try for a solution with the local behaviour of the form y(x) ∼ xα as x → 0, then (5.54)
implies that

− α(α− 1)xα−1 + higher order terms = 0, (5.56)

and we deduce that the indicial equation is

F (α) = α(α− 1) = 0, (5.57)

which has roots α1 = 1, α2 = 0.
More generally, by seeking the solution as a power series of the form

y(x) = xα
∞∑
k=0

akx
k (5.58)

we obtain

∞∑
k=0

−(k + α)(k + α− 1)akx
k+α−1

︸ ︷︷ ︸
series 1

+

∞∑
k=0

[(k + α)(k + α− 1) + 3(k + α) + 1] akx
k+α

︸ ︷︷ ︸
series 2

= 0. (5.59)

Now, shift the index in series 2 so that the indices match series 1:

series 2 =

∞∑
k=1

[
(k + α− 1)(k + α− 2) + 3(k + α− 1) + 1

]
ak−1x

k+α−1. (5.60)

Now we can bring the two sums together and demand that the coefficients of xk+α−1 all vanish. The
first term with k = 0 vaishes identically by the indicial equation (5.57). Simplifying the terms for
k > 0, we obtain the recursion relation

(k + α)(k + α− 1)ak − (k + α)2ak−1 = 0. (5.61)
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Note that the coefficient of ak is just F (k + α), as expected.
On substituting α = α1 = 1 into (5.61), we obtain

ak =
k + 1

k
ak−1. (5.62)

Without loss of generality setting a0 = 1, we obtain the simple formula ak = k + 1, and thus one
solution to (5.54) is given by the series

y1(x) =

∞∑
k=0

(k + 1)xk+1 =
x

(1− x)2
. (5.63)

For a second solution, since α1 − α2 = 1 is an integer, we are in Case III, and there may or may
not be a Frobenius series solution. To find out, we seek a solution

y2 = xα2

∞∑
k=0

bkx
k =

∞∑
k=0

bkx
k. (5.64)

Setting α = α2 = 0 in (5.61), we have

(k − 1)bk = kbk−1. (5.65)

We immediately run into trouble, since we must take b0 6= 0, and thus with k = 1 we get the contra-
diction 0 × b1 = b0 6= 0. Hence the second Frobenious solution does not work: we are in Case III(a),
and the form of the second solution is

y2(x) = y1(x) log(x) +

∞∑
k=0

bkx
k. (5.66)

Example 5.18 illustrates that the indicial equation can be found just by considering the
leading-order terms, without bothering to substitute in an entire series. In Example 5.18,
once we have obtained one series solution y1(x) = x/(1 − x)2, we can construct the other
using reduction of order. Setting y(x) = y1(x)v(x) in (5.54), we find that v satisfies the ODE

v′′(x) +
(2− x)

x(1− x)
v′(x) = 0, (5.67)

which is easily integrated to give

v(x) = C1 + C2

(
log(x) +

1

x

)
. (5.68)

A second solution to (5.54) is thus given by

y2(x) = y1(x)

(
log(x) +

1

x

)
= y1(x) log(x) +

1

(1− x)2
, (5.69)

which indeed has the form (5.66) when expanded about x = 0.

Example 5.19. Find the form of series solutions about x = 0 for the differential equation

sin2(x)y′′ − sin(x) cos(x)y′ + y = 0. (5.70)

We consider the functions

p(x) = −x sin(x) cos(x)

sin2(x)
, q(x) = x2

1

sin2(x)
. (5.71)
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As both p and q are finite as x→ 0 (the singularities there are removable), x = 0 is a regular singular
point. Note that

lim
x→0

p(x) = −1, lim
x→0

q(x) = 1, (5.72)

as can be obtained with L’Hôpital’s rule. This implies that the leading terms in the power series
expansions of p and q are p0 = −1 and q0 = 1, and the indicial equation is

F (α) = α(α− 1) + p0α+ q0 = (α− 1)2 = 0. (5.73)

Hence α = 1 is a repeated root.
We conclude that one solution is of the form

y1(x) =

∞∑
k=0

akx
k+1 (5.74a)

and a second solution is given by

y2(x) = y1(x) log(x) +

∞∑
k=0

bkx
k+1. (5.74b)

The coefficients {ak, bk} can in principle be computed by inserting the solution forms (5.74) into (5.70)
and balancing coefficients, but we will not do so here.

One can solve (5.70) exactly by spotting that sinx is a solution and then using reduction
of order: this approach confirms that the local expansions (5.74) are indeed of the correct
form.
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Chapter 6

Special functions

These lecture notes are based on material written by Derek Moulton and Peter
Howell. Please send any corrections or comments to Renaud Lambiotte.

6.1 Introduction

We have seen in the previous section a method to construct power series solutions to ODEs
with non-constant coefficients and singular points. Except for a few examples, even if a closed
form for the coefficients ak can be found, the resulting power series cannot be expressed
in terms of elementary functions, i.e. exponentials, sines, cosines, etc. Nevertheless, some
particular ODEs occur frequently enough for their solutions to have been given special names
and for their behaviour to be fully characterised. In this section, we explore some of these
so-called special functions.

6.2 Bessel functions

6.2.1 Bessel’s equation

Bessel’s equation arises whenever one separates the variables in the Laplacian in cylindrical
polar coordinates. For example, consider the vibrating membrane of a circular drum. It may
be shown that the transverse displacement w(x, y, t) of the membrane at time t and position
(x, y) satisfies the two-dimensional wave equation

1

c2
∂2w

∂t2
= ∇2w =

∂2w

∂x2
+
∂2w

∂y2
, (6.1)

where c is a constant (representing the wave-speed and given by c =
√
T/ρ, where T and ρ

are the membrane tension and density). If the membrane is pinned at the boundary of a disk
of radius a, then we have to solve (6.1) in x2 + y2 < a2, subject to the boundary condition

w = 0 at x2 + y2 = a2. (6.2)

We look for a normal mode in which the membrane oscillates with frequency ω, so that
the displacement takes the form w(x, y, t) = u(x, y) cos(ωt + φ). By substituting into (6.1),
we find that u satisfies the Helmholtz equation

∇2u+ λu = 0, (6.3)

6–1
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with λ = ω2/c2.

Now let us switch to plane polar coordinates (r, θ) such that (x, y) = r(cos θ, sin θ), and
thus obtain the equation and boundary condition:

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+ λu = 0 0 ≤ r < a, 0 ≤ θ ≤ 2π, (6.4a)

u = 0 r = a, 0 ≤ θ ≤ 2π, (6.4b)

u 2π-periodic in θ. (6.4c)

This is a PDE eigenvalue problem: u ≡ 0 always satisfies the problem (6.4), and our aim is
to find values of λ such that there are non-trivial solutions u(r, θ).

Since u(r, θ) is periodic in θ we can expand u into a Fourier series of the form

u(r, θ) = U0(r) +
∞∑
n=1

Un(r) cosnθ + Vn(r) sinnθ. (6.5)

Substitution of (6.5) into (6.4) gives

1

r

(
rU ′n(r)

)′
+

(
λ− n2

r2

)
Un(r) = 0, for 0 ≤ r < a, (6.6a)

Un(r) = 0 at r = a. (6.6b)

The same equation and boundary condition hold for Vn(r). Now eliminate λ by the rescaling
Un(r) = y(x) with x = λ1/2r, resulting in

x2y′′(x) + xy′(x) +
(
x2 − n2

)
y(x) = 0, (6.7)

which is known as Bessel’s equation of order n.

6.2.2 Bessel functions of first and second kind

Bessel’s equation (6.7) has a regular singular point at x = 0, with indicial equation given
by F (α) = α2 − n2 = 0, the solutions of which are α1 = n, α2 = −n, with a double root for
n = 0. In general, the parameter n in (6.7) can be any complex number but, in the context
described above where u(r, θ) is required to be 2π-periodic in θ, we need only consider n to
be a non-negative integer. Similarly, since x is a scaled version of the radial coordinate r,
we focus on non-negative values of x. A detailed analysis of the singular point at x = 0, as
in §5.2, reveals that one solution of (6.7) is given by a Frobenius series about x = 0 with
the exponent α1 = n, and the other solution is given by a Frobenius series with exponent
α2 = −n plus log(x) times the first solution (i.e. Case III(a) from §5.2.5).

The first Frobenius series, with a specific normalisation of the leading coefficient in the
expansion, defines the Bessel functions of first kind

Jn(x) =
(x

2

)n ∞∑
k=0

(−1)k

k!(k + n)!

(x
2

)2k
, (6.8)

for integer n ≥ 0.
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Similarly, a specifically normalised choice for the second series solution defines the Bessel
functions of second kind

Yn(x) =
2

π
log
(x

2

)
Jn(x)− 1

π

(
2

x

)n n−1∑
k=0

(n− k − 1)!

k!

(
x2

4

)k
− 1

π

(x
2

)n ∞∑
k=0

[
ψ(k + 1) + ψ(n+ k + 1)

]
k!(n+ k)!

(
−x

2

4

)k
, (6.9)

where the digamma function ψ(m) for integer m ≥ 1 is given by ψ(m) = −γ +
∑m−1

k=1 k
−1,

and γ = 0.5772 · · · is the Euler–Mascheroni constant. More details regarding the expansions
(6.8) and (6.9) are explored on Problem Sheet 3.

6.2.3 Properties of Bessel functions

The first few Bessel functions Jn(x) and Yn(x) are plotted in Figure 6.1. Many properties of
the Bessel functions are known — see for example the NIST Digital Library of Mathematical
Functions (DLMF). — and we list here just a few.

(i) Since Bessel’s equation (6.7) has only one singular point for finite x, the series (6.8) and
(6.9) for Jn and in Yn have infinite radius of convergence.

(ii) Also, Jn and Yn are oscillating functions that decay slowly as x → ∞. Each has
an infinite set of discrete zeros in x > 0, which are quite useful and have therefore
been tabulated, for example at mathworld. The first few zeros of Jn and Yn (denoted
jn,1, jn,2, . . . and yn,1, yn,2, . . .) are listed in Table 6.1, and 6.2, respectively.

(iii) As x → 0, the behaviours of the two kinds of Bessel function are quite different. For
the first kind, we have Jn(0) = 0 if n > 0, and J0(0) = 1, while the second kind Bessel
functions are singular, with Yn(x) → −∞ as x → 0. (The singularity is logarithmic
when n = 0, or has Yn(x) = O (x−n) when n > 0.)

(iv) The following two recursion relations can be derived from the local expansion (6.8):

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x), Jn+1(x) = −2J ′n(x) + Jn−1(x). (6.10)

The same relations also hold for the second-kind Bessel functions Yn.

6.2.4 Normal modes of a circular drum

We can now express the general solution to (6.6a) in terms of Bessel functions as

Un(r) = C1Jn

(
λ1/2r

)
+ C2Yn

(
λ1/2r

)
, (6.11)

for some arbitrary constants C1 and C2. We require the displacement to be bounded as r → 0,
and must therefore set C2 = 0 to remove the singularity in Yn. For a non-trivial solution we
must have C1 6= 0, and the boundary condition (6.6b) at r = a therefore leads to

Jn

(
λ1/2a

)
= 0, (6.12)

http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://mathworld.wolfram.com/BesselFunctionZeros.html
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Figure 6.1: (a) Bessel functions of the first kind Jn(x). (b) Bessel functions of the second
kind Yn(x).

m j0,m j1,m j2,m j3,m j4,m
1 2.40483 3.83171 5.13562 6.38016 7.58834
2 5.52008 7.01559 8.41724 9.76102 11.0647
3 8.65373 10.1735 11.6198 13.0152 14.3725
4 11.7915 13.3237 14.796 16.2235 17.616
5 14.9309 16.4706 17.9598 19.4094 20.8269

Table 6.1: The first five zeros of Jn with n = 0, 1, 2, 3, 4.

m y0,m y1,m y2,m y3,m y4,m
1 0.893577 2.19714 3.38424 4.52702 5.64515
2 3.95768 5.42968 6.79381 8.09755 9.36162
3 7.08605 8.59601 10.0235 11.3965 12.7301
4 10.2223 11.7492 13.21 14.6231 15.9996
5 13.3611 14.8974 16.379 17.8185 19.2244

Table 6.2: The first five zeros of Yn with n = 0, 1, 2, 3, 4.
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i.e. λ1/2a has to be one of the zeros jn,m of Jn. Thus the eigenvalues for (6.6) are given by

λ =
j2n,m
a2

, n = 0, 1, . . . , m = 1, 2, . . . (6.13)

with corresponding eigenfunctions

Un,m(r) = Jn (jn,mr/a) . (6.14)

We can then read off the normal frequencies of the drum from the definition of λ, i.e.

ωn,m = jn,m
c

a
. (6.15)

6.2.5 Sturm–Liouville form

The differential equation (6.6a) can be written in Sturm-Liouville form by multiplying through
by r. For convenience we also pose the problem on the unit interval (corresponding to the
modes in a disk of unit radius a = 1, which may be obtained by rescaling r with a) to get the
eigenvalue problem

LU(r) = −
(
rU ′(r)

)′
+
n2

r
U(r) = λrU(r), for 0 < r < 1, (6.16a)

U(r) = 0 at r = 1, (6.16b)

U(r) bounded as r → 0. (6.16c)

From above, we know that the eigenvalues and eigenfunctions for (6.16) are given by

λn,m = j2n,m, Un,m(r) = Jn (jn,mr) . (6.17)

We recognise (6.16a) as a singular Sturm–Liouville equation with weighting function r,
and thus deduce the following orthogonality relation between eigenfunctions:∫ 1

0
Jn (jn,`r) Jn (jn,mr) r dr = 0 for ` 6= m. (6.18)

A separate calculation for the case ` = m results in [see Problem Sheet 3 ]∫ 1

0
J2
n (jn,mr) r dr =

1

2

(
J ′n(jn,m)

)2
. (6.19)

6.3 Legendre functions

6.3.1 The Legendre equation

The Legendre equation arises when studying eigenvalue problems for the 3D Laplacian oper-
ator in spherical coordinates. Suppose again we are solving the Helmholtz equation (6.3) but
now using spherical polars (r, θ, φ), so the Laplacian is given by

∇2u =
1

r

∂2

∂r2
(ru) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
= −k2u. (6.20)



6–6 Mathematical Institute University of Oxford

When we separate the variables by seeking a solution of the form

u(r, θ, φ) = R(r)Θ(θ)Φ(φ), (6.21)

then (6.20) may be rearranged to

r
(
rR(r)

)′′
R(r)

+ k2r2 = −(sin θΘ′(θ))′

sin θΘ(θ)
− Φ′′(φ)

sin2 θΦ(φ)
. (6.22)

By the usual argument, the left-hand side of (6.22) is a function only of r, while the
right-hand side is independent of r, so they must both equal a constant, λ say. We then have

− Φ′′(φ)

Φ(φ)
=

sin θ (sin θΘ′(θ))′

Θ(θ)
+ λ sin2 θ, (6.23)

which likewise must equal a constant. For Φ to be a 2π-periodic function, that constant
must be of the form m2, where m ≥ 0 is an integer: this gives Φ = const if m = 0 or
Φ(φ) = cos(mφ+ α) if m > 0. We are then left with the following linear ODE for Θ(θ):

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

(
λ− m2

sin2 θ

)
Θ = 0. (6.24)

Equation (6.24) is to be solved for 0 < θ < π. It may readily be verified that θ = 0 and θ = π
are both regular singular points of (6.24), and to get physically resonable solutions we must
insist that Θ(θ) is sufficiently well-behaved as θ → 0, π.

We can express (6.24) in a more helpful form by making the change of variable cos θ = x
and Θ(θ) = y(x). Then d/dθ = − sin θ d/dx, and (6.24) is transformed into the associated
Legendre equation for y(x):

d

dx

((
1− x2

) dy

dx

)
+

(
λ− m2

1− x2

)
y = 0. (6.25)

The parameters m and λ in (6.25) can in general take any complex values. We will focus on
the case where m is a non-negative integer and (for reasons that will become clear below)
λ = `(`+ 1), where ` is also a non-negative integer. The solutions of the associated Legendre
equation (6.25) are the associated Legendre functions; for m = 0, we drop the “associated”
and speak of the Legendre equation and Legendre functions.

6.3.2 Properties of Legendre functions

Many properties and relations satisfied by solutions of (6.25) may be found, for example, at
DLMF or mathworld. Here we list a few useful properties.

(i) The points x = ±1 and x = ∞ are regular singular points of the associated Legendre
equation (6.25). The indicial exponents for x = ±1 are −m/2 and m/2. Thus, the local
expansion yields one bounded and one unbounded solution as x → 1, and similarly as
x → −1. (When m = 0, there is a repeated root of the indicial equation, and one
solution is of order log(x∓ 1) as x→ ±1.)

http://dlmf.nist.gov/
http://mathworld.wolfram.com/AssociatedLegendrePolynomial.html
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(ii) If we consider bounded solutions of (6.25) on −1 < x < 1, we see that boundedness
imposes two conditions, one at either end of the interval. This suggests that (6.25) can
be posed as a singular Sturm–Liouville problem:

−
((

1− x2
)
y′(x)

)′
+

m2

1− x2
y(x) = λy(x) for − 1 < x < 1, (6.26a)

y(x) bounded as x→ ±1. (6.26b)

(iii) The eigenvalues of (6.26) are given by λ = `(` + 1) with integer ` ≥ m ≥ 0. The
eigenfunctions are the corresponding associated Legendre functions, which are denoted
by y(x) = Pm` (x). From Sturm–Liouville theory, we infer the orthogonality relation∫ 1

−1
Pmk (x)Pm` (x) dx = 0 for k 6= `. (6.27)

The case k = ` requires explicit calculation: see Problem Sheet 3.

(iv) For m = 0 and integer ` ≥ 0, the Legendre functions (without “associated”) are denoted
by P`(x). It may be shown that P` is a polynomial of degree `: if one seeks the solution
of (6.25) as a power series expansion about x = 0,

y(x) =
∞∑
k=0

akx
k, (6.28)

then the series terminates, with ak ≡ 0 for k > `. The resulting Legendre polynomials
are given explictly by the Rodrigues’ formula:

P`(x) =
1

2``!

d`

dx`

[
(x2 − 1)`

]
. (6.29)

(v) A second, linearly independent, solution of the Legendre equation (6.26a) with m = 0
is given by the Legendre function of second kind, denoted by Q`(x). These solutions
are unbounded as x → ±1. For the case ` = 0, the solution Q0 is found on Problem
Sheet 2:

Q0(x) =
1

2
log

(
1 + x

1− x

)
. (6.30)

(vi) For the general case of nonzero m ≤ `, the associated Legendre functions of first and
second kind are given by

Pm` (x) = (−1)m
(
1− x2

)m/2 dmP`(x)

dxm
, (6.31a)

Qm` (x) = (−1)m
(
1− x2

)m/2 dmQ`(x)

dxm
. (6.31b)

The associated Legendre function Pm` is a polynomial if and only if m is even.
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6.4 Generalisation: orthogonal polynomials

There are many other second order linear ODEs with families of orthogonal polynomials as
solutions, satisfying orthogonality relations∫ b

a
pm(x)pn(x)r(x) dx = 0 m 6= n (6.32)

with a fixed weighting function r(x) which can by inferred by formulating an appropriate
Sturm–Liouville eigenvalue problem. One can in fact give a complete classification of all
infinite families of orthogonal polynomials that can arise from second-order linear ODEs.
The most important ones include the following.

1. The “Jacobi-like” polynomials, which include the Legendre, Chebyshev, and Gegenbauer
polynomials, arise from ODEs of the type(

1− x2
)
y′′(x) + (a+ bx)y′(x) + λy(x) = 0, (6.33)

posed on the interval [−1, 1], with constants a and b and an appropriate discrete set of
values of λ.

2. The associated Laguerre polynomials satisfy Laguerre’s equation:

xy′′(x) + (a+ 1− x)y′(x) + λy(x) = 0, (6.34)

which admits a polynomial solution y(x) = Lan(x) when λ is a non-negative integer n.
They satisfy the orthogonality relation∫ ∞

0
Lam(x)Lan(x)xae−x dx = 0 for m 6= n. (6.35)

The Laguerre polynomials (without “associated”) correspond to a = 0 and are denoted
by Ln(x) ≡ L0

n(x).

3. Hermite polynomials are solutions of the Hermite equation

y′′(x)− 2xy′(x) + λy(x) = 0, (6.36)

which admits a polynomial solution Hn(x) when λ = 2n for integer n ≥ 0. Hermite
polynomials satisfy the orthogonality relation∫ ∞

−∞
Hm(x)Hn(x)e−x

2
dx = 0 for m 6= n. (6.37)
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Chapter 7

Asymptotic analysis - Part 1

These lecture notes are based on material written by Derek Moulton and Peter
Howell. Please send any corrections or comments to Renaud Lambiotte.

7.1 Introduction

A complex mathematical problem often cannot be solved exactly, but it may contain pa-
rameters that represent physical constants or quantities in the problem. If some of these
parameters are very small or very large, it may be possible to derive approximate solutions
to the problem. Doing this in a systematic manner is the subject of asymptotic analysis. In
this section a basic framework is presented for the use of this approach. Asymptotic methods
can be put on a rigorous footing, but we will content ourselves with an informal approach.

Example 7.20. Consider a pendulum, initially hanging vertically and set in motion with velocity V .
The angle θ(t) made by the pendulum with the vertical at time t satisfies the equation

θ̈ +
g

`
sin θ = 0, (7.1a)

where ` is the length of the pendulum and g is the acceleration due to gravity. The given initial state
leads to the following initial conditions for θ:

θ(0) = 0, `θ̇(0) = V. (7.1b)

The problem (7.1) can be solved exactly, but in a rather unpleasant form involving elliptic functions.
Can we say anything about the how the solution depends on the sizes of the constants ` and V ?

The first step is to normalise the problem, i.e. to re-scale the variables to eliminate as many
parameters as possible. The idea is that all of the variables and parameters in the normalised model
should be dimensionless.

We can eliminate g/` from (7.1a) by defining a new time variable

τ =
(g
`

)1/2
t. (7.2)

Note that g, ` and t have units of m2/s, m and s, respectively, so that τ is indeed dimensionless. The
angle θ is already dimensionless, but nevertheless can be scaled to balance the left- and right-hand sides
of (7.1b), i.e.

θ(t) = αu(τ), (7.3)

where

α =
V√
`g
. (7.4)

7–1

http://people.maths.ox.ac.uk/moulton/
http://people.maths.ox.ac.uk/howell/
http://people.maths.ox.ac.uk/howell/
mailto:lambiotte@maths.ox.ac.uk
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Again, one can check that α is dimensionless.
The normalised version of the problem (7.1) then reads

αü(τ) + sin
(
αu(τ)

)
= 0, u(0) = 0, u̇(0) = 1. (7.5)

Now we have collapsed all of the physical constants g, ` and V into the single dimensionless parame-
ter α, and we can ask the question: how does the solution u(τ) of (7.5) behave if α is very small or if
α is very large?

Example 7.20 illustrates how a process of non-dimensionalisation can produce a nor-
malised mathematical problem containing a minimal number of dimensionless parameters
that characterise the relative importance of the different physical effects in the problem. It
then makes sense to ask what the approximate behaviour of solutions might be if a particular
parameter is either very small or very large. More details on how to nondimensionalise a
given physical problem can be found elsewhere and in Part B and C applied mathematical
courses.

7.2 Asymptotic expansions

7.2.1 Order notation and twiddles

To start it is necessary to give a basic structure to describe approximations to a function
when some parameter in the function becomes large or small. The following definitions allow
the relative sizes of two different functions to be described. We consider two continuous real-
valued functions f(x) and g(x), and compare their behaviours as x tends towards a particular
value x0 (often x0 = 0 or ∞).

Definition 7.1. “Big O” notation
We write

f(x) = O
(
g(x)

)
as x→ x0 if ∃A > 0 such that |f(x)| < A|g(x)| (7.6)

for all x sufficiently close to x0.

We say that “f is of order g” to capture the idea that f(x) and g(x) are “roughly the
same size” in the limit as x→ x0.

Example 7.21.

(i) sin(2x) = O(x) as x→ 0;

(ii) 3x+ x3 = O(x) as x→ 0;

(iii) log x = O(x− 1) as x→ 1;

(iv) 5x2 + x−3 − e−x = O
(
x2
)

as x→∞.

Definition 7.2. “Twiddles” notation
We write

f(x) ∼ g(x) if
f(x)

g(x)
→ 1 as x→ x0. (7.7)

This notation could be read as “f is asymptotic to g” or “f looks like g” as x→ x0, and
captures the idea of two functions being approximately equal in some limit.
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Example 7.22.

(i) sin(2x) ∼ 2x as x→ 0;

(ii) x+ e−x ∼ x as x→∞.

Definition 7.3. “Little o” notation
We write

f(x) = o
(
g(x)

)
as x→ x0 if lim

x→x0

f(x)

g(x)
= 0. (7.8)

This notation captures the idea that f is “much smaller than” g in the limit as x → x0,
and can also be written as f(x)� g(x) or indeed g(x)� f(x) as x→ x0.

Example 7.23.

(i) 9x2 − 4x5 = o(x) as x→ 0;

(ii)
3

x2
− 3e−x = o(1/x) as x→∞.

Whenever using the order or twiddles notation, one should include in the statement what
value x is tending to (though it is often implicit).

Example 7.24. Taylor’s Theorem
A smooth function f(x) may be expanded in a Taylor series and thus one may make statements

such as:

f(x) = f(x0) + (x− x0)f ′(x0) +O
(
(x− x0)2

)
as x→ x0, (7.9a)

f(x) = f(x0) + (x− x0)f ′(x0) + o
(
(x− x0)

)
as x→ x0, (7.9b)

f(x) = f(x0) + (x− x0)f ′(x0) + o
(
(x− x0)3/2

)
as x→ x0, (7.9c)

f(x) ∼ f(x0) as x→ x0, (7.9d)

f(x)− f(x0) ∼ (x− x0)f ′(x0) as x→ x0. (7.9e)

7.2.2 Asymptotic sequence and asymptotic expansion

In this course we are particularly interested in problems containing a small parameter, and
we will therefore focus on the case x0 = 0. We will follow convention by generally using the
notation ε (rather than x) for the small parameter. Our aim then is to find the approximate
behaviour of some function f(ε), say, in the limit as ε→ 0.

Example 7.25.

(i) sin
(
ε1/2

)
≈ ε1/2 − ε3/2

6
+ · · · ,

(ii) tanh−1(1− ε) ≈ 1

2
log

(
2

ε

)
− ε

4
− ε2

16
+ · · · ,

both in the limit as ε→ 0.

If f is smooth, then one can express f(ε) as a Taylor expansion in powers of ε as ε → 0,
as in Example 7.24. However, for a unbounded or non-smooth functions, integer powers of ε
might not be appropriate to capture the local behaviour, as illustrated by Example 7.25. In
general, we might want to write

f(ε) ≈
∑
k

akφk(ε), (7.10)
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where φk(ε) are suitable gauge functions. For such a series to provide a useful approximation
to the function f , we would expect the terms in the expansion to get successively smaller
with increasing k, and this motivates the following definition.

Definition 7.4. A set of functions {φk(ε)}k=0,1,2,... is an asymptotic sequence as ε → 0 if
φk+1(ε) = o

(
φk(ε)

)
as ε→ 0, i.e. each term in the sequence is of smaller magnitude than the

previous term.

Example 7.26. Here are some examples of asymptotic sequences:

(i)
{

1, ε, ε2, ε3, · · ·
}
,

(ii)
{

1, ε1/2, ε, ε3/2, · · ·
}
,

(iii)
{

1, ε, ε log ε, ε2, ε2 log ε, · · ·
}
.

Definition 7.5. A function f(ε) has an asymptotic expansion of the form

f(ε) ∼
∑
k

akφk(ε) as ε→ 0 (7.11)

if

(i) the gauge functions φk for an asymptotic sequence, i.e. φk+1(ε)� φk(ε) for all k;

(ii) f(ε)−
∑N

k=0 akφk(ε)� φN (ε) for all N = 0, 1, . . .,

as ε→ 0.

Property (i) ensures that the terms in the expansion get successively smaller, and property
(ii) ensures that the approximation gets more accurate the more terms are included in the
expansion.

The definition of an asymptotic expansion differs crucially from that for a convergent
series. For a convergent series of the form

f(ε) =
∞∑
k=0

akφk(ε), (7.12)

we require that the partial sum

fN (ε) =

N∑
k=0

akφk(ε), (7.13)

converges to f(ε) as N →∞, with ε held fixed. For an asymptotic expansion

f(ε) ∼
∑
k

akφk(ε), (7.14)

we instead require that the partial sum (7.13) converges asymptotically to f(ε) as ε→ 0, with
N held fixed. In fact, an asymptotic expansion may well diverge as N →∞ (i.e. have radius
of convergence equal to zero) but still be useful and perfectly well defined by Definition 7.5.

Elementary properties of asymptotic expansions include the following.
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1. Given a particular choice of gauge functions {φk}, the coefficients ak are unique.

This can easily be proved by induction on N . Note that the gauge functions themselves
are not unique, for example,

tan ε ∼ ε+
1

3
ε3 +

2

15
ε5 + · · ·

∼ sin ε+
1

2
sin3 ε+

3

8
sin5 ε+ · · · . (7.15)

Usually we use the simplest choice, namely powers of ε, or possibly exponentials or logs.

2. The function defines the expansion but not vice versa.

For example, if φk(ε) = εk for k = 0, 1, 2, . . ., then

1

1− ε
∼ 1 + ε+ ε2 + · · · as ε→ 0 (7.16a)

but also
1

1− ε
+ e−1/ε ∼ 1 + ε+ ε2 + · · · as ε→ 0. (7.16b)

In other words, we have two different functions with the same asymptotic expansion. This
occurs because (for 0 < ε� 1)

e−1/ε = o
(
εk
)

for all k, (7.17)

and e−1/ε is said to be exponentially small or transcendentally small.

7.3 Approximate roots of algebraic equations

To start using asymptotic methods consider the problem of finding the roots of an algebraic
equation containing a small parameter. To focus ideas, first we consider some simple cases
where the exact roots can be easily found.

Example 7.27. Solve approximately the quadratic equation

x2 + εx− 1 = 0 (7.18)

in the limit as ε→ 0.
Exact solution: Here we can use the quadratic formula to get the exact solutions

x =
1

2

(
−ε±

√
4 + ε2

)
. (7.19)

A binomial expansion of the square root yields the following approximations for the two roots:

x+ ∼ 1− ε

2
+
ε2

8
+O

(
ε4
)
, (7.20a)

x− ∼ −1− ε

2
− ε2

8
+O

(
ε4
)
, (7.20b)
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both as ε → 0. Now the question is, could we have derived the approximate solutions (7.20) directly
from the equation (7.18), without finding the exact solutions first?
Asymptotic approach: Since equation (7.18) contains only ε, and no other (e.g. fractional) powers
of ε, we assume that the solution for x may be expressed as an asymptotic expansion of the form

x ∼ x0 + εx1 + ε2x2 + ε3x3 + · · · as ε→ 0. (7.21)

We substitute (7.21) into (7.18) to obtain

0 ∼
(
x0 + εx1 + ε2x2 + ε3x3 + · · ·

)2
+ ε
(
x0 + εx1 + ε2x2 + ε3x3 + · · ·

)
− 1

∼ x20 + 2x0x1ε+
(
x21 + 2x0x2

)
ε2 + (2x1x2 + 2x0x3) ε3 + · · · ε

(
x0 + εx1 + ε2x2 + · · ·

)
− 1. (7.22)

Since this must hold for all ε, and we have assumed that x0, x1, . . . are all independent of ε, we
conclude that equality must hold independently for each power of ε. Hence, we equate the coefficients
of each power of ε to solve successively for x0, x1, . . ..

Considering the first few powers, we get:

O(1) : x20 − 1 = 0, ⇒ x0 = ±1, (7.23a)

O(ε) : 2x0x1 + x0 = 0, ⇒ x1 = −1

2
, (7.23b)

O
(
ε2
)

: 2x0x2 + x21 + x1 = 0, ⇒ x2 =
1

8x0
= ±1

8
, (7.23c)

O
(
ε3
)

: 2x0x3 + 2x1x2 + x2 = 0, ⇒ x3 = 0, (7.23d)

and so on. Thus we have obtained the first few terms in asymptotic expansions for each of the two
roots of (7.18), namely

x ∼ ±1− 1

2
ε± 1

8
ε2 +O

(
ε4
)
, (7.24)

which clearly agrees with the exact solution (7.20).

Example 7.28. Solve approximately the quadratic equation

εx2 + x− 1 = 0 (7.25)

in the limit as ε→ 0.
Exact solution: Again we can use the quadratic formula to get the exact solutions

x =
1

2ε

(
−1±

√
1 + 4ε

)
, (7.26)

and expansion of the square root yields the following approximations for the two roots:

x+ ∼ 1− ε+ 2ε2 − 5ε3 +O
(
ε4
)
, (7.27a)

x− ∼ −1

ε
− 1 + ε− 2ε2 +O

(
ε3
)
. (7.27b)

Now we try to get the roots directly from equation (7.25).
Asymptotic approach. First attempt: It is reasonable to expect that the leading-order solution as
ε→ 0 could be found by just setting ε = 0 in (7.25). This approach gives x ∼ 1 as a first approximation,
which indeed agrees with the first root (7.27a) at lowest order in ε. We can then obtain an improved
approximation by hypothesising that x can be expressed as an asymptotic expansion in powers of ε, i.e.

x ∼ 1 + εx1 + ε2x2 + ε3x3 + · · · as ε→ 0. (7.28)

We substitute (7.28) into the original equation (7.25) to get

0 ∼ ε
(
1 + εx1 + ε2x2 + ε3x3 + · · ·

)2
+ εx1 + ε2x2 + ε3x3 + · · · . (7.29)
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As in Example 7.27, we equate the coefficients of each power of ε to solve successively for x1, x2, . . ..
Considering the first few powers, we get:

O(ε) : 1 + x1 = 0, ⇒ x1 = −1, (7.30a)

O
(
ε2
)

: 2x1 + x2 = 0, ⇒ x2 = 2, (7.30b)

O
(
ε3
)

: x21 + 2x2 + x3 = 0, ⇒ x3 = −5, (7.30c)

and so on. Hence we can systematically improve the approximation of the root near x = 1, and
evidently we have managed to reproduce the expansion (7.27a).
Second attempt: The previous approach successfully produced an asymptotic expansion for the pos-
itive root x+. But since (7.25) is a quadratic equation, we know that it has another root, which our
method seems to have missed.

Note that the root (7.28) near x = 1 has been found by considering a dominant balance between two
of the three terms in (7.25), namely x and 1, while treating the third term εx2 as a small correction,
i.e.

εx2︸︷︷︸
small

+ x− 1︸ ︷︷ ︸
balance

= 0. (7.31)

To approximate the other root, we need to consider other possible balances between different terms in
equation (7.25).

Suppose we try to balance the terms ε2x and 1 in (7.25), which suggests that x = O
(
ε−1/2

)
. This

choice would give the following sizes for the terms:

εx2︸︷︷︸
O(1)

+ x︸︷︷︸
O(ε−1/2)

− 1︸︷︷︸
O(1)

= 0. (7.32)

Now we have a problem: the first and third terms balance, but the second term is much bigger than
either of them. To get a dominant balance, we need to ensure that the balanced terms are the dominant
terms in the equation, and (7.32) fails this requirement.
Third attempt: The remaining possibility is to balance the terms εx2 and x in (7.25), i.e. to suppose
that x = O

(
ε−1
)
. Then comparing the sizes of the terms in (7.25), we get

εx2︸︷︷︸
O(ε−1)

+ x︸︷︷︸
O(ε−1)

− 1︸︷︷︸
O(1)

= 0. (7.33)

This choice does give a dominant balance: when the first two terms are the same order, they are indeed
much bigger than the third term.

Now we know this balance works, we use the scaling x = ε−1y, with y = O(1), to reflect the
anticipated size of x; then (7.25) is transformed to

y2

ε
+
y

ε
− 1 = 0 ⇔ y2 + y − ε = 0. (7.34)

Now letting ε → 0 in (7.34), we get a sensible balance between the first two terms, but there seem to
be two possible choices for y, namely y ∼ −1 or y ∼ 0. However, assuming that we have scaled the
equation correctly, the desired root should have y = O(1), so we ignore the second option (which in
fact just reproduces the root x+ that we have already found).

We therefore seek the solution to (7.34) as an asymptotic expansion of the form

y ∼ −1 + εy1 + ε2y2 + ε3y3 + · · · as ε→ 0. (7.35)

Substitution of (7.35) into (7.34) leads to

0 ∼
(
−1 + εy1 + ε2y2 + ε3y3 + · · ·

) (
εy1 + ε2y2 + ε3y3 + · · ·

)
− ε, (7.36)
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after some simplification by writing y2 + y = y(y + 1). As above, this equation must be satisfied at
every order in ε, and we can solve successively for the coefficients as follows:

O(ε) : −y1 − 1 = 0, ⇒ y1 = −1, (7.37a)

O
(
ε2
)

: y21 − y2 = 0, ⇒ y2 = 1, (7.37b)

O
(
ε3
)

: 2y1y2 − y3 = 0, ⇒ y3 = −2, (7.37c)

and so on. We have thus constructed the approximate solution for y, namely

y ∼ −1− ε+ ε2 − 2ε3 + · · · as ε→ 0, (7.38)

and by rescaling x = y/ε, we see that we have successfully obtained the second root x− given by (7.27b).

In Example 7.27, we can find both roots of equation (7.18) as regular asymptotic expan-
sions in integer powers of ε, without any rescaling of x. In contrast, in Example 7.28, by
seeking a regular expansion, we only manage to obtain one root; to find the other we have
to rescale x appropriately. Consequently, one of the roots of equation (7.25) diverges like 1/ε
as ε→ 0. This occurs because setting ε = 0 reduces the degree of (7.25) from a quadratic to
a linear equation, and thus reduces the number of roots from two to one. It is necessary to
rescale x to reintroduce the quadratic term εx2 at leading order to recover the second root.
A so-called singular perturbation is said to occur when setting ε = 0 reduces the degree of the
problem, and thus the number of solutions that the problem possesses.

Example 7.28 illustrates the following general procedure to find an approximate solution
x of an algebraic equation of the form F (x; ε) = 0 containing a small parameter ε.

1. Scale the variable(s) to get a dominant balance, i.e. so that at least two of the terms (i)
balance and (ii) are much bigger than the remaining terms in the equation.

2. Plug in an asymptotic expansion for x. Usually the form of the expansion is clear from
the form of the equation (though see below an example where it isn’t so clear).

3. By equating the terms multiplying each power of ε in the equation, obtain the coefficients
in the expansion.

4. Repeat for any other possible dominant balances in the equation to obtain approxima-
tions for other roots.

We next try to use the same ideas to solve an equation where there is no exact solution
to guide us.

Example 7.29. Find an asymptotic expansion for all the roots of

xe−x = ε as ε→ 0. (7.39)

Figure 7.1 shows a plot of xe−x versus x. For small, positive values of ε, we expect there to be two
roots x of (7.39): one close to x = 0 and one with x large. [Exercise: show that there exist two roots
if ε < e−1.]

We consider the smaller root first. When x is small, we have e−x = O(1) and, to balance the left-
and right-hand sides of (7.39), we should therefore scale x with ε. We set x = εy, with y assumed to
be O(1), and equation (7.39) can then be written as

y = eεy ∼ 1 + εy +
ε2y2

2
+
ε3y3

6
+ · · · as ε→ 0. (7.40)
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Figure 7.1: The function xe−x plotted versus x, indicating two roots to equation (7.39) with
0 < ε� 1.

The Maclaurin expansion of the right-hand side is valid given our hypothesis that y = O(1).
Now we pose an asymptotic expansion for y: given that only integer powers of ε appear in equation

(7.40), it is reasonable to assume that y may be expanded in the form

y ∼ y0 + εy1 + ε2y2 + · · · ∼ 1 + ε
(
y0 + εy1 + ε2y2 + · · ·

)
+

1

2
ε2
(
y0 + εy1 + ε2y2 + · · ·

)2
+ · · · . (7.41)

We can then easily determine the coefficients:

y0 = 1, (7.42a)

y1 = y0 = 1, (7.42b)

y2 = y1 +
1

2
y20 =

3

2
, (7.42c)

and so on, and therefore the smaller root of (7.39) is given by the asymptotic expansion

x ∼ ε+ ε2 +
3

2
ε3 + . . . as ε→ 0. (7.43)

An asymptotic expansion for the larger root of (7.39) is a lot harder to find. As a first step, we
take logs of both sides of (7.39) to get

x− log x = − log ε = | log ε|. (7.44)

Health warning: examples like this with logs are notoriously awkward: the solution of the
apparantly innocuous algebraic equation (7.44) is just about as bad as one will ever encounter!

Since ε is assumed to be very small (and positive), log ε is large and negative, with | log ε| → ∞ as
ε→ 0. To satisfy (7.44), x will need to be large, in which case x� log x. To get a balance in (7.44),
we therefore scale x = | log ε|y to get

| log ε|y − log(| log ε|y) = | log ε| ⇔ y − log(| log ε|)
| log ε|

− log y

| log ε|
= 1. (7.45)

The difficulty here is that we can’t assume a known form of the asymptotic expansion for y and
then just solve for the coefficients: it is not obvious in advance what gauge functions we should use.
So let us just pose a general expansion of the form

y ∼ 1 + φ1(ε) + φ2(ε) + · · · , (7.46)
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assuming only that · · · � φ2 � φ1 � 1, and try to calculate what φ1, φ2, . . . should be. Note that
(7.46) gives

log y ∼ (φ1 + φ2 + · · · )− 1

2
(φ1 + φ2 + · · · )2 + · · · ∼ φ1 (7.47)

to lowest order. Rearranging (7.45), we therefore obtain

y − 1︸ ︷︷ ︸
∼φ1

− log y

| log ε|︸ ︷︷ ︸
∼φ1/| log ε|

=
log(| log ε|)
| log ε|

. (7.48)

We observe that the first term dominates the second, and obtain a balance in (7.48) by choosing

φ1(ε) =
log(| log ε|)
| log ε|

. (7.49)

Indeed this does give φ1 � 1, in the sense that φ1(ε) → 0 as ε → 0, so our assumed form of the
expansion (7.46) is self-consistent (so far at least).

Again we rearrange (7.48) to

y − 1− φ1︸ ︷︷ ︸
∼φ2

=
log y

| log ε|︸ ︷︷ ︸
∼φ1/| log ε|

, (7.50)

and a leading-order balance is now obtained by choosing

φ2(ε) =
φ1(ε)

| log ε|
=

log(| log ε|)
| log ε|2

. (7.51)

Again we can verify that φ2 � φ1, i.e. that φ2(ε)/φ1(ε) → 0 as ε → 0, so that our expansion is
self-consistent. We thus get the early terms in an expansion for the larger root of (7.39), namely

x ∼ | log ε|+ log(| log ε|) +
log(| log ε|)
| log ε|

+ · · · as ε→ 0. (7.52)

Exercise: Show that the next term in the expansion is of order
(
log(| log ε|)/| log ε|

)2
.
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Chapter 8

Asymptotic analysis - Part 2

These lecture notes are based on material written by Derek Moulton and Peter
Howell. Please send any corrections or comments to Renaud Lambiotte.

8.1 Regular perturbations in ODEs

We have shown how to use asymptotic methods to systematically approximate the roots of
algebraic and transcendental equations. Now we explore how the same ideas may be used to
find approximate solutions to ODEs.

Example 8.30. Find the approximate solution y(x) of the following problem when 0 < ε� 1:

y′′(x) = − 1

1 + εy(x)2
, 0 < x < 1, y(0) = y(1) = 0. (8.1)

The solution y(x; ε) depends on both x and ε. Since the problem (8.1) contains only ε, and no
other powers or functions of ε, it is reasonable to assume that the solution may be expressed as an
asymptotic expansion in integer powers of ε, i.e.

y(x; ε) ∼ y0(x) + εy1(x) + ε2y2(x) + · · · . (8.2)

Putting this into the ODE (8.1), we get

y′′0 + εy′′1 + · · · = − 1

1 + ε(y0 + εy1 + · · · )2

∼ −1 + εy20 + · · · , (8.3)

with boundary conditions

0 = y(0, ε) ∼ y0(0) + εy1(0) + · · · , 0 = y(1, ε) ∼ y0(1) + εy1(1) + · · · . (8.4)

By setting in turn the coefficient of each power of ε to zero, we get

O(1) : y′′0 = −1, y0(0) = y0(1) = 0

⇒ y0(x) =
1

2
x(1− x), (8.5a)

O(ε) : y′′1 (x) = y0(x)2 =
1

4
x2(1− x)2, y1(0) = y1(1) = 0

⇒ y1(x) = − 1

240
x(1− x)

(
2x4 − 4x3 + x2 + x+ 1

)
, (8.5b)

and so on.

8–1

http://people.maths.ox.ac.uk/moulton/
http://people.maths.ox.ac.uk/howell/
http://people.maths.ox.ac.uk/howell/
mailto:lambiotte@maths.ox.ac.uk
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Example 8.31. Small oscillations of a pendulum
Let us return to the problem (7.5) from Example 7.20, in the limit where the dimensionless pa-

rameter α, which measures the strength of the initial impulse, is small. To cast the problem in a more
familiar form, set α = ε� 1 and u(τ) = y(x) so the problem reads

y′′(x) +
sin
(
εy(x)

)
ε

= 0, y(0) = 0, y′(0) = 1. (8.6)

Note that
sin(εy)

ε
∼ y − 1

6
ε2y3 +

1

120
ε4y5 + · · · as ε→ 0, (8.7)

and the problem (8.6) therefore contains only even powers of ε. It follows that we can seek the solution
for y as an asymptotic expansion of the form

y(x; ε) ∼ y0(x) + ε2y2(x) + ε4y4(x) + · · · as ε→ 0. (8.8)

(If we included intermediate terms like εy1(x) in the expansion (8.8), then on substitution into (8.6)
we would find that they are identically zero.)

Now we substitute (8.8) into (8.6) and equate the coefficients of each power of ε as usual. At
leading order we have the problem

y′′0 + y0 = 0, y0(0) = 0, y′0(0) = 1, (8.9)

whose solution is given by
y0(x) = sinx. (8.10)

At order ε2, we get

y′′2 + y2 =
y30
6
, y2(0) = 0, y′2(0) = 0. (8.11)

The right-hand side of (8.11) can be written in the form

1

6
sin3(x) =

1

8
sin(x)− 1

24
sin(3x), (8.12)

and we thus find the general solution for y2 to be

y2(x) =
1

192
sin(3x)− 1

16
x cos(x) + c1 sin(x) + c2 cos(x). (8.13)

The integration constants are determined by applying the initial conditions, and thus we obtain

y2(x) =
3

64
sin(x) +

1

192
sin(3x)− 1

16
x cos(x). (8.14)

The asymptotic expansion of the solution of the problem (8.6) is thus given by

y(x; ε) ∼ sin(x) + ε2
[

3

64
sin(x) +

1

192
sin(3x)− 1

16
x cos(x)

]
+ · · · (8.15)

as ε→ 0.

Example 8.31 illustrates a potential difficulty that may be encountered when we try to
write a function of two variables y(x; ε) as an asymptotic expansion in the limit ε → 0. The
approximate solution (8.15) is a valid asymptotic expansion provided each term in the series
is much smaller than the previous terms. This is certainly true if x = O(1) and ε � 1, but
what happens when x gets very large? Eventually, when x = O

(
1/ε2

)
, the term proportional
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to ε2x becomes the same order as the leading-order term, and the expansion (8.15) ceases to
be asymptotic. When x becomes sufficiently large, the expansion (8.15) is said to become
nonuniform. In this example, the nonuniformity arises from the secular term proportional
to x cos(x) in the solution for y2(x), which itself was a consequence of the forcing term
proportional to sin(x) on the right-hand side of (8.11). In general, in problems like (8.11), we
expect to find a secular term in the solution whenever the right-hand side contains a term that
is in the complentary function (i.e. in the kernel of the differental operator on the left-hand
side).

One can modify the solution (8.15) to a form that is valid for larger values of x by using
the method of multiple scales — see §8.4.3 for a simple implementation of the method or
C5.5 Perturbation Methods for the more general version. For the moment we consider another
example where taking an infinite interval for the independent variable leads to trouble.

Example 8.32. Find the approximate solution of the IVP

y′(x) = y(x)− εy(x)2, x > 0, y(0) = 1, (8.16)

as a regular asymptotic expansion in the limit ε→ 0.
Writing the solution as an asymptotic expansion

y(x; ε) ∼ y0(x) + εy1(x) + · · · , (8.17)

and equating powers of ε in the usual way gives us

y0(x) = ex, (8.18)

and then

y′1(x) = y1(x)− e2x, y1(0) = 0 ⇒ y1(x) = ex − e2x. (8.19)

We thus obtain the following asymptotic expansion for the solution:

y(x; ε) ∼ ex + ε
(
ex − e2x

)
+ · · · as ε→ 0. (8.20)

Now we see that the expansion becomes nonuniform when εe2x ∼ ex, i.e. when x = O (| log ε|).
In this case, we can solve the simple ODE (8.16) exactly to get

y(x; ε) =
ex

1 + ε (ex − 1)
. (8.21)

Expansion of the solution (8.21) in powers of ε indeed reproduces the approximation (8.20), assuming
that x = O(1). However, the exact solution (8.21) satisfies y(x)→ 1/ε as x→∞, while the approxi-
mate solution (8.20) suggests that y(x) grows without bound. Evidently the asymptotic approximation
is valid only if x is not too large (specifically if x� | log ε|), and a different approach would be needed
to approximate the solution for larger value of x. [Try substituting x = log(1/ε) +X into (8.21) before
expanding in powers of ε.]

8.2 Boundary layers

8.2.1 A first example

The solution of an ODE like (8.16), containing a parameter ε, is a function of two variables,
namely ε and the independent variable x of the ODE. To obtain an approximate solution when
ε is small, our starting point is generally to seek the solution as a regular asymptotic expansion

https://courses.maths.ox.ac.uk/node/36885
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Figure 8.1: The function y(x; ε) given by (8.24) plotted versus x with three different values
of ε. The leading-order outer solution e−x is plotted as a black dotted curve.

of the form y(x; ε) ∼ y0(x) + εy1(x) + · · · . However, the previous examples demonstrate that
such an expansion may only be valid for a limited range of values of x. This may reduce the
usefulness of the approximation. Even worse, it is not even clear how to determine the solution
uniquely if a boundary condition is imposed in a region where the asymptotic expansion is
not valid, as illustrated by the following simple example.

Example 8.33. Find the approximate solution of the IVP

εy′(x) + y(x) = e−x, x > 0, y(0) = 0. (8.22)

If we seek the solution as a regular asymptotic expansion of the form y ∼ y0 + εy1 + · · · , then we find

y0(x) = e−x,

y1(x) = −y′0(x) = e−x, (8.23)

and so on. The problem is that we can never satisfy the boundary condition y(0) = 0!

The difficulty that in Example 8.33 occurs because the small parameter ε multiplies the
highest derivative in the problem. In the limit ε→ 0, the ODE (8.22) reduces to an algebraic
equation, namely y(x) ∼ e−x, and it becomes impossible to impose any initial condition.

The exact solution of (8.22) is given by

y(x; ε) =
e−x

1− ε
− e−x/ε

1− ε
, (8.24)

which is plotted versus x for small but nonzero values of ε in Figure 8.1. We see that
y(x) ∼ e−x does provide a good approximation to the exact solution for nearly all values of x.
However, e−x stops being a good approximation to y(x) in a narrow region, called a boundary
layer, close to x = 0, where the solution rapidly adjusts to satisfy the boundary condition
y(0) = 0. Examining the exact solution (8.24), we can see that the rapid variation near x = 0
is caused by the second term containing e−x/ε ceasing to be negligible. Hence we expect the
boundary layer to occur when x = O(ε).

To solve problems like (8.22), we use the method of matched asymptotic expansions. We
construct two different asymptotic expansions for the solution y(x): one in the outer region
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where x = O(1), and the other in the very narrow boundary layer near x = 0, also known as
the inner region. Since these two expansions are approximating the same function y(x), they
must be self-consistent, and this allows them to be joined up by asymptotic matching.

8.2.2 Inner and outer expansions

To get the ideas clear, consider the example above where the exact solution (8.24) is known,
and we want to find the inner and outer expansions. When x = O(1), the second term in
(8.24) is exponentially small, and thus

y(x; ε) ∼ e−x

1− ε
+ exp small

∼ e−x + εe−x + · · · as ε→ 0, (8.25)

which reproduces the first two terms in the asymptotic expansion found in Exercise 8.33. This
is the outer expansion, which applies when x = O(1).

We can see from the exact solution (8.24) that the second term proportional to e−x/ε

stops being negligible when x = O(ε). We therefore examine the inner region by rescaling
the independent variable. If we set x = εX and y(x; ε) = Y (X; ε), and now assume that
X = O(1) (corresponding to x = O(ε)), then the exact solution (8.24) becomes

Y (X; ε) =
e−εX − e−X

1− ε
∼
(
1− e−X

)
+ ε
(
1−X − e−X

)
+ · · · as ε→ 0. (8.26)

This is the inner expansion, which is valid when X = x/ε = O(1).

8.2.3 Matching

In the previous section we showed how to create different asymptotic expansions of a single
function which hold in different regions. Now we check that the two different approximations
are self-consistent, in that they connect smoothly as x increases from O(ε) to O(1). This
method of joining two asymptotic expansions in different regions is called matching. For
simplicity we restrict attention to only the leading-order terms outer and inner expansions
(8.25) and (8.26), namely

y0(x) = e−x, Y0(X) = 1− e−X , (8.27)

with X = x/ε. The two approximations are plotted in Figure 8.1. We see that the outer
and inner solutions do indeed give good approximations to the exact solution (8.24) when
x = O(1) and when x = O(ε) respectively. The underlying principle of asymptotic matching
is that both approximations should be valid in an intermediate overlap region.

To examine such an overlap region, let us rescale x = δξ and X = (δ/ε)ξ, where δ is
chosen to be intermediate between the inner and outer scalings for x, i.e. ε � δ � 1. The
(8.27) becomes

y0(δξ) = e−δξ ∼ 1 +O(δ) as δ → 0, (8.28a)

Y0(δX/ε) = 1− e−δX/ε ∼ 1 + exp small as
ε

δ
→ 0, (8.28b)
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Figure 8.2: The exact expression (8.24) for y(x; ε), the leading-order inner and outer ap-
proximations (8.27), and the composite approximation (8.31), plotted with ε = 0.05. plotted
versus x with three different values of ε. The leading-order outer solution e−x is plotted as a
black dotted curve.

and we see that the two approximations do agree and are both equal to 1 at lowest order in
the overlap region.

A general statement of the leading-order matching principle demonstrated by (8.28) is

lim
x→0

y0(x) = lim
X→∞

Y0(X). (8.29)

Loosely interpreted: the behaviour of the outer solution as we go into the boundary layer
must equal the behavour of the inner solution as we go out of the boundary later. More
complicated versions of the matching principle (8.29) can be formulated to match inner and
outer expansions up to arbitrary orders in ε, but we will only consider leading-order matching
here.

Figure 8.2 demonstrates that the outer approximation works well when x = O(1) but not
when x is close to zero. Similarly, the inner approximation is good when x is small but not
when x = O(1). It is sometimes helpful to create a single function that gives a reasonable
approximation for all values of x. Such a composite expansion can be constructed by forming

composite expansion = inner expansion + outer expansion− common limit, (8.30)

where the common limit refers to components shared by the inner and outer approximations,
which must subtracted to remove double-counting. At leading order, the common limit is
given by limx→0 y0(x) or by limX→∞ Y0(X), and these two expressions are equal by the
matching principle (8.29).

A composite expansion combining the inner and outer approximations (8.27) is given by

ycomp(x) = y0(x)︸ ︷︷ ︸
outer

+Y0(X)︸ ︷︷ ︸
inner

− 1︸︷︷︸
common limit

= e−x − e−x/ε. (8.31)

Figure 8.2 verifies that (8.31) gives a good approximation to the exact solution (8.24) for all
values of x.
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8.2.4 Getting the expansion from the ODE

So far, we have constructed inner and outer approximations to a known solution (8.24).
Now let us see whether we could have obtained the same approximations directly from the
problem (8.22), if we did not have the exact solution to guide us. We have already seen that
substitution of a näıve regular expansion of the form y ∼ y0 + εy1 + · · · into (8.22) produces
the outer approximation (8.25).

We note that (8.25) does not satisfy the boundary condition y(0) = 0, and we infer that
the boundary condition can only be imposed if the solution has a boundary layer at x = 0.
To examine this boundary layer, we have to rescale x: let us set x = δX and y(x) = Y (X)
where δ � 1 is to be determined. Then in terms of these inner variables, the problem (8.22)
becomes

ε

δ
Y ′(X) + Y (X) = e−δX , X > 0, Y (0) = 0. (8.32)

We can balance all three terms in (8.32) by choosing δ = ε. We already know that the
boundary layer thickness is of order ε from the exact solution (8.24), but here we determine
the appropriate choice of δ directly by seeking a dominant balance in the ODE (8.32).

Once we have chosen δ = ε, the governing equation (8.32) in the inner region becomes

Y ′(X) + Y (X) = e−εX ∼ 1− εX + · · · . (8.33)

Now we can seek an inner expansion of the usual form Y ∼ Y0 + εY1 + · · · and solve for each
term successively. At leading order, we get

Y ′0(X) + Y0(X) = 1, Y0(0) = 0, (8.34)

whose solution is easily found to be Y0(X) = 1 − e−X , in agreement with (8.26). Thus we
have successfully found the leading-order inner and outer approximations directly from the
ODE and boundary conditions.

Before proceeding to apply the same ideas to more general BVPs, we note some general
ideas that this simple example has illustrated.

(i) The boundary layer in the solution to (8.22) occurs because the small parameter ε
multiplies the highest derivative in the ODE. When x = O(1), we have

εy′(x)︸ ︷︷ ︸
small

+ y(x)− e−x︸ ︷︷ ︸
balance

= 0 (8.35)

and thus, in the limit as ε→ 0, the order of the ODE is reduced, and we are no longer
able to impose the boundary condition.

(ii) However, when there is a boundary layer, the derivative y′(x) becomes very big (see
e.g. Figure 8.1), such that the first term in (8.35) is no longer negligible at leading order.

(iii) This magnification of the gradient is represented by the change to the local variable
X = x/ε; by the chain rule we get y′(x) = ε−1Y ′(X).

(iv) The correct boundary layer scaling for x is found by seeking a dominant balance in the
ODE; in particular, we want to bring the highest derivative back into the problem so
that we are able to impose the boundary condition.
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(v) The solutions of the inner and outer problems give us two alternative approximations
for y(x; ε) — one that holds when x = O(1) and one that holds when x = O(ε).

(vi) The leading-order inner and outer approximations can be reconciled by using the match-
ing condition (8.29): the limit of the outer solution as we go into the boundary layer
must equal the limit of the inner solution as we go out of the boundary layer.

In general, we can expect boundary layers (or something even worse) to occur whenever
the small parameter ε multiplies the highest derivative in an ODE. The situation is analogous
to Example 7.28, where we had to solve a quadratic equation with ε multiplying x2. In both
cases, if we set ε = 0, the degree of the problem is reduced, and we do not obtain the full
family of solutions. In both cases, the difficulty is resolved by rescaling x to get a dominant
balance in the equation. In general, problems where setting ε to zero reduces the degree of
the problem are called singular perturbation problems.

8.3 Boundary layers in BVPs

8.3.1 A simple example

In Example 8.33, we were unable to impose the boundary condition y(0) = 0 on the outer
solution, and we deduced that there must be a boundary layer at x = 0. Once we found the
inner and outer solutions, the matching condition (8.29) was satisfied identically: we could
use it to verify that the inner and outer solutions are self-consistent, but it did not give us
any further information about the solution. For higher-order BVPs, the situation is less clear.
The location of any boundary layers may not be obvious in advance, and in general we will
need to match the inner and outer approximations to determine the solution uniquely. We
will illustrate the issues involved by solving a simple example.

Example 8.34. Find the leading-order solution of the BVP

εy′′(x) + y′(x) = 1, 0 < x < 1, y(0) = y(1) = 0 (8.36)

in the limit ε→ 0.
It is easy to solve (8.36) exactly, but let us try to proceed using asymptotic expansions without

assuming that we have the exact solution to hand.

Outer solution We try for a regular expansion with y ∼ y0 + εy1 + · · · and obtain at leading order

y′0(x) = 1 ⇒ y0(x) = x+A, (8.37)

where A is an integration constant. Since the limit ε→ 0 has reduced (8.36) from a second-order to a
first-order ODE, we are unable to impose both of the boundary conditions. We deduce that there is a
boundary layer somewhere, but where?

Let us assume for the moment that the boundary layer is at x = 0. This means that we can apply
the boundary condition y(1) = 0 directly to the outer solution (8.37) and thus obtain

y0(x) = x− 1. (8.38)

Then the outer solution does not satisfy the boundary condition y(0) = 0, and we hope to resolve this
by examining a boundary layer at x = 0.
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Boundary layer We find the size of the boundary layer by scaling x = δX and y(x) = Y (X),
where δ � 1 is to be determined. Putting this change of independent variables into the problem (8.36),
we get

ε

δ2
Y ′′(X) +

1

δ
Y ′(X) = 1. (8.39)

Now we choose δ to achieve a dominant balance, in particular one that makes the highest derivative
term no longer negligible. In this case this we achieve this by balancing the first two terms and thus
taking δ = ε, so the ODE (8.39) becomes

Y ′′(X) + Y ′(X) = ε. (8.40)

Now we can assume a simple expansion for the inner solution with Y (X) ∼ Y0(X) + εY1(X) + · · · .
At leading order we get

Y ′′0 (X) + Y ′0(X) = 0, (8.41)

along with the boundary condition Y0(0) = 0 (coming from the boundary condition for y at x = 0).
The leading-order solution of the inner problem is thus given by

Y0(X) = B
(
1− e−X

)
, (8.42)

where B is an integration constant. Here we cannot solve for B, and therefore cannot determine the
inner solution uniquely, using only the information in the boundary layer. To proceed, we must ensure
that the inner and outer solutions match.

Matching Now we impose the matching principle (8.29). In this case, the inner limit of the outer
solution is limx→0 y0(x) = −1, and the outer limit of the inner solution is limX→∞ Y0(X) = B. The
matching principle tells us that these must be equal, and hence B = −1 and the leading-order inner
solution is given by

Y0(X) = −1 + e−X . (8.43)

We can construct a composite expansion by combining (8.38) and (8.43), noting that the common
limit here is equal to −1, to get

ycomp(x) = y0(x) + Y0(X)− (−1) = x− 1 + e−x/ε, (8.44)

which is a very good approximation of the exact solution of (8.36), namely

y(x) = x− 1− e−x/ε

1− e−1/ε
. (8.45)

8.3.2 Locating the boundary layer

In Example 8.34, to get the leading-order solution, we assumed that the boundary layer is at
x = 0, and therefore applied the boundary condition at x = 1 directly to the outer solution.
The resulting leading-order approximation is in good agreement with the exact solution, but
how could we have known in advance where to look for a boundary layer without having the
exact solution to guide us?

Well, suppose that we had instead assumed the boundary layer to be at x = 1. We
could attempt to analyse such a layer by using a local variable ξ such that x = 1 − δξ and
y(x) = η(ξ), with δ � 1 to be determined. (It is not necessary to include the minus sign in
the definition of ξ, but doing so means that we are dealing with ξ > 0 rather than ξ < 0.)
Then equation (8.36) is transformed to

ε

δ2
η′′(ξ)− 1

δ
η′(ξ) = 1, (8.46)
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and a dominant balance between the first two terms is again achieved by choosing δ = ε. The
leading-order problem in the inner region is thus

η′′0(ξ)− η′0(ξ) = 0, ξ > 0, η0(0) = 0, (8.47)

whose general solution is

η0(ξ) = A
(

eξ − 1
)
, (8.48)

where A is an integration constant. The problem is that the proposed inner solution (8.48)
grows exponentially as ξ tends to infinity, and it is therefore impossible to match this solution
to the solution in the outer region.

Note: In the above analysis, we assume that 0 < ε � 1. If ε = −|ε| is negative, then the
boundary layer is at x = 1, and the analysis in §8.3.1 needs to be redone.

There is a general principle for locating the boundary layers in simple two-point boundary-
value problems like (8.36). Consider the general ODE

εy′′(x) + P1(x)y′(x) + P0(x)y(x) = R(x), a < x < b, (8.49)

with boundary conditions given at x = a and x = b. Assume that the coefficients P0, P1

and R are smooth and bounded, and that P1(x) is non-zero for x ∈ [a, b].

The leading-order outer solution is found via a regular asymptotic expansion of the form
y ∼ y0 + εy1 + · · · , which leads to

y′0(x) +
P0(x)

P1(x)
y0(x) =

R(x)

P1(x)
. (8.50)

This can be solved without difficulty on [a, b] because of our assumptions about P0, P1 and R.
However, because (8.50) is just a first-order ODE, we will be unable to impose both boundary
conditions: there must be a boundary layer at one end of the domain, but which end?

Suppose we look for a boundary layer at x = a, via the re-scaling x = a + δX and
y(x) = Y (X). It is clear that a dominant balance between the first two terms in (8.49) is
achieved when δ = ε, and the leading-order inner equation is then

Y ′′0 (X) + P1(a)Y ′0(X) = 0, X > 0. (8.51)

This has solutions of the form Y0(X) = A + Be−P1(a)X , and we can match with the outer
only if the inner solution has a decaying exponential, i.e. if P1(a) > 0.

Similarly, we can look for a boundary layer at x = b with the scaling x = b − εξ and
y(x) = η(ξ), and get to leading order

η′′0(ξ)− P1(b)η
′
0(ξ) = 0, ξ > 0. (8.52)

Now the inner solution η0(ξ) = A + BeP1(b)ξ can match with the outer only if P1(b) < 0.
Given our assumption that P1 does not change sign, we conclude that:

• the boundary layer is at the left-hand boundary (i.e. x = a) if P1(x) > 0, or
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Figure 8.3: Solutions of the ODE (8.53) satisfying each of the boundary conditions (8.54),
computed with ε = 0.01.

• at the right-hand boundary (i.e. x = b) if P1(x) < 0.

One can imagine that more complicated behaviour is possible if P1(x) does change sign.
The solution may have two boundary layers — one at each end of the domain — or an internal
boundary layer somewhere in a < x < b (and even more complicated structures are possible:
see below).

8.4 More general perturbation methods for ODEs

8.4.1 Introduction

We have seen some examples of asymptotic methods applied to simple algebraic equations and
ODE problems. More generally, ODEs containing small parameters can exhibit much more
complicated behaviour than we have seen so far, and a range of asymptotic techniques have
been developed to deal with them, which can be studied in more detail in C5.5 Perturbation
methods. Here we give a brief (non-examinable) survey of some of the possible generalisations
of the theory that has been developed so far.

8.4.2 Multiple or interior boundary layers

We argued in §8.3.2 that, in a second-order singular BVP, the location of the boundary layer
can be predicted from the sign of the coefficient of the first derivative of y. But what happens
if that coefficient changes sign somewhere in the domain? Here is a (relatively) simple example
that illustrates what kind of behaviour can happen.

Example 8.35. Find the leading-order solution to the ODE

εy′′(x) + y(x)y′(x)− y(x) = 0, 0 < x < 1, (8.53)

https://courses.maths.ox.ac.uk/node/36885
https://courses.maths.ox.ac.uk/node/36885
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in the limit ε→ 0, subject to each of the following sets of boundary conditions:

y(0) = 1, y(1) = 3; (8.54a)

y(0) = −3/4, y(1) = 5/4; (8.54b)

y(0) = 5/4, y(1) = −3/4. (8.54c)

In case (8.54a), the coefficient of y′ in (8.53) is y, which is positive at both ends of the domain.
The argument used in §8.3.2 works: there is a boundary layer only at x = 0. The leading-order inner
and outer solutions may be found and matched in the usual way (with boundary layer thickness ε).

In case (8.54b), the coefficient of y′ in (8.53) changes sign, and it appears that a boundary layer
is not allowed at either end of the domain. In this case, there is an internal boundary layer, at x = x∗
say, somewhere between x = 0 and x = 1. To solve the problem, we have to solve two outer problems:
one in 0 < x < x∗ and one in x∗ < x < 1, and also solve for the boundary layer at x = x∗. By
matching all three regions together, one can determine the location of the interior boundary layer
(namely x∗ = 1/4).

Case (8.54c) is even worse. In this case the signs of the coefficient of y′ in (8.53) suggest that
there might be a boundary layer at both ends of the domain. Indeed this turns out to be true, but the
structure in this case is more complicated. The leading-order outer solution is given by y0(x) = 0 (i.e.
the other root of the leading-order outer equation y0 (y′0 − 1) = 0). The boundary layer at x = 0 has
thickness ε again, but the inner solution in the boundary layer does not match directly with the outer
solution. Instead, there is a further intermediate region in which x = O

(
ε1/2

)
and y = O

(
ε1/2

)
. This

is a so-called “triple deck” structure with one boundary layer nested inside another one. The boundary
layer at x = 1 has an analogous structure.

Numerically computed solutions to (8.53) with ε = 0.01 satisfying each of the boundary conditions
in (8.54) are plotted in Figure 8.3. The structure of each solution is exactly as predicted: in case (a)
there is just a boundary layer at x = 0; in case (b) there is an internal boundary layer close to x = 1/4;
and in case (c) there is a boundary layer at both ends of the domain.

Example 8.35 illustrates several issues that can arise in more complicated boundary layer
problems. First: it may not be clear in advance where to look for boundary layers. Second:
in general, the boundary layer analysis may require us to rescale the dependent variable y
as well as the independent variable x. Finally: in the intermediate region encountered in
Case (8.54c), we end up having to solve the full ODE, with no simplification (Try rescaling
the ODE (8.53) with x = ε1/2ξ and y(x) = ε1/2η(ξ)).

8.4.3 Slowly varying oscillations

In Example 8.31, we analysed small oscillations of a pendulum and found that we get spurious
“secular” terms in the solution if we try a näıve regular asymptotic expansion. The origin of
these terms can be understood by considering a very simple example.

Example 8.36. Solve the IVP

y′′(x) + (1 + ε)y(x) = 0, x > 0, y(0) = 1, y′(0) = 0. (8.55)

The exact solution is
y(x) = cos

(
x
√

1 + ε
)
, (8.56)

but if we try to expand this solution for small ε, we get

y(x) ∼ cosx− ε

2
x sinx+ · · · . (8.57)

Thus a secular term has appeared in the expansion, meaning that the expansion stops being valid when
x = O (1/ε). The fact that the exact solution (8.56) is a periodic function of x has become lost in our
particular choice of asymptotic expansion.
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The difficulty encountered in Example 8.36 can be fixed relatively easily using the Poincaré–
Lindstedt method. Here we know that we are seeking periodic solutions, but with a period
that is a function of ε. The trick is to make the substitution

X = ωx, (8.58)

where the frequency ω is not known in advance, but is chosen to make the solution 2π-periodic
as a function of X.

With y(x) = Y (X), the problem (8.55) is transformed to

ω2Y ′′(X) + (1 + ε)Y (X) = 0, X > 0, Y (0) = 1, Y ′(0) = 0. (8.59)

Now we expand both Y and ω in powers of ε:

Y (X) ∼ Y0(X) + εY1(X) + · · · , ω ∼ 1 + εω1 + · · · , (8.60)

where we have anticipated that the leading-order frequency of oscillations is equal to 1.

At O(1), we get

Y ′′0 (X) + Y0(X) = 0, X > 0, Y0(0) = 1, Y ′0(0) = 0, (8.61)

whose solution is

Y0(X) = cosX. (8.62)

At O(ε), we find that Y1(X) satisfies the ODE

Y ′′1 (X) + Y1(X) = −2ω1Y
′′
0 (X)− Y0(X) = (2ω1 − 1) cosX, (8.63)

along with the initial conditions Y1(0) = Y ′1(0) = 0, Now we insist that Y1(X) should be a
2π-periodic function of X, which means that it cannot contain any secular terms like X sinX.
We must therefore eliminate the “resonant” term proportional to cosX from the right-hand
side of (8.63) by choosing ω1 = 1/2. Thus the oscillation frequency is given by an asymptotic
expansion of the form

ω ∼ 1 +
ε

2
+ · · · as ε→ 0, (8.64)

which indeed agrees with the exact frequency ω =
√

1 + ε from equation (8.56).

The same method works for the problem of small oscillations of a pendulum from Exam-
ple 8.31. Again the secular terms in the expansion can be suppressed and one can determine
an asymptotic expansion for the frequency of the form ω ∼ 1− ε2/16+O

(
ε4
)
. The Poincaré–

Lindstedt method is a simplified version of the more general method of multiple scales, which
can describe oscillations that are not precisely periodic but instead vary slowly with x.

8.4.4 Fast oscillations

When our small parameter ε multiplies the highest derivative in an ODE, it does not always
lead to the formation of boundary layers: it is also possible for the solution to exhibit rapid
oscillations instead, as the following simple example shows
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Example 8.37. Solve the BVP

ε2y′′(x) + y(x) = 0, y(0) = 1, y(1) = 0. (8.65)

Note that, from the Fredholm Alternative, we expect there to be problems whenever ε = 1/
(
n2π2

)
where n is an integer, but let’s ignore that for the moment.

If we try to proceed in the usual way by seeking the solution of (8.65) as an asymptotic expansion
in powers of ε, we just get y(x) ∼ 0, to all algebraic orders in ε. Thus it appears to be impossible to
impose the boundary conditions, and we might guess that there is a boundary layer at x = 0. But the
inner rescaling x = εX doesn’t help, because the inner equation just gives oscillatory solutions which
cannot match with the outer.

One way to tackle problems like (8.65) is to use the WKBJ method. We seek the solution
in the form

y(x) = A(x)eiu(x)/ε, (8.66)

where both the phase u(x) and the amplitude A(x) are to be determined. By plugging the
ansatz (8.66) into the ODE (8.65), we obtain

A(x)
[
1− u′(x)2

]
+ iε

[
2A′(x)u′(x) +A(x)u′′(x)

]
+ ε2A′′(x) = 0. (8.67)

At leading order we get the eikonal equation u′(x)2 = 1, and we deduce that the phase is
simply given by u(x) = ±x (plus an irrelevant constant). We can then write the amplitude
as a regular asymptotic expansion A(x) ∼ A0(x) + εA1(x) + · · · . In this simple problem, we
just get A′(x) = 0, at all orders in ε, and indeed the ODE is solved exactly by y(x) = Ae±ix/ε,
with A = constant. The general solution is then a linear combination of the form

y(x) = C1e
ix/ε + C2e

−ix/ε, (8.68)

and the arbitrary constants can be determined from the boundary conditions.
Here is a slightly less trivial example, where we determine the asymptotic behavour of the

zeroth order Bessel functions as the argument tends to infinity.

Example 8.38. Find the asymptotic behaviour of solutions to Bessel’s equation of order zero:

y′′(x) +
1

x
y′(x) + y(x) = 0, (8.69)

in the limit as x→∞.
We can consider the behaviour for large x by making the rescaling x = X/ε and y(x) = Y (X),

where ε� 1 and X = O(1). Then (8.69) is transformed to

ε2Y ′′(X) +
ε2

X
Y ′(X) + Y (X) = 0. (8.70)

Now we apply the WKBJ ansatz by writing Y (X) = A(X)eiu(X)/ε, and (8.70) is transformed to

[
1− u′(X)2

]
+ iε

[(
2A′(X)

A(X)
+

1

X

)
u′(X) + u′′(X)

]
+ ε2

[
A′′(X)

A(X)
+

A′(X)

XA(X)

]
= 0. (8.71)

In this example, we get the same eikonal equation for u(X) as above, with solution u(x) = ±X, and
we are then left to solve

±
[

2A′(X)

A(X)
+

1

X

]
− iε

[
A′′(X)

A(X)
+

A′(X)

XA(X)

]
= 0. (8.72)
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The leading-order amplitude therefore satisfies

A′0(X)

A0(X)
= − 1

2X
, (8.73)

whose solution is A0(X) = const/X1/2. Thus solutions to (8.70) take the form

Y (X) ∼ C1eiX/ε + C2e−iX/ε√
X

as ε→ 0. (8.74)

In terms of the unscaled variable x, we can write

y(x) ∼ c1√
x

sin(x) +
c2√
x

cos(x) as x→∞, (8.75)

for some constants c1 and c2.
(The standard Bessel functions of the first and second kind are normalised such that

J0(x) ∼
√

2

πx
cos
(
x− π

4

)
, Y0(x) ∼

√
2

πx
sin
(
x− π

4

)
(8.76)

as x→∞.)
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