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Z. Qian, Part A: Integration, Maths Institute Website
M. Capinski and E. Kopp, Measure, Integration and Probability, Springer SUMS
(2nd edition, 2004)
H.A. Priestley, Introduction to Integration, OUP, 1997
E. M. Stein & R. Shakarchi, Real Analysis: Measure Theory, Integration and
Hilbert Spaces, Princeton Lectures in Analysis III, Princeton University Press,
2005
D.J.H. Garling, A Course in Mathematical Analysis, III (Part 6), CUP, 2014.

Qian’s notes were written for the course as he gave it in 2014-17, based on previous
versions of the course given by Alison Etheridge and myself. I will cover more or less
the same material, but I will not follow his notes exactly.

Capinski and Kopp is the most basic of the books, giving the theory in a basic
style, but with not many worked examples; I shall follow rather closely their approach
to the theory. Priestley adopts a very different approach to the construction of the
integral, so early parts of her book look quite different from what I shall do, but about
the 8th lecture onward everything comes together; she has lots of worked examples.

Stein and Shakarchi, and Garling, are a little more sophisticated in the theory.
Garling’s book is based on lectures given in Cambridge, and it has a good number of
worked examples.

Numerous other useful books may be found in libraries. Some may adopt different
approaches to the construction of the integral, but when they talk about Lebesgue
integration they all mean the same class of integrable functions and the same theorems.

Introduction

In Prelims, you saw how to define
∫ b
a f(x) dx for a continuous function f : [a, b]→ R

or more generally for Riemann integrable f . It had some good properties: the Funda-
mental Theorem of Calculus shows that it is more or less an inverse of differentiation,
leading to rigorous statements concerning A level calculus. Moreover you saw that

(*) lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
f(x) dx

if (fn) converges to f uniformly on [a, b]. This was useful (a) for integrating power series
term-by-term, (b) for finding limn→∞

∫
γ fn(z) dz, where γ is a contour of finite length,

in complex analysis last term. However, the Riemann integral has various deficiencies:
1
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(a) There are still functions which one feels one should be able to integrate, for which
the Prelims definition fails to work. For example, let f = χQ∩[0,1] be the character-
istic function of Q ∩ [0, 1]. Then∫ 1

0
f(x) dx = 0,

∫ 1

0
f(x) dx = 1

so the definition of the integral fails.
In particular, if we want to define the length of a subset E of R by

m(E) =

∫
χE(x) dx,

we need to extend the definition of integrals in some way beyond Riemann integra-
tion.

(b) There is a lack of theorems saying that

fn → f =⇒
∫
fn(x) dx→

∫
f(x) dx

particularly for integrals over R or unbounded subsets of R. To some extent, this
is unavoidable because of the following example:

Example 0.1. Let fn(x) = n2xn(1− x) (0 ≤ x ≤ 1). Then limn→∞ fn(x) = 0 for

all x ∈ [0, 1], but limn→∞
∫ 1

0 fn(x) dx = 1.

This example is going to arise in any reasonable theory. But we would like some
more theorems of the form

Suppose (fn) is a sequence of integrable functions, fn(x)→ f(x) for each x, and
[supplementary assumptions to be inserted]. Then f is integrable and

∫
f(x) dx =

limn→∞
∫
fn(x) dx.

Lebesgue’s integration theory provides two very powerful theorems of this form
(Monotone Convergence Theorem, Dominated Convergence Theorem). The the-
orems are less good in Riemann integration, because one has to assume that the
limiting function is integrable.

(c) Riemann’s integration theory does not generalise to include various other contexts
such as:
• probability theory, taking expectations of arbitrary random variables (contin-

uous, discrete, hybrid, singular);
• summing infinite series.

Lebesgue’s theory resolves these difficulties, except where there is an unavoidable
obstruction. In a sense the passage from Riemann integration to Lebesgue integration
resembles the passage from rational numbers to real numbers—it completes the space
of integrable functions, or it fills in the gaps.

The crucial ideas of the Lebesgue’s construction are:

(i) Instead of using integrals to define lengths of sets, define the length of a set
directly; then define integrals.

(ii) Instead of partitioning the x-axis into intervals and using step functions, partition
the y-axis into intervals and considering corresponding “simple” functions.
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As I said, there are other ways of constructing Lebesgue’s integral on R, including
ways which use step functions (see Priestley), but they don’t generalise so easily to
probability (for example). Once one gets the Monotone Convergence Theorem, then
everything is the same, however you got there. We then get a whole host of theorems
about:

• passing limits through integrals,
• passing infinite sums through integrals,
• differentiating through integrals,
• interchanging two integrals (Fubini’s Theorem)
• changing variables.

Note that these processes do not always work—there are simple counterexamples
for the first 4! So all these theorems have conditions which must be checked before using
in applications. In this course, we do not take the position that you can just assume
all these processes work. On the other hand, we shall not go pedantically through
all details of the construction of the integral and the proofs of the theorems. I shall
present the construction in a way which generalises easily, but the proofs are often not
interesting. The construction up to the MCT will take some time - around 8 lectures -
and then useful theorems and applications will come thick and fast.

Please be aware that all the Prelims theory remains valid in this context. Lebesgue
integration theory extends Riemann’s theory by enabling you to integrate more func-
tions. In particular, the Fundamental Theorem of Calculus (both versions), Integration
by Parts and Substitution remain valid under the assumptions given in Prelims.

1. Extended real number system

In this course, we shall often take infinite series of non-negative terms and limits of
(monotone) sequences. In order to avoid complications concerning divergence, it will
be convenient to work in the extended real numbers including −∞ and ∞, and to use
the notions of lim sup and lim inf.

Thus we consider the set [−∞,∞] = R ∪ {−∞,∞}. Addition and multiplication
by ∞ are defined as follows (for x ∈ R):

x+∞ = ∞+ x =∞,
x−∞ = −∞+ x = −∞,

x.∞ = ∞.x = (−x).(−∞) =


∞ (x > 0),

−∞ (x < 0),

0 (x = 0).

Note that

• ∞−∞ is undefined;
• the usual laws (commutativity, associativity and distributivity) apply, provided

that the relevant expressions are defined;
• the above are uncontroversial, except for 0.∞ = 0 which is convenient for our

particular context but might be inappropriate in other mathematical contexts.
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The ordering on [−∞,∞] is the obvious one, and limn→∞ an =∞ has the same meaning
as in Prelims Analysis.

In this system, any subset E has a supremum and an infimum in [−∞,∞]. Note
that sup ∅ = −∞. If E ⊆ R, supE =∞ if and only if E is not bounded above. For an
increasing sequence (an), limn→∞ an = sup{an}. If an ≥ 0 for all n, then

∑
an =∞ if

and only if the series diverges.

Proposition 1.1. 1. Let (an) be a sequence of non-negative terms. Then

∞∑
n=1

an = sup

{∑
n∈J

an : J finite subset of N

}
.

2. Let (bmn)m,n≥1 be a double sequence of non-negative terms, and {(mk, nk) : k ≥ 1}
be any enumeration of N× N. Then

∞∑
m=1

∞∑
n=1

bmn =

∞∑
n=1

∞∑
m=1

bmn =

∞∑
k=1

bmk,nk = sup

 ∑
(m,n)∈J

bmn : J finite subset of N× N

 .

In particular, Proposition 1.1 implies that
∑
an is independent of the order of the

terms, and similarly
∑∑

bmn can be arbitrarily rearranged.

A bounded sequence (an) in R may not have a limit. It has a supremum and
infimum, but for some large values of n, an may not be close to them. Think for
example about an = (1 + 1/n) sinn. Asymptotically the values oscillate between −1
and 1, but there are infinitely many values bigger than 1 and infinitely many smaller
than −1.

For a sequence (an) in [−∞,∞], define

lim sup
n→∞

an = lim
m→∞

(
sup
n≥m

an

)
,

lim inf
n→∞

an = lim
m→∞

(
inf
n≥m

an

)
.

The limits exist, because
(
supn≥m an

)
m≥1

is a decreasing sequence

So, lim supn→∞ an is the largest number ` such that there is a subsequence of (an)
converging to `.

Examples 1.2. 1. Let an = (1 + 1/n) sinn. Then

lim sup
n→∞

an = 1, lim inf
n→∞

an = −1.

2. Let an = (−1)n. Then

lim sup
n→∞

an = 1, lim inf
n→∞

an = −1.

3. Let an = n(−1)n. Then

lim sup
n→∞

an =∞, lim inf
n→∞

an = −∞.
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4. Let an =

{
1 + 2−n (n prime),

0 otherwise.
Then

lim sup
n→∞

an = 1, lim inf
n→∞

an = 0.

Proposition 1.3. 1. lim infn→∞ an = − lim supn→∞(−an);
2. lim infn→∞ an ≤ lim supn→∞ an;
3. limn→∞ an exists if and only if lim infn→∞ an = lim supn→∞ an; then all are equal;
4. If an ≤ bn for all n, then lim supn→∞ an ≤ lim supn→∞ bn;
5. lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn (if all sums exist).

lim sup and lim inf are useful for avoiding epsilontics. For example, consider the
Sandwich Rule, i.e., suppose that an ≤ bn ≤ cn for all n and lim an = lim cn. Then

lim sup bn ≤ lim sup cn (Proposition 1.3(4))

= lim cn (Proposition 1.3(3))

= lim an (assumption)

= lim inf an (Proposition 1.3(3))

≤ lim inf bn (Proposition 1.3(4))

≤ lim sup bn (Proposition 1.3(2)).

Hence equality holds throughout, so lim bn = lim an, by Proposition 1.3(3).

2. Lebesgue measure

A measure of length for (all) subsets of R should be a function m : P(R)→ [0,∞]
satisfying:

(i) m(∅) = 0, m({x}) = 0;
(ii) m(I) = b− a if I is an interval with endpoints a, b, where a < b;

(iii) m(A+ x) = m(A);
(iv) m(αA) = |α|m(A);
(v) m(A) ≤ m(B) if A ⊆ B; (m is monotone);
(vi) m(A ∪B) = m(A) +m(B) if A ∩B = ∅ (m is finitely additive);
(vi)′ m (

⋃∞
n=1An) =

∑∞
n=1m(An) if An ∩Ak = ∅ for k 6= n (m is countably additive);

(vii) m (
⋃∞
n=1An) = limn→∞m(An) if (An) is an increasing sequence of sets.

In fact, there is very considerable redundancy here. For example, (v), (vi) and (vii)
follow from (i) and (vi)′.

The status of (vi)′ is perhaps debatable, but it is usually assumed. It is equivalent to
(vi) and (vii) together, and (vii) is essential to have a Monotone Convergence Theorem.

Let us attempt to construct such an m. For A ⊆ R, suppose that A ⊆
⋃∞
n=1 In for

intervals In. Letting I ′n = In \ (I1 ∪ · · · ∪ In−1), we have

m(A) ≤ m(
⋃
I ′n) =

∑
m(I ′n) ≤

∑
m(In).
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So we attempt to define m as follows. First, for any interval I with endpoints a and b,
define

m(I) = b− a.
For A ⊆ R, we define the outer measure of A to be

m∗(A) = inf

{ ∞∑
n=1

m(In) : In intervals, A ⊆
∞⋃
n=1

In

}
.

We can always take In = [−n, n], so the infimum is not over the empty set (but m∗(A)
may be infinite). It makes no difference if we restrict In to being closed intervals, or
open intervals.

Proposition 2.1. 1. m∗(∅) = 0, m∗({x}) = 0;
2. m∗(I) = b− a if I is any interval with endpoints a, b;
3. m∗(A+ x) = m∗(x);
4. m∗(αA) = |α|m∗(A);
5. m∗(A) ≤ m∗(B) if A ⊆ B;
6. m∗(A ∪B) ≤ m∗(A) +m∗(B);
6′. m∗ (

⋃∞
n=1An) ≤

∑∞
n=1m

∗(An).

Proof. (1), (3), (4), (5) are easy; (6) and (6)’ are moderately tricky exercises. Let us
prove (2); we will do it for I = [a, b]; then the other cases follow using (1), (5) and (6).

Firstly, m∗[a, b] ≤ b− a, because we may take I1 = [a, b] and In = {0} for n ≥ 2.

Now suppose that [a, b] ⊆
⋃∞
n=1 In where In is an interval with endpoints an, bn.

We can assume that each In intersects [a, b]. Take ε > 0. Let

Jn =
(
an − ε2−n, bn + ε2−n

)
=: (cn, dn).

Then Jn is open and [a, b] ⊆
⋃∞
n=1 Jn. By the Heine-Borel Theorem, [a, b] is compact,

so [a, b] ⊆
⋃N
n=1 Jn for some N .

Now it is almost obvious that b − a ≤
∑N

n=1m(Jn). Enumerate {cn, dn : n =
1, . . . , N} in increasing order:

x1 < x2 < · · · < xk.

Then x1 < a < b < xk, each interval (xi, xi+1) is contained in some Jn, and Jn has
endpoints cn = xkn , dn = x`n , say. Hence

b− a < xk − x1 =

k−1∑
i=1

(xi+1 − xi) ≤
N∑
n=1

`n−1∑
i=kn

(xi+1 − xi) =

N∑
n=1

m(Jn).

Now
∑∞

n=1m(In) ≥
∑N

n=1m(In) =
∑∞

n=1

(
m(Jn)− 2−(n−1)ε

)
> b− a− 2ε. This holds

for every ε > 0, so
∑∞

n=1m(In) ≥ b− a. Hence m∗[a, b] ≥ b− a. �

A subset E of R is said to be null if m∗(E) = 0.

Corollary 2.2. 1. Any subset of a null set is null.
2. If En is a null set for n = 1, 2, . . . , then

⋃∞
n=1En is null.

3. Any countable subset of R is null.
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Proof. [Direct proof of (2)] Let ε > 0. There exist intervals Irn such that En ⊆⋃∞
r=1 Irn and

∑
rm(Irn) < ε2−n. Now {Irn : r, n = 1, 2, . . . } is a countable family

of intervals covering
⋃
En, and

∑
n

∑
rm(Irn) <

∑
n ε2

−n = ε. Hence m∗(
⋃
nEn) =

0. �

Example 2.3. Let C0 = [0, 1], C1 = [0, 1
3 ] ∪ [2

3 , 1], C2 = [0, 1
9 ] ∪ [2

9 ,
1
3 ] ∪ [2

3 ,
7
9 ] ∪ [8

9 , 1],
etc. In general, Cn is the union of 2n disjoint closed intervals, each of length 3−n, and
Cn+1 is obtained from Cn by deleting the open middle third of each of those intervals.

Let C =
⋂∞
n=1Cn. Then C is a closed subset of R, known as the Cantor set.

Clearly, m∗(C) ≤ 2n3−n for each n. Letting n→∞ shows that C is null.

Let x ∈ [0, 1]. Then x ∈ C if and only if x has a ternary expansion x =
∑∞

n=1 an3−n,
where each an = 0 or 2. Then a variation of Cantor’s proof shows that C is uncountable.

A property Q of real numbers is said to hold almost everywhere (a.e.) if the set of
real numbers for which Q does not hold is a null set. For example, χC = 0 a.e., i.e.,
χC(x) = 0 for almost all x, because C is null.

Now let us consider the question whether m∗ is countably additive.

Example 2.4. Let A be a subset of [0, 1] with the following properties;

(i) x, y ∈ A, x 6= y =⇒ x− y /∈ Q;
(ii) For any x ∈ [0, 1], there exists q ∈ Q such that x+ q ∈ A.

Then
[0, 1] ⊆

⋃
q∈Q∩[−1,1]

(A− q) ⊆ [−1, 2].

Moreover, the sets A − q are disjoint (as q varies), and there are countably many of
them. If m∗ is countably additive, then

1 = m∗[0, 1] ≤
∑

q∈Q∩[−1,1]

m∗(A− q) =
∑

q∈Q∩[−1,1]

m∗(A) ≤ 3.

This is impossible.

Thus m∗ is not countably additive, provided that such a set A exists. The additive
group R is partitioned into the cosets of its additive subgroup Q, and (i) and (ii) say
that A contains exactly one member of each coset of Q. The existence of such a set
follows from the Axiom of Choice, an axiom of set theory beyond the basic axioms.
This shows that it is impossible to prove that m∗ is countably additive without using
some weird axiom which contradicts the Axiom of Choice. On the other hand, it can
be proved that it is impossible to show that m∗ is not countably additive, using only
the basic axioms of set theory.

This is bad news, but it is not so very bad because the badness occurs only with sets
which cannot be explicitly described. So we can rescue things by restricting attention
to a class of sets with good behaviour.

A subset E of R is said to be (Lebesgue) measurable if

m∗(A) = m∗(A ∩ E) +m∗(A \ E)
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for all subsets A of R. Here, A\E = A∩ (R\E)—it is not assumed that E ⊆ A. [NB: I
am using the same definition as Capinski & Kopp and Zhongminh Qian’s lecture notes
(2017). Etheridge had a different definition, Stein & Shakarchi have another, Garling
has another; and Priestley has yet another. All these definitions are equivalent, but
this is not obvious.]

Let MLeb be the set of all Lebesgue measurable subsets of R.

Proposition 2.5. 1. If E is null then E ∈MLeb.
2. If I is any interval, then I ∈MLeb.
3. If E ∈MLeb, then R \ E ∈MLeb.
4. If En ∈MLeb for n = 1, 2, . . . , then

⋃∞
n=1En ∈MLeb.

5. If En ∈MLeb for n = 1, 2, . . . and En∩Ek = ∅ whenever n 6= k, then m∗ (
⋃∞
n=1En) =∑∞

n=1m
∗(En).

The proofs are exercises, or can be found in books such as Capinski & Kopp. (3)
is almost trivial.

Note
⋂∞
n=1En = R\ (

⋃∞
n=1 R \ En),MLeb is also closed under (finite or countable)

intersections. The set A of Example 2.4 is not Lebesgue measurable.

Corollary 2.6. All open subsets, and all closed subsets of R, are Lebesgue measurable.

Proof. Any open subset of R is a countable union of intervals (Exercise). �

For E ∈ MLeb, we shall write m(E) for m∗(E). Then m : MLeb → [0,∞] is
countably additive.

3. Measure spaces and measurable functions

Let Ω be any set, and F ⊆ P(Ω). We say that F is a σ-algebra (or σ-field) on Ω if:

(i) ∅ ∈ F ,
(ii) If E ∈ F , then Ω \ E ∈ F ,

(iii) If En ∈ F for n = 1, 2, . . . , then
⋃∞
n=1En ∈ F .

Then (Ω,F) is a measurable space, and sets in F are F-measurable. As before,
⋂
En ∈ F

if En ∈ F for n = 1, 2, . . . .

A measure on (Ω,F) is a function µ : F → [0,∞] such that

(i) µ(∅) = 0,
(ii) µ(

⋃∞
n=1En) =

∑∞
n=1 µ(En) whenever En are disjoint sets in F .

Then (Ω,F , µ) is a measure space.

A measure µ is finite if µ(Ω) <∞; µ is a probability measure if µ(Ω) = 1.

Examples 3.1. 1. (R,MLeb,m) is a measure space. Also, ([0, 1],MLeb|[0,1],m) is a
probability space, where MLeb|[0,1] is the set of all Lebesgue measurable subsets of
[0, 1].
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2. Let Ω be any set, F = P(Ω) and µ(E) = |E| (the number of elements of E). This
is a measure space; µ is counting measure on Ω.

3. In probability theory, let Ω be a sample space of all possible outcomes, F be the
collection of all events E, and P(E) be the probability that event E occurs. Then P
is a probability measure on (Ω,F), and (Ω,F ,P) is a probability space.

4. Let F : R → R be an increasing function. Note that F may be discontinuous, but
its left and right limits exist at each point. We assume that F (x) = limy→x+ F (y)
for all x (without essential loss). Define

mF (a, b] = F (b)− F (a),

m∗F (E) = inf

{ ∞∑
n=1

mF (Jn) : Jn = (an, bn], E ⊆
∞⋃
n=1

Jn

}
.

Then m∗F has similar properties to m∗, but one has to be aware that m∗F (a, b) =
F (b−) − F (a), m∗F ([a, b]) = F (b) − F (a−); and m∗F ({x}) = 0 if and only if F is
continuous at x. One can then define a σ-algebra MF , containing all intervals, in
the same way as MLeb, and m∗F is a measure, written mF on MF . This is the
Lebesgue-Stieltjes measure associated with F .

Proposition 3.2. Let (Ω,F , µ) be a measure space.

1. If A,B ∈ F and A ⊆ B, then µ(A) ≤ µ(B).
2. If An ∈ F and An ⊆ An+1 for all n, then µ(

⋃
nAn) = limn→∞ µ(An).

3. If An ∈ F and An ⊇ An+1 for all n and µ(A1) <∞, then µ(
⋂
nAn) = limn→∞ µ(An).

Proof. (1) Since B = A ∪ (B \A) (disjoint union), µ(B) = µ(A) + µ(B \A) ≥ µ(A).

(2) Let A′1 = A1 and A′r = Ar \ Ar−1 for r ≥ 2. Then An =
⋃n
r=1A

′
r,
⋃∞
n=1An =⋃∞

r=1A
′
r (disjoint unions), so

µ(
⋃
An) =

∞∑
r=1

µ(A′r) = lim
n→∞

n∑
r=1

µ(A′r) = lim
n→∞

µ(An).

(3) is an exercise. �

Let B ⊆ P(Ω). There is a (unique) σ-algebra FB on Ω which is generated by B in
the following sense:

(i) FB is a σ-algebra and B ⊆ FB,
(ii) If F is σ-algebra on Ω and B ⊆ F then FB ⊆ F .

The σ-algebra MBor generated by the intervals is the Borel σ-algebra on R. It can
be described as the class of all subsets of R which can be obtained from intervals in
a countable number of steps, each of which is one of taking the complement of a set,
taking a countable union of sets, or a countable intersection of sets. However this has
to be treated with caution, because it is not necessarily possible to obtain a given Borel
set by performing the countable number of steps in a single sequence.

Proposition 3.3. 1. Let B be any one of the following classes of subsets of R.
(i) All intervals

(ii) All intervals of the form (a,∞)
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(iii) All intervals of the form [a, b]
(iv) All open sets.

Then MBor is the smallest σ-algebra on R containing B.
2. MBor 6=MLeb.
3. If E ∈ MLeb there exist A,B ∈ MBor such that A ⊆ E ⊆ B and B \ A is null (so
E \A and B \ E are null).

Proof. (1) is an exercise involving showing each interval can be obtained from members
of B, and each member of B can be obtained from intervals. (2) and (3) are quite deep
results; (2) is discussed in a document on the course Webpage; (3) is Theorem 2.28 in
Capinski & Kopp. �

Let (Ω,F) be a measurable space. A function f : Ω → R is F-measurable if
f−1(I) ∈ F for each interval I.

Proposition 3.4. Let B be any one of the classes of subsets of R listed in Proposition
3.3. Let f : Ω → R. Then f is F-measurable if and only if f−1(G) ∈ F for all
G ∈MBor or for all G ∈ B.

Proof. It is easily verified that f∗(F) := {G ⊆ R : f−1(G) ∈ F} is a σ-algebra on R.
Hence if B generates the σ-algebra MBor, then the result holds. �

In this course, we shall usually take (Ω,F) to be (R,MLeb) or minor variants, but
much of this section will apply to the general case as well. We may refer to MLeb-
measurable functions simply as measurable functions, for simplicity; or as Lebesgue
measurable functions. We shall also be interested in cases where Ω is an interval (or
a Lebesgue measurable subset) and F = MLeb|Ω = {E ∈ MLeb : E ⊆ Ω}. However,

f : Ω → R is MLeb|Ω-measurable if and only if f̃ : R → R is measurable, where

f̃(x) = f(x) for x ∈ Ω, and f(x) = 0 otherwise. So we may state results just for
functions defined on R.

Recall from the Analysis courses that f : R→ R is continuous if and only if f−1(G)
is open for every open set (or open interval) G. By Proposition 3.4, we have that f is
(Lebesgue) measurable if and only if f−1(G) is (Lebesgue) measurable for every open
set (or open interval) G.

Examples 3.5. 1. Constant functions are measurable.
2. The characteristic function χA of a subset A of R is measurable if and only if A is a

measurable set. In particular, if A is as in Example 2.4, then χA is not (Lebesgue)
measurable.

3. Continuous functions f : R→ R are measurable.
4. Monotone functions f : R→ R are measurable.
5. If f is continuous a.e., then f is measurable.
6. If f : R→ R is (Lebesgue) measurable and g = f a.e., then g is (Lebesgue) measur-

able.
7. In probability theory, measurable functions are called random variables.
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It follows from the definition of measurable functions and Example 3.5(2) that
the existence of a non-measurable function is equivalent to the existence of a non-
measurable set. So their existence depends on the Axiom of Choice. Thus, we have the
following:

Fact of Life. ALL FUNCTIONS f : R→ R THAT CAN BE EXPLICITLY DEFINED
ARE LEBESGUE MEASURABLE.

This is not exactly a mathematical theorem—it becomes one if one interprets “ex-
plicitly defined” in the right technical way. It is a true statement about the real world: a
non-measurable function involves some non-explicit choice process. Priestley compares
the existence of non-measurable functions to the existence of yetis.

Nevertheless, measurability is a real issue in some more advanced mathematics,
because:

(a) One may be interested not in Lebesgue measurability of functions f on R, but in
measurability on some other measurable space (Ω,F). This occurs frequently in
time-dependent probability theory, where Ft is the class of all events depending only
on past history up to time t, not on the future (cf. Part B courses on martingales
and stochastic calculus).

(b) One may be interested in functions f which are not real-valued, but take values in
an infinite-dimensional space. Then measurability is a real issue in many areas of
analysis, although you probably won’t see this in your undergraduate course.

So it is useful to accumulate general results about measurable functions, even if we only
state them for functions f : (R,MLeb)→ R.

Proposition 3.6. Let f and g be measurable functions from R to R. The following
functions are measurable:

f + g, fg,max(f, g), h ◦ f for any continuous function h.

For example, αf is measurable, where α ∈ R.

Proof. For example,

(f + g)−1(a,∞) =
⋃
q∈Q

f−1(q,∞) ∩ g−1(a− q,∞).

If G is open in R, then h−1(G) is open. Since f is measurable, f−1(h−1(G)) is measur-
able, i.e., (h ◦ f)−1(G) is measurable. �

In fact, it suffices in Proposition 3.6 that h should be Borel measurable.

Now we want to consider limits and suprema of sequences of functions (fn). Even
if each fn is real-valued, the resulting functions may take the values ∞ and −∞.

A function f : R → [−∞,∞] is measurable if f−1(a,∞] ∈ MLeb for all a ∈ R;
equivalently f−1(B) ∈ MLeb for all B ∈ MBor and f−1({∞}) ∈ MLeb; equivalently,
arctan ◦f is measurable, where arctan : [−∞,∞] → [−π/2, π/2] is the inverse tan
function.
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Proposition 3.7. Let (fn) be a sequence of measurable functions from R→ [−∞,∞].
Then the following functions are measurable:

sup
n
fn, inf

n
fn, lim sup

n→∞
fn, lim inf

n→∞
fn.

Hence, if f(x) = limn→∞ fn(x) a.e., then f is measurable.

Proof. First,

(sup fn)−1(a,∞] =
⋃
n

f−1
n (a,∞] ∈MLeb.

Then

inf fn = − sup(−fn),

lim sup fn = inf gm, where gm = sup
n≥m

fn.

�

A function φ : R → R is simple if it is measurable and it takes only finitely many
real values. So χE is simple if E ∈ MLeb. If φ, ψ are simple, then so are φ + ψ, φ.ψ,
αφ, max(φ, ψ), h ◦ φ for any function h.

Any function of the form
∑n

j=1 βjχEj , where βj ∈ R and Ej ∈MLeb is simple. On

the other hand, if φ is simple with non-zero values α1, . . . , αk, and Bi = φ−1({αi}),
then Bi is measurable, and

(*) φ =

k∑
i=1

αiχBi .

In this form, we have

(i) αi are distinct and non-zero,
(ii) Bi are disjoint.

If these additional properties hold, then (*) is unique (up to reordering of the terms).
We shall then say that φ is in standard, or canonical, form. For example, the standard
form of χ(0,2) + χ[1,3] is 1χ(0,1)∪[2,3] + 2χ[1,2).

In defining simple functions, some authors insist that the sets Bi, corresponding
to non-zero αi, must be bounded [Etheridge] or of finite measure [Stein & Shakarchi].
[Garling and Priestley avoid introducing simple functions.]

Examples 3.8. 1. Any step function is a simple function—for a step function, the sets
Bi in the standard representation must be finite unions of bounded intervals (or single
points).

2. The function χQ∩[0,1] is a simple function but it is not a step function.

Proposition 3.9. Let f : R → [0,∞] be measurable. There is an increasing sequence
(φn) of non-negative simple functions φn such that

f(x) = lim
n→∞

φn(x)

for all x ∈ R.
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Proof. For n = 1, 2, . . . and k = 0, 1, 2, . . . , 4n − 1, let

Bkn =
{
x : k2−n ≤ f(x) < (k + 1)2−n

}
.

Let

φn(x) =

{
k2−n if x ∈ Bkn for some (unique) k,

2n if f(x) ≥ 2n.

Then φn ≤ φn+1, φn ≤ f , φn(x) > f(x) − 2−n for all sufficiently large n if f(x) < ∞,
and φn(x) = 2n for all n if f(x) =∞. �

Notice here that the approximating simple functions are constructed by taking
horizontal strips, unlike Prelims where vertical strips were used.

Theorem 3.10. A function f : R→ R is measurable if and only if there is a sequence
of step functions ψn such that f = limψn a.e.

Proof. Stein & Shakarchi, Theorem 4.3, p.32. �

4. The Lebesgue integral

For a non-negative simple function φ with standard form
∑k

i=1 αiχBi (so αi > 0),
the integral of φ is defined to be:∫

R
φ =

∫ ∞
−∞

φ(x) dx =
k∑
i=1

αim(Bi).

Note that
∫
φ <∞ if and only if m(Bi) <∞ for each i.

Proposition 4.1. Let φ, ψ be non-negative simple functions, α ∈ [0,∞).

1. If φ =
∑n

j=1 βjχEj where βj ≥ 0 and Ej are measurable (but not necessarily in

standard form), then
∫
φ =

∑
j βjm(Ej).

2.
∫

(φ+ ψ) =
∫
φ+

∫
ψ,

∫
αφ = α

∫
φ.

3. If φ ≤ ψ then
∫
φ ≤

∫
ψ.

The first statement of Proposition 4.1 is not completely obvious, but fortunately it
is true! [Capinski & Kopp define

∫
φ to be

∑
j βjm(Ej), ignoring the question whether

this is well-defined.]

For a non-negative measurable function f : R→ [0,∞], we define the integral of f
to be ∫

R
f = sup

{∫
R
φ : φ simple, 0 ≤ φ ≤ f

}
.

For a measurable subset E of R, we define∫
E
f =

∫
R
fχE .

For a measurable function f : E → [0,∞), we define
∫
E f =

∫
R f̃ , where f̃ agrees

with f on E and is 0 on R \ E.

In either case, we say that f is integrable over E if
∫
E f <∞.
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This definition of integral corresponds to the lower integral in Prelims, but with
simple functions replacing step functions. If the Monotone Convergence Theorem is to
be true, then Proposition 3.9 shows that the integral must equal this supremum, but
it is still necessary to show that our definition has good properties.

It is clear from the definition of integral that

(i)
∫
αf = α

∫
f (α ≥ 0);

(ii) If f ≤ g, then
∫
f ≤

∫
g,

The first things to establish are

(iii)
∫

(f + g) =
∫
f +

∫
g,

(iv) The Monotone Convergence Theorem.

Theorem 4.2. [Monotone Convergence Theorem, Version 1] If (fn) is an
increasing sequence of non-negative measurable functions and f = limn→∞ fn, then∫
f = limn→∞

∫
fn.

Proof. Since fn ≤ f , it is immediate that supn
∫
fn ≤

∫
f .

For the reverse inequality, we consider a simple function φ such that 0 ≤ φ ≤ f .
We have to show that

∫
φ ≤ limn→∞

∫
fn. It then follows from the definition of

∫
f

that
∫
f ≤ limn→∞

∫
fn.

Take α ∈ (0, 1), and let

Bn = {x : fn(x) ≥ αφ(x)}.

Then Bn is measurable (since fn − αφ is measurable), Bn ⊆ Bn+1 and
⋃∞
n=1Bn = R

(for each x, either φ(x) = 0 or f(x) > αφ(x)). Since αφχBn ≤ fnχBn ≤ fn,

(*) α

∫
Bn

φ ≤
∫
R
fn.

If φ =
∑k

i=1 βiχEi , then∫
Bn

φ =
k∑
i=1

βim(Ei ∩Bn)→
k∑
i=1

βim(Ei) =

∫
R
φ

as n→∞, by Proposition 3.2(2). Taking limits in (*),

α

∫
R
φ ≤ lim

n→∞

∫
R
fn.

Letting α→ 1− gives the required inequality. �

Corollary 4.3. [Baby MCT] Let f be a non-negative measurable function, (En) be
an increasing sequence of measurable sets, and E =

⋃∞
n=1En. Then f is integrable over

E if and only if supn
∫
En
f <∞. Then

∫
E f = supn

∫
En
f = limn→∞

∫
En
f .

Proof. Apply Theorem 4.2 with fn = fχEn , noting that χEn ≤ χEn+1 and f ≥ 0, so
fn ≤ fn+1 and χE(x) = limn→∞ χEn(x). �
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Corollary 4.4. For non-negative measurable functions f and g,∫
(f + g) =

∫
f +

∫
g.

Proof. Let (φn) and ψn be increasing sequences of non-negative simple functions, con-
verging pointwise to f and g respectively (Proposition 3.9). Then (φn + ψn) is an
increasing sequence, converging to f + g. By MCT and Proposition 4.1(2),∫

(f+g) = lim
n→∞

∫
(φn+ψn) = lim

n→∞

(∫
φn +

∫
ψn

)
= lim

n→∞

∫
φn+ lim

n→∞

∫
ψn =

∫
f+

∫
g.

�

Corollary 4.5. [MCT for Series] Let fn be non-negative measurable functions and
f =

∑∞
n=1 fn. Then

∫
f =

∑∞
n=1

∫
fn. In particular, f is integrable if and only if∑

n

∫
fn <∞.

Proof. Let gn =
∑n

r=1 fr, and apply MCT. �

In order to give any interesting examples, we need to show that the integrals just
defined agree with the Riemann integral initially for continuous functions on closed
bounded intervals.

Corollary 4.6. Let f : [a, b]→ [0,∞) be continuous. Then the Lebesgue integral
∫ L

[a,b] f

as defined above equals the Riemann integral
∫R

[a,b] f as defined in first-year Integration.

Proof. As shown in first-year, there is an increasing sequence (φn) of step functions

such that limn→∞ φn(x) = f(x) for all x ∈ [a, b] and limn→∞
∫ b
a φn =

∫R
[a,b] f . By MCT

(Theorem 4.2), limn→∞
∫ b
a φn =

∫ L
[a,b] f . �

Example 4.7. Consider f(x) = (1− x)−1/2 on (0, 1). By Baby MCT (Corollary 4.3),
Corollary Corollary 4.6 and FTC (from Prelims),∫ 1

0
(1− x)−1/2 dx = lim

n→∞

∫ 1− 1
n

0
(1− x)−1/2 dx = lim

n→∞
2(1− n−1/2) = 2.

For 0 ≤ x < 1, the Binomial Theorem with exponent −1/2 or Taylor’s Theorem in
complex analysis gives

(1− x)−1/2 =

∞∑
n=0

(2n)!

4n(n!)2
xn.

By Corollary 4.5 and FTC,∫ 1

0
(1− x)−1/2 dx =

∞∑
n=0

(2n)!

4n(n!)2

∫ 1

0
xn dx =

∞∑
n=0

(2n)!

4nn!(n+ 1)!
.

The fact that the series above converges to 2 can be obtained directly from the Binomial
Expansion of (1 − x)1/2, via Abel’s continuity theorem (A2 lecture notes MT 2019,
Theorem 13.24).



16 INTEGRATION, H.T. 2021

Now we turn to integrability of functions which are not necessarily non-negative.

Let f : R→ [−∞,∞] be measurable. Let

f+ = max(f, 0), f− = max(−f, 0).

Note that f+ and f− are measurable and non-negative, and

f = f+ − f−, |f | = f+ + f−.

We say that f is integrable if f is measurable and
∫
f+ and

∫
f− are both finite. Then

the integral of f is ∫
f =

∫
f+ −

∫
f−.

Moreover, f is integrable over a measurable subset E if fχE is integrable. If f : E →
[−∞,∞], then f is integrable over E if f̃ is integrable over R.

Proposition 4.8. 1. If f is integrable, then |f | is integrable.
2. If f is measurable and |f | is integrable, then f is integrable.
3. [Comparison Test] If f is measurable and |f | ≤ g for some integrable function g,

then f is integrable. If |f | ≥ g ≥ 0 for some measurable function g which is not
integrable, then f is not integrable.

4. If f, g are both integrable and f+g is defined, then f+g is integrable and
∫

(f+g) =∫
f +

∫
g. For α ∈ R, αf is integrable and

∫
αf = α

∫
f . If f ≤ g, then

∫
f ≤

∫
g.

5. If f is integrable and g = f a.e., then g is integrable and
∫
g =

∫
f .

6. If f is integrable then f(x) ∈ R a.e.
7. If f is integrable and

∫
|f | = 0 then f(x) = 0 a.e.

8. If f is integrable over a measurable set E and (En) is an increasing sequence of
measurable sets with

⋃∞
n=1En = E then

∫
E f = limn→∞

∫
En
f .

Proof. (omitted) (1) and (2) follow from
∫
f± ≤

∫
|f | =

∫
f+ +

∫
f−. (3) follows from

|f | ≤ g =⇒
∫
|f | ≤

∫
g. (4) follows from (f+g)± ≤ f±+g± and (f+g)+ +f−+g− =

(f+g)−+f−+g−. (5): Since |g−f | = 0 a.e., any simple function φ with 0 ≤ φ ≤ |g−f |
is a.e. 0, so its integral is 0. Hence

∫
|g − f | = 0. (6), (7): Exercises. (8): Apply Baby

MCT to f+ and f−. �

By (5), changing a function on a null set does not affect integrability. So if we
have a function defined a.e., we can talk about it being integrable by considering any
extension of f—for example, the extension by 0. Also, integrability over [a, b] is the
same as integrability over (a, b).

The following are corollaries of the Comparison Test.

Corollary 4.9. 1. If g is integrable and h is bounded and measurable, then hg is inte-
grable.

2. If g is integrable over R, then g is integrable over any measurable subset of R.
3. If h is a bounded measurable function, then h is integrable over any measurable subset

of finite measure.

Proof. These follow from the Comparison Test, using

|g.h| ≤ c|g|, |gχE | ≤ |g|, |hχE | ≤ cχE . �
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Apart from Corollary 4.6, almost all the theory in Section 4 up to this point applies
to general measure spaces. Now we make some comments which are specific to the case
of Lebesgue measure.

Firstly, the Lebesgue integral is more general than the Riemann (Prelims) integral.
In fact, f : [a, b]→ R is Riemann integrable if and only if f is bounded and continuous
a.e. Any such f is measurable and bounded, hence Lebesgue integrable. Moreover,∫ R

[a,b]
f = sup

{∫ b

a
φ : φ step, φ ≤ f

}
≤ sup

{∫ b

a
φ : φ simple, φ ≤ f

}
≤
∫ L

[a,b]
f ≤ inf

{∫ b

a
ψ : ψ step, f ≤ ψ

}
=

∫ R
[a,b]

f

Hence equality holds throughout, so the Lebesgue integral equals the Riemann integral.

The following is an argument showing that every Riemann integrable function on
[a, b] is measurable, without showing that it is continuous a.e. (that is trickier; it is
shown in Garling, Section 29.2)

(this paragraph not included in lectures) If f is Riemann integrable, then f is bounded
and there are sequences (φn) and (ψn) of step functions such that φn ≤ f ≤ ψn and

limn→∞
∫ b
a φn =

∫R
[a,b] f = limn→∞

∫ b
a ψn. Let g = supn φn and h = infn ψn. Then g

and h are measurable, g ≤ f ≤ h and
∫ L

[a,b](h − g) ≤ limn→∞
∫ b
a (ψn − φn) = 0. By

Proposition 4.8(7), g = h a.e. Then f = g a.e., so f is (Lebesgue) measurable. By
Corollary 4.9(3), f is Lebesgue integrable.

Given a function f : I → R, where I is an interval in R, how does one test whether
f is integrable over I? We can do the following:

• Note that f is measurable (for example, using Examples 3.5).
• Replace f by |f |: we can assume that f is non-negative. (Proposition 4.8(1),(2))
• If I is bounded and f is bounded, then f is integrable over I. (Corollary 4.9(3))
• If I or f is unbounded, we can probably consider an increasing sequence of

bounded subintervals In, with union I, such that f is bounded on each In.
• We may be able to evaluate

∫
In
f by means of the FTC, Integration by Parts,

or Substitution from Prelims theory. Then we can use Baby MCT (Corollary
4.3).
• If we cannot easily evaluate the integral of f , use the Comparison Test—we look

for a simpler measurable function g such that g is known to be integrable and
0 ≤ f ≤ g (if we think f is going to be integrable), or g is known not to be
integrable and 0 ≤ g ≤ f (if we think f will not be integrable).

Examples 4.10. 1. Consider xα over (0, 1), where α ∈ R. Note first that xα is con-
tinuous, hence measurable, and non-negative. If α ≥ 0, then xα is bounded (by 1)
on (0, 1), hence integrable. If α < 0, xα has a singularity at x = 0, so we use Baby
MCT with In = [1/n, 1]. By FTC,∫ 1

1/n
xα dx =

{
1−n−(α+1)

α+1 (α 6= −1)

log n (α = −1)
→

{
∞ (α ≤ −1)

1
α+1 (α > −1).
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By Baby MCT, xα is integrable over (0, 1) if and only if α > −1, and then
∫ 1

0 x
α dx =

(α+ 1)−1.
2. Consider xα over [1,∞). This is similar, but with In = [1, n]. Now∫ n

1
xα dx =

{
nα+1−1
α+1 (α 6= −1)

log n (α = −1)
→

{
∞ (α ≥ −1)

− 1
α+1 (α < −1).

By Baby MCT, xα is integrable over (1,∞) if and only if α < −1, and then∫ 1
0 x

α dx = −(α+ 1)−1.

3. Consider f(x) = xα/(1 + xβ) over (0,∞), where α ∈ R and β ≥ 0. For 0 < x ≤ 1,
xα/2 ≤ f(x) ≤ xα. By comparison, f is integrable over (0, 1) if and only if xα is,
i.e., α > −1. For x > 1, xα−β/2 < f(x) < xα−β, so, by comparison, f is integrable
over (1,∞) if and only if xα−β is, i.e., α−β < −1. Hence f is integrable over (0,∞)
if and only if −1 < α < β− 1. [The case when β < 0 can be reduced to the previous
case because f(x) = xα−β/(1 + x−β).]

4. Consider f(x) = (sinx)/x over (0, 2π). This function is continuous on (0, 2π], hence
measurable. If we define f(0) = 1, it becomes continuous, hence bounded on [0, 2π]—
in fact it is bounded above by 1 and below by −1/π. So it is integrable over (0, 2π).

5. Consider f(x) = (sinx)/x over (0,∞). Now∫ (r+1)π

rπ

∣∣∣∣sinxx
∣∣∣∣ dx ≥ ∫ (r+1)π

rπ

| sinx|
(r + 1)π

dx =
2

(r + 1)π
.

Hence,

lim
n→∞

∫ nπ

0
|f(x)| dx ≥ lim

n→∞

n−1∑
r=0

2

(r + 1)π
=∞.

So |f | is not integrable, and hence f is not integrable, over (0,∞).

Let us discuss the first-year theorems a little more carefully.

Theorem 4.11. (Fundamental Theorem of Calculus) Let g be a function with
a continuous derivative on a closed bounded interval [a, b]. Then g′ is integrable over
[a, b], and ∫ b

a
g′(x) dx = g(b)− g(a).

The FTC should be treated with care, if the range of integration is unbounded (as
already discussed), or if the derivative does not exist at some points as the following
examples show.

Examples 4.12. 1. Let f(x) = x sin
(

1
x

)
(x ∈ (0, 1]); f(0) = 0. Then f is continuous

on [0, 1] and differentiable on (0, 1] but f ′(x) = sin
(

1
x

)
− 1

x cos
(

1
x

)
/∈ L1(0, 1).

2. We define a function Φ : [0, 1]→ [0, 1] as follows. On the Cantor set C,

Φ

( ∞∑
n=1

an3−n

)
=

∞∑
n=1

an
2

2−n (an = 0 or 2).
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Then put Φ = 1
2 on [1

3 ,
2
3 ], 1

4 on [1
9 ,

2
9 ], etc. Then Φ is continuous, monotonic, differen-

tiable at each point of [0, 1] \ C with Φ′(x) = 0. So∫ 1

0
Φ′(x) dx = 0 6= Φ(1)− Φ(0).

This function Φ is called the Cantor-Lebesgue function, or the devil’s staircase.

Theorem 4.13. (Integration by Parts) Let f and g be continuously differentiable
functions on a closed bounded interval [a, b]. Then∫ b

a
f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′(x)g(x) dx.

Integration by parts must be treated with great care if the interval of integration is
an unbounded interval or the integrand has a singularity and you do not know whether
the integrals exist. In those circumstances you cannot infer the existence of one integral
from the existence of the other.

Example 4.14. Consider
∫ a

0
sinx
x dx. Integration by parts gives∫ a

1

sinx

x
dx = cos 1− cos a

a
−
∫ a

1

cosx

x2
dx.

But
∣∣ cosx
x2

∣∣ ≤ 1
x2

, so cosx
x2

is integrable over [1,∞), by Example 4.10(2) and the Com-
parison Test. It follows from Proposition 4.8(8) that

lim
a→∞

∫ a

0

sinx

x
dx =

∫ 1

0

sinx

x
dx+ cos 1−

∫ ∞
1

cosx

x2
dx.

Nevertheless, sinx/x is not integrable over (0,∞), by Example 4.10(5).

In the case of substitution, one can infer the existence of one integral from the
other. [Note: Priestley’s comment near the bottom of p.133 is misleading.]

Theorem 4.15. (Substitution) Let g : I → R be a monotonic function with a con-
tinuous derivative on an interval I, and let J be the interval g(I). A (measurable)
function f : J → R is integrable over J if and only if (f ◦ g).g′ is integrable over I.
Then ∫

J
f(x) dx =

∫
I
f(g(y))|g′(y)| dy.

This theorem is not contained in the one in the first-year course, because f is not
required to be continuous or Riemann integrable. FTC gives the result when f = χJ ′ for
a bounded interval J ′ ⊆ J . One has to extend this to f = χE when E ∈MLeb, E ⊆ J ,
i.e., one needs m(E) =

∫
g−1(E) g

′. After that, the rest follows fairly easily. See Theorem

7.4 in Qian’s notes.

Example 4.16. Let I = (0, 1), g(y) = 1/y, so J = (1,∞). Let f(x) = xα. Then
xα ∈ L1(1,∞) if and only if y−α−2 ∈ L1(0, 1). This provides a passage between
Example 4.10, (1) and (2).
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Other measures. We make some comments about integration with respect to mea-
sures other than Lebesgue.

A function f : N→ R is integrable with respect to counting measure µ if and only
if
∑
f(n) is absolutely convergent, and then

∫
f dµ =

∑∞
n=1 f(n). Thus the general

theorems that follow will provide theorems about summing absolutely convergent series.

Next, consider a probability space (Ω,F ,P). A measurable function is now just a
random variable X on this space, and the integral of X with respect to P is just the
expectation E(X); X is integrable if and only if |X| has finite expectation. The the-
ory that follows applies to all random variables simultaneously—discrete, continuous,
hybrid, singular.

5. The Convergence Theorems

The feature of Lebesgue integration theory which distinguishes it from other theo-
ries, and makes it much more manageable, is the group of theorems known as conver-
gence theorems. These are the theorems, mentioned in the introduction, which enable
one to pass limits or infinite sums through integrals, under certain conditions. We have
already seen the MCT, but we restate it here in a slightly more general form.

Theorem 5.1. [Monotone Convergence Theorem, Version 2] Let (fn) be a se-
quence of integrable functions such that:

(1) for each n, fn ≤ fn+1 a.e.,
(2) supn

∫
fn <∞.

Then (fn) converges a.e. to an integrable function f , and
∫
f = limn→∞

∫
fn.

Proof. By Proposition 4.8(6), fn(x) ∈ R a.e. From this and assumption (1) we may
redefine fn on the union of countably many null set without changing any integrals, so
we may assume that fn(x) ≤ fn+1(x) and fn(x) ∈ R for all x and all n. Apply Theorem
4.2 applied to fn − f1. One obtains that

∫
(f − f1) = limn→∞

∫
fn −

∫
f1. Thus f − f1

is integrable, so f is integrable which implies that f is finite a.e. Adding
∫
f1 to both

sides we obtain that
∫
f = limn→∞

∫
fn. �

We have not specified the range of integration. It could be R, or it could be a fixed
interval I. We can also apply the MCT when the the range of integration depends on
n, by taking fn to be 0 elsewhere.

Example 5.2. Consider

∫ nπ

0

(
cos

x

2n

)
x2e−x

3
dx. It is not obvious how to evaluate

the integral for a given value of n, but we can use the MCT to find the limit of the
integrals, as n→∞, as follows.

Let

fn(x) =

{(
cos

x

2n

)
x2e−x

3
if 0 ≤ x ≤ nπ

0 otherwise.
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Fix n for a moment. We wish to show that fn(x) ≤ fn+1(x) for all x. If 0 ≤ x ≤ nπ,

then cos
x

2n
≤ cos

x

2(n+ 1)
, so fn(x) ≤ fn+1(x). If nπ < x ≤ (n + 1)π, then fn(x) =

0 ≤ fn+1(x). If x > (n + 1)π (or if x < 0), then fn(x) = 0 = fn+1(x). Thus we have
established our claim that fn(x) ≤ fn+1(x) for all x.

Now∫ ∞
0

fn(x) dx =

∫ nπ

0

(
cos

x

2n

)
x2e−x

3
dx ≤

∫ nπ

0
x2e−x

3
dx =

1− e−n3π3

3
↗ 1

3
.

Thus the conditions of the MCT Theorem 5.1 are satisfied, and we conclude that
fn(x)→ f(x) a.e. for some integrable function f , and

∫
fn →

∫
f . In this case, f(x) is

obvious. If we fix x ≥ 0, then fn(x) =
(

cos
x

2n

)
x2e−x

3
whenever n ≥ x/π, so

f(x) = lim
n→∞

(
cos

x

2n

)
x2e−x

3
= x2e−x

3
.

Thus the MCT tells us that

lim
n→∞

∫ nπ

0

(
cos

x

2n

)
x2e−x

3
dx =

∫ ∞
0

x2e−x
3
dx =

1

3
.

Theorem 5.3. [Fatou’s Lemma] Let (fn) be a sequence of non-negative measurable
functions. Then ∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn.

Proof. Let gr := infn≥r fn. Then (gr) increases to lim infn→∞ fn and gr ≤ fr and
∫
gr ≤∫

fr. By MCT,
∫

lim infn→∞ fn = limr→∞
∫
gr = lim infr→∞

∫
gr ≤ lim infr→∞

∫
fr.
�

Note that in Example 0.1 with fn(x) = n2xn(1−x) on (0, 1), fn ≥ 0, limn→∞ fn =
0, limn→∞

∫
fn = 1. So one can have

∫
lim supn→∞ fn < lim infn→∞

∫
fn. However if

fn ≤ g for all n where g is integrable, then
∫

lim supn→∞ fn ≥ lim supn→∞
∫
fn (apply

Fatou to g − fn).

One can also have
∫

lim supn→∞ fn > lim supn→∞
∫
fn—for example, fn(x) =

sin2(x+ n) on (0, π).

Theorem 5.4. [Dominated Convergence Theorem] Let (fn) be a sequence of
integrable functions such that:

(1) (fn(x)) converges a.e. to a limit f(x),
(2) there is an integrable function g such that, for each n, |fn(x)| ≤ g(x) a.e.

Then f is integrable, and
∫
f = limn→∞

∫
fn.

Proof. Since f is measurable (Proposition 3.7) and |f(x)| ≤ g(x) a.e., f is integrable
by comparison. Apply Fatou’s Lemma to g + fn and g − fn, to obtain

∫
(g + f) ≤∫

g + lim infn→∞
∫
fn and

∫
(g − f) ≤

∫
g − lim supn→∞

∫
fn. �



22 INTEGRATION, H.T. 2021

Example 5.5. Consider

∫ 1

0

n3/2xex

1 + n2x2
dx. It is difficult (impossible?) to evaluate the

integrals themselves, but we can find the limit of the integrals, with the help of the
DCT (Theorem 5.4). Let

fn(x) =
n3/2xex

1 + n2x2
=

(nx)3/2

1 + n2x2

ex

x1/2
.

The function
y3/2

1 + y2
tends to 0 as y → ∞, so it is bounded for y > 0. It follows that

fn(x)→ 0 as n→∞, and there is a constant c such that

0 ≤ fn(x) ≤ cex

x1/2
≤ ce

x1/2
(0 < x < 1).

Now let g(x) =
ce

x1/2
. Then g is integrable over (0, 1) (Example 4.10(1)), so we have

verified the conditions of the DCT (with f = 0). We can therefore conclude that

lim
n→∞

∫ 1

0

n3/2xex

1 + n2x2
dx = 0.

Corollary 5.6. [Bounded Convergence Theorem] Let I be a bounded interval,
(fn) be a sequence in L1(I) converging a.e. to f , and suppose that there is a constant
c such that |fn(x)| ≤ c a.e., for all n. Then f ∈ L1(I), and

∫
I f = limn→∞

∫
I fn.

The next example involves, for the first time in this course, integration of a complex-
valued function. A function f : R → C is integrable if Re f and Im f are both inte-
grable. Results which hold for real-valued integrable functions and which make sense
for complex-valued functions are almost invariably true in the complex case, and can
easily be deduced by applying the result to the real and imaginary parts separately.
This is the case, for example, with the Comparison Test, FTC, Integration by Parts
and the DCT. Note, however, that in Theorem 4.15 (Substitution), the function f may
be complex-valued, but the substitution g(t) is assumed to be real-valued.

Example 5.7. Let γr be the semi-circular contour {reiθ : 0 ≤ θ ≤ π}, and consider∫
γr

eiz

z
dz = i

∫ π

0
eir cos θe−r sin θ dθ.

Since ∣∣∣eir cos θe−r sin θ
∣∣∣ ≤ 1 for all r > 0, 0 ≤ θ ≤ π

eir cos θe−r sin θ →

{
0 as r →∞, if 0 < θ < π,

1 as r → 0

the Bounded Convergence Theorem gives∫
γRn

eiz

z
dz → 0 (Rn →∞),

∫
γεn

eiz

z
dz → πi (εn → 0).

By Cauchy’s Theorem,

0 =

∫
γRn

eiz

z
dz −

∫
γεn

eiz

z
dz +

∫ Rn

εn

eix − e−ix

x
dx.
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Letting n→∞, we obtain

lim
n→∞

∫ Rn

εn

sinx

x
dx =

π

2
.

Hence lima→∞
∫ a

0
sinx
x dx = π/2 (see Example 4.14, and Part A Complex Analysis,

Example 11.9 in MT2020 notes).

Next we will apply the results above to term-by-term integration of series. We
start by recalling the MCT for Series (Corollary 4.5 above).

Theorem 5.8. [Monotone Convergence Theorem for Series] Let (gn) be a se-
quence of integrable functions such that:

(1) for each n, gn ≥ 0 a.e.,
(2)

∑
n

∫
gn <∞.

Then
∑∞

n=1 gn converges a.e. to an integrable function, and
∫ ∑∞

n=1 gn =
∑∞

n=1

∫
gn.

Theorem 5.9. [Lebesgue’s Series Theorem; Beppo Levi Theorem, ....] Let
(gn) be a sequence of integrable functions such that

∑
n

∫
|gn| < ∞. Then

∑∞
n=1 gn

converges a.e. to an integrable function, and
∫ ∑∞

n=1 gn =
∑∞

n=1

∫
gn.

Proof. Apply MCT for Series to g+
n and g−n . Alternatively, apply MCT for Series to

|gn| and use the fact that absolute convergence implies convergence. �

Theorem 5.10. Let (gn) be a sequence of integrable functions such that
∑

n |gn| is
integrable. Then

∑∞
n=1 gn converges a.e. to an integrable function, and

∫ ∑∞
n=1 gn =∑∞

n=1

∫
gn.

Proof. Clearly
∑k

n=1

∫
|gn| ≤

∫ ∑∞
n=1 |gn| for all k, so

∑∞
n=1

∫
|gn| ≤

∫ ∑∞
n=1 |gn|.

Apply Theorem 5.9. �

Example 5.11. Let α > 0, and consider
∫ 1

0 x
α−1e−x dx. Let gn(x) = (−1)nxα+n−1/n!,

so that
∑∞

n=0 gn(x) = xα−1e−x. Now∫ 1

0
|gn(x)| dx =

1

(α+ n)n!
,

so
∑

n

∫ 1
0 |gn(x)| dx < ∞. Thus Lebesgue’s Series Theorem tells us that our integral

exists (we could have established this directly, by comparing the integrand with xα−1),
and that ∫ 1

0
xα−1e−x dx =

∞∑
n=0

∫ 1

0
(−1)nxα+n−1/n! dx =

∞∑
n=0

(−1)n

(α+ n)n!
.

Example 5.12. Let s ∈ R, and consider
∫∞
−∞ e

−isxe−x
2
dx. The integrand is con-

tinuous, |e−isxe−x2 | = e−x
2 ≤ ee−|x| ∈ L1 (exercise). If gn(x) = (−isx)n

n! e−x
2
, then∑∞

n=0 gn(x) = e−isxe−x
2
, and
∞∑
n=0

|gn(x)| = e|sx|−x
2 ≤ es2/2e−x2/2 ∈ L1.
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It follows that
∑

n |gn| ∈ L1, so Theorem 5.10 shows that term-by-term integration is
permissible, and ∫ ∞

−∞
e−isxe−x

2
dx =

∞∑
n=0

∫ ∞
−∞

(−isx)n

n!
e−x

2
dx.

Now ∫ ∞
−∞

xne−x
2
dx =

0 if n is odd
(2m)!

√
π

4mm!
if n = 2m,

(for m = 0 this is a standard trick, and one can use integration by parts and induction
on m). Thus ∫ ∞

−∞
e−isxe−x

2
dx =

∞∑
m=0

(−is)2m√π
4mm!

=
√
πe−s

2/4.

The integral which we have just evaluated is very important—for example, apart from
a few constants, it is the characteristic function of the normal distribution (as in Part A

Probability); in analysts’ language, it is the Fourier transform of the function e−x
2

(as
in DEs). There are other methods of evaluating the integral; one is given in Priestley
(Complex Analysis, 22.12) and Part A Integral Transforms (Example 77 in HT2020
notes), and another will be given in Example 6.6.

All theorems in this Section hold in general measure spaces. Corollary 5.6 holds in
finite measure spaces.

6. Integrals depending on a parameter

Let f : R2 → R be a function of two variables. In a while, we shall discuss the
(double) integral, and the repeated integrals, of f . First, we merely consider the partial
integral of f , obtained by integration with respect to one of the variables. Thus we
suppose that for each fixed y, the function x 7→ f(x, y) is integrable. We can then
define a function F by:

F (y) =

∫
f(x, y) dx.

A natural, and important, question is whether F is continuous, or differentiable, as-
suming that f has corresponding properties. In general, the answer is negative (see
Example 6.1), but if we impose some mild conditions of the type that appear in the
DCT, then the answer is positive.

Example 6.1. Let f(x, y) = ye−x
2y2 . Since f(x, 0) = 0 for all x, F (0) = 0. For fixed

y 6= 0, we can make the substitution t = yx and deduce that F (y) =
∫∞
−∞ e

−t2 dt(=√
π) (y 6= 0). Thus F is discontinuous, even though f is differentiable.

Theorem 6.2. [Continuous-parameter DCT] Let I and J be intervals in R, and
f : I × J → R be a function such that:

(1) for each y in J , x 7→ f(x, y) is integrable over I,
(2) for each y in J , limy′→y f(x, y′) = f(x, y) a.e.(x),
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(3) there exists an integrable function g on I such that for each y ∈ J |f(x, y)| ≤
g(x) a.e.(x).

Define F (y) =
∫
I f(x, y) dx (y ∈ J). Then F is continuous on J .

Remark. In condition (3) of Theorem 6.2, the function g does not depend on y.

Proof. Let (yn) be any sequence in J converging to y ∈ J . Let fn(x) = f(x, yn). Then
|fn(x)| ≤ g(x) a.e., for all n, and limn→∞ fn(x) = f(x, y) a.e., so the conditions of the
DCT are satisfied. The DCT implies that:

F (yn) =

∫
I
f(x, yn) dx→

∫
I
f(x, y) dx = F (y).

Thus F is continuous. �

Example 6.3. The Gamma function Γ is defined by:

Γ(y) =

∫ ∞
0

e−xxy−1 dx (y > 0).

We wish to show that Γ is continuous, firstly for y ∈ [1, 2]. In order to apply Theorem
6.2, we take I = (0,∞), J = [1, 2], and f(x, y) = e−xxy−1. Condition (1) of Theorem
6.2 is an exercise, and (2) is more or less trivial. For condition (3), we need to ensure
that

(6.1) g(x) ≥ sup
1≤y≤2

f(x, y) =

{
e−x (0 < x ≤ 1)

xe−x (x > 1).

We choose to take g equal to the right-hand side of (6.1). Then g is integrable over
(0,∞) (exercise), so condition (3) of Theorem 6.2 is satisfied. Thus, Theorem 6.2 shows
that Γ is continuous on [1, 2].

In fact, Γ is continuous on (0,∞). However, it is impossible to establish this by
applying Theorem 6.2 with J = (0,∞), for in condition (3), it would be necessary that

g(x) ≥ sup
y>0

f(x, y) =

{
x−1e−x (0 < x ≤ 1)

∞ (x > 1).

Such a function g cannot possibly be integrable over (0,∞), so it is impossible to
satisfy condition (3) of Theorem 6.2. Instead, we proceed as follows. For each b > 0,
let Jb = (a, c), where a and c are chosen so that 0 < a < b < c, for example, a = b/2
and c = 2b. Then let

gb(x) = sup
a<y<c

f(x, y) =

{
xa−1e−x (0 < x ≤ 1)

xc−1e−x (x > 1).

Then gb is integrable over (0,∞). Thus, Theorem 6.2 shows that Γ is continuous on
(a, c), and in particular at b. But b is arbitrary, so Γ is continuous on (0,∞).

We abstract this method to obtain the following version of Theorem 6.2, where the
dominating function g depends on the parameter to some extent.
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Corollary 6.4. Let I and J be intervals in R, and f : I × J → R be a function such
that (1) and (2) of Theorem 6.2 hold, and

(3′) for each b ∈ J , there exist an open subinterval Jb of J containing b and an
integrable function gb on I such that, for each y ∈ Jb, |f(x, y)| ≤ gb(x) a.e.(x).

Then F is continuous on J , where F is as in Theorem 6.2.

Remark. The method of Theorem 6.2 can also be used to cover cases where y → y0

for a single point y0 or y → ∞. For example, suppose that there exists a in R and a
function h : I → R such that

(1) for each y > a, x 7→ f(x, y) is integrable over I,
(2) limy→∞ f(x, y) = h(x) a.e.(x),
(3) there exists an integrable function g on I such that for each y > a, |f(x, y)| ≤

g(x) a.e.(x).

Then F (y)→
∫
I h(x) dx as y →∞.

Now we turn to the question of differentiability of F . The sort of result which we
hope to have is that if ∂f

∂y exists, and some supplementary conditions are satisfied, then

F is differentiable and

F ′(y) =

∫
∂f

∂y
(x, y) dx

(differentiation through, or under, the integral sign). The standard supplementary

condition is that ∂f
∂y should be dominated by an integrable function, independent of y.

Theorem 6.5. Let I and J be intervals in R, and f : I × J → R be a function such
that:

(1) for each y in J , x 7→ f(x, y) is integrable over I,

(2) for each x in I and y in J , ∂f
∂y (x, y) exists,

(3) there is an integrable function g : I → R such that
∣∣∣∂f∂y (x, y)

∣∣∣ ≤ g(x) for all x in

X and y in Y .

Define F (y) =
∫
I f(x, y) dx (y ∈ J). Then F is differentiable on J and

F ′(y) =

∫
I

∂f

∂y
(x, y) dx.

Proof. Fix y in J , and let (yn) be any sequence in J converging to y (with yn 6= y). Let

gn(x) =
f(x, yn)− f(x, y)

yn − y
.

Then gn is integrable over I, gn(x) → ∂f
∂y (x, y) as n → ∞. Moreover, the Mean Value

Theorem says that there exists a point ξ (depending on x and n) between yn and y
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such that gn(x) = ∂f
∂y (x, ξ). It follows from (3) that |gn(x)| ≤ g(x) for all x in X and

all y in Y . This shows that the Dominated Convergence Theorem is applicable, so

F (yn)− F (y)

yn − y
=

∫
I
gn(x) dx→

∫
I

∂f

∂y
(x, y) dx as n→∞.

Since (yn) is an arbitrary sequence tending to y, and the right-hand side is independent
of the choice of sequence, it follows that

F (y′)− F (y)

y′ − y
→
∫
I

∂f

∂y
(x, y) dx as y′ → y,

which completes the proof. �

Example 6.6. Let f(x, s) = e−isxe−x
2
, and F (s) =

∫∞
−∞ f(x, s) dx (compare Example

5.12). This integral exists for all s. Moreover,

∂f

∂s
(x, s) = −ixe−ixse−x2 ,

so ∣∣∣∣∂f∂s (x, s)

∣∣∣∣ = |x|e−x2 .

Since ∫ n

−n
|x|e−x2 dx = 2

∫ n

0
xe−x

2
dx = 1− e−n2 → 1

as n → ∞, |x|e−x2 ∈ L1(R) (Baby MCT). Thus Theorem 6.5 is applicable, with

I = J = R and g(x) = |x|e−x2 . It follows that F is differentiable on R, and

F ′(s) = −i
∫ ∞
−∞

xe−isxe−x
2
dx.

By integration by parts,

F ′(s) = −s
2
F (s).

Hence F (s) = Ae−s
2/4 for some constant A. But F (0) =

∫∞
−∞ e

−x2 dx =
√
π, so

A =
√
π.

Corollary 6.7. Let I and J be intervals in R, and f : I × J → R be a function such
that (1) and (2) of Theorem 6.5 hold, and

(3′) for each b in J , there is an open subinterval Jb of J containing b and an in-

tegrable function gb : I → R such that, for each y ∈ Jb,
∣∣∣∂f∂y (x, y)

∣∣∣ ≤ gb(x)

a.e.(x).

Then the conclusions of Theorem 6.5 hold.

Example 6.8. Let f(x, y) = e−xy(1 + x3)−1 (x ≥ 0, y ≥ 0). Since 0 ≤ f(x, y) ≤
(1 + x3)−1, x 7→ f(x, y) is integrable over [0,∞) for each y ≥ 0. Moreover,

∂f

∂y
(x, y) = − xe

−xy

1 + x3
,

so ∣∣∣∣∂f∂y (x, y)

∣∣∣∣ ≤ x

1 + x3
(x ≥ 0, y ≥ 0).
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Since x(1+x3)−1 is integrable over [0,∞) (by comparison with x−2 for x ≥ 1), Theorem
6.5 is applicable, and shows that F is differentiable on [0,∞) and

F ′(y) = −
∫ ∞

0

xe−xy

1 + x3
dx.

We would like to repeat this argument to show that F ′′(y) exists (at least for y > 0),
but this is more complicated. Indeed,

∂2f

∂y2
(x, y) =

x2e−xy

1 + x3
.

For y = 0, this function is not integrable (by comparison with x−1), so we should only
consider y > 0. However, it is not possible to apply Theorem 6.5 with f replaced by
∂f
∂y and with J = (0,∞), because

sup
y>0

∂2f

∂y2
(x, y) =

x2

1 + x3
,

which is not integrable over [0,∞). Instead, we must apply Corollary 6.7. Thus we
take b > 0, let Jb = (b/2,∞), and

gb(x) = sup
y>b/2

∂2f

∂y2
(x, y) =

x2e−xb/2

1 + x3
≤ x2e−xb/2.

This function is integrable on [0,∞), and we conclude from Corollary 6.7, with f

replaced by ∂f
∂y and J = (0,∞) that F ′′(y) exists for y > 0 and

F ′′(y) =

∫ ∞
0

x2e−xy

1 + x3
dx.

Repeating this argument, it is possible to show that F is infinitely differentiable on
(0,∞) and to obtain integrals for all the derivatives.

Remark. There are versions of Theorem 6.5 and Corollary 6.7 where the real variable
y ∈ J is replaced by a complex variable z ∈ Ω, a domain in C, the function f is
complex-valued, z 7→ f(x, z) is holomorphic for each x, and the conclusion is that F is
holomorphic. The proofs are almost the same, except that the use of the Mean Value
Theorem should be replaced by the formula gn(x) = (zn − z0)−1

∫
[z0,zn]

∂f
∂w (x,w) dw

which leads to the estimate |gn(x)| ≤ g(x).

7. Double Integrals

In Section 6, we considered some properties concerning functions of two variables,
but we confined integration to one of the variables. Now it is time to consider integration
with respect to both variables. An example on Problem Sheet 1 shows that this is not
just a matter of integrating first with respect to one variable, and then with respect
to the other (repeated integration). What one has to do is to define the class L1(R2)
of integrable functions on R2, and their (double) integrals, in a way which treats both
variables simultaneously, then establish the theorem (Fubini’s Theorem) which ensures
that the double integrals coincide with the repeated integrals for functions in L1(R2),
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and establish a practical method (Tonelli’s Theorem) to determine whether a given
function is integrable.

The first part of this is routine. The class L1(R2) of integrable functions on R2 is
defined in exactly the same way as L1(R), except that intervals (a, b), and their lengths
b− a, are replaced by rectangles (a, b)× (c, d) and their areas (b− a)(d− c). Then one
defines outer measure, null sets (line segments etc are null), measurable sets (all open
sets etc are measurable), measurable functions, simple functions, integrable functions
and (double) integrals just as in Sections 2–4. Moreover, the results of Sections 2-6,
except Section 4 from Theorem 4.11 onwards, remain valid, with obvious changes of
wording where necessary. More details may be found in Capinski & Kopp (Chap 6, but
in greater generality) or Stein & Shakarchi (from beginning).

The (double) integral of an integrable function f over R2 may be denoted by any
of the following: ∫

f,

∫
R2

f,

∫
f(x, y) d(x, y),

∫
R2

f(x, y) d(x, y).

Theorem 7.1. (Tonelli) Let f : R2 → [0,∞] be measurable. Then

(1) x 7→ f(x, y) is measurable for almost all y;
(2) y 7→

∫
R f(x, y) dx (defined a.e.) is measurable;

(3) ∫
R2

f(x, y) d(x, y) =

∫
R

(∫
R
f(x, y) dx

)
dy.

Now we state two consequences of this in their traditional form.

Theorem 7.2. [Fubini’s Theorem] Let f : R2 → R be integrable. Then, for almost
all y, the function x 7→ f(x, y) is integrable. Moreover, if F (y) is defined (for almost
all y) by F (y) =

∫
f(x, y) dx, then F is integrable, and∫

R2

f(x, y) d(x, y) =

∫
R

(∫
R
f(x, y) dx

)
dy.

Similarly,∫
R

(∫
R
f(x, y) dx

)
dy =

∫
R2

f(x, y) d(x, y) =

∫
R

(∫
R
f(x, y) dy

)
dx,

where the first repeated integral exists in the sense described above.

Proof. Apply Theorem 7.1 to f+ and f−, using Proposition 4.8(6) to get that∫
R f
±(x, y) dx <∞ a.e.(y). �

Theorem 7.3. [Tonelli’s Theorem] Let f : R2 → R be a measurable function, and
suppose that either of the following repeated integrals is finite:∫

R

(∫
R
|f(x, y)| dx

)
dy,

∫
R

(∫
R
|f(x, y)| dy

)
dx.

Then f is integrable. Hence, Fubini’s Theorem is applicable to both f and |f |.
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Proof. Apply Theorem 7.1 to get that
∫
R2 |f | < ∞. Then f ∈ L1(R2), by Proposition

4.8(2). �

Remark. Note that, when applying Tonelli’s Theorem, one must verify that a repeated
integral of |f | is finite. It is not sufficient that the repeated integrals of f exist (see
Example 7.4), nor is it sufficient that the repeated integrals of f both exist and are
equal (see Example 7.7).

If E is a measurable subset of R2 and f : E → R is any function, then f is said to
be integrable over E if f̃ is integrable over R2, where f̃(x, y) = f(x, y) if (x, y) ∈ E,

f̃(x, y) = 0 otherwise. Then
∫
E f is defined to be

∫
R2 f̃ .

Fubini’s Theorem and Tonelli’s Theorem can be applied in this situation. However,
when E is not a rectangle, great care must be taken to choose the correct limits of
integration in the repeated integrals. If in any doubt draw a sketch of the region. See
Example 7.5.

In repeated integrals, one often omits the brackets around the inner integral and
writes

∫∫
f(x, y) dy dx, etc., with appropriate limits of integration. This means that

one is integrating first with respect to y between the limits on the right-hand integral
sign, which may be functions of x. Thus∫ b

a

∫ ψ(x)

φ(x)
f(x, y) dy dx

denotes the repeated integral over the region E bounded
by curves y = φ(x) and y = ψ(x) and by vertical lines
x = a, x = b.

Example 7.4. Let f(x, y) =
x− y

(x+ y)3
(0 < x < 1, 0 < y < 1). It was an exercise in

Problem Sheet 1 that the repeated integrals of f exist, but are not equal. It follows from
the final part of Fubini’s Theorem that f is not integrable over the square (0, 1)×(0, 1).

Example 7.5. Consider

∫ 1

0

(∫ x

0

(
1− y
x− y

)1/2

dy

)
dx. As it stands, the inner integral

is difficult. However, it turns out that when the order of integration is reversed, the
other repeated integral is easily evaluated. To justify the equality of the repeated in-
tegrals, we apply Tonelli’s Theorem; this is contained
in the following discussion.

First, note that the integrand is continuous ex-
cept on the line y = x which is null; it is non-negative
throughout the range of integration, so that in apply-
ing Tonelli’s Theorem, it is unnecessary to replace f
by |f |. The next problem is to work out the limits
of integration when we reverse the order. For this,
we have to identify the region in R2 over which the
double integral is taken. For each x, between 0 and
1, we are integrating along the (vertical) line-segment from y = 0 to y = x. As x runs
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from 0 to 1, this sweeps out the triangle shown. The integrand is continuous on the
interior of the triangle (and we take it to be 0 outside the triangle), so it is measurable.
If we fix a value of y, the values of x which give us points within the triangle are those
between x = y and x = 1. This applies for y between 0 and 1; otherwise there are no
points within the triangle. Thus the limits of the reversed repeated integral are x = y
and x = 1 in the inner integral, and y = 0 and y = 1 in the outer. This is confirmed
by the following equalities of sets:

{(x, y) ∈ R2 : 0 < y < x, 0 < x < 1} = {(x, y) ∈ R2 : 0 < y < x < 1}
= {(x, y) ∈ R2 : y < x < 1, 0 < y < 1},

but the picture was more informative!

Now the reversed repeated integral is:∫ 1

0

(∫ 1

y

(
1− y
x− y

)1/2

dx

)
dy =

∫ 1

0

[
2(1− y)1/2(x− y)1/2

]x=1

x=y
dy

=

∫ 1

0
2(1− y) dy = 1.

Since the integrand is non-negative, and since this repeated integral is finite, it fol-
lows from Tonelli’s Theorem that f is integrable over the triangle, and from Fubini’s
Theorem that ∫ 1

0

(∫ x

0

(
1− y
x− y

)1/2

dy

)
dx = 1.

The next example shows how it is both possible and useful to make changes of
variable within the inner integral of a repeated integral. The same technique will be
used in several subsequent examples.

Example 7.6. Let f(x, y) = ye−y
2(1+x2). Since f is continuous, it is certainly measur-

able. We shall consider the integral of f over the positive quadrant (0,∞)×(0,∞). First

we consider
∫∞

0 f(x, y) dy for a fixed x. Making the change of variable t = y(1 + x2)1/2

(x is a constant at this point),∫ ∞
0

f(x, y) dy =

∫ ∞
0

te−t
2

1 + x2
dt = lim

k→∞

[
− e−t

2

2(1 + x2)

]t=k
t=0

=
1

2(1 + x2)
.

This function is integrable with respect to x, and∫ ∞
0

(∫ ∞
0

f(x, y) dy

)
dx =

π

4
.

Since f(x, y) ≥ 0 for y ≥ 0, it follows from Tonelli’s Theorem that f is integrable over
(0,∞)× (0,∞), and by Fubini’s Theorem,∫ ∞

0

(∫ ∞
0

f(x, y) dx

)
dy =

π

4
.
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In the inner integral, where y > 0 is fixed, we can make the change of variable u = xy,
and obtain

π

4
=

∫ ∞
0

(∫ ∞
0

e−(y2+u2) du

)
dy =

∫ ∞
0

e−y
2

(∫ ∞
0

e−u
2
du

)
dy

=

(∫ ∞
0

e−u
2
du

)(∫ ∞
0

e−y
2
dy

)
=

(∫ ∞
0

e−x
2
dx

)2

.

It follows that ∫ ∞
0

e−x
2
dx =

√
π

2
.

If f takes both positive and negative values, then to apply Tonelli’s Theorem, it is
necessary to consider |f |, or alternatively to consider separately the regions where f is
positive and where it is negative.

Example 7.7. Let f(x, y) =
xy

x4 + y4
. Since f is odd both as a function of x, and also

as a function of y,

∫ ∞
−∞

f(x, y) dy = 0 for all x, and

∫ ∞
−∞

f(x, y) dx = 0 for all y. Hence

both repeated integrals exist and equal 0. However, if we consider f over the quadrant
x > 0, y > 0, part of the region where f(x, y) > 0, then, putting y = xt (x > 0 fixed),∫ ∞

0
f(x, y) dy =

∫ ∞
0

x3t

x4(1 + t4)
dt =

c

x
,

where c is the constant

∫ ∞
0

t

1 + t4
dt. Since cx−1 is not integrable with respect to x

over (0,∞), it follows that f is not integrable over the quadrant, and therefore not
integrable over the plane.

In practice, it often happens that one has no means of evaluating the repeated
integrals of f or |f |, but can nevertheless decide whether f is integrable. One technique
for this is to show that f is dominated by a simpler function which one can show to be
integrable (or that f dominates a function which one can show not to be integrable).

Example 7.8. Let f(x, y) = sin

(
1

x2 + y4

)
cos(x2 + y3). We wish to show that f is

integrable over the positive quadrant (0,∞)× (0,∞).
Since f is continuous in this region (although not con-
tinuous at (0, 0)), it is measurable. Moreover, f is
bounded, and hence integrable over any bounded re-
gion, in particular over the square (0, 1)×(0, 1). Thus
it suffices to show that f is integrable over the regions
[1,∞)× [0,∞) and (0, 1)× (1,∞).

Using the inequalities | sin t| ≤ |t| and | cos t| ≤ 1, it follows that |f(x, y)| ≤ (x2 +
y4)−1, so it suffices to show that (x2 + y4)−1 is integrable over these two regions. Now∫ ∞

1

(∫ ∞
0

dy

x2 + y4

)
dx =

∫ ∞
1

(∫ ∞
0

dz

x3/2(1 + z4)

)
dx <∞,
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where we made the substitution y = x1/2z and used the integrability of x−3/2 over
[1,∞) and of (1 + z4)−1 over (0,∞). Also,∫ ∞

1

(∫ 1

0

dx

x2 + y4

)
dy ≤

∫ ∞
1

(∫ 1

0

dx

y4

)
dy =

∫ ∞
1

dy

y4
=

1

3
.

It follows from Tonelli’s Theorem that (x2 + y4)−1 is integrable over these two regions,
so f is integrable over the quadrant.

Another useful technique for testing functions for integrability, and for evaluating
integrals, is to change variables. The reader will be familiar with this idea from courses
in applied mathematics and in A3 Probability, and will know that one has to take
account of the Jacobian of the transformation. The method is the extension to two
variables of Theorem 4.15. We shall state the result and give examples for polar coor-
dinates x = r cos θ, y = r sin θ, when the Jacobian is r. This corresponds to the fact
that a small rectangle with sides δr, δθ (area δrδθ) in the (r, θ)-space is transformed
into an approximate rectangle of sides δr, rδθ (area rδrδθ)) in the (x, y)-space.

Theorem 7.9. Let E be a measurable subset of R2, and f : E → R be a func-
tion. Let E′ = {(r, θ) : 0 ≤ r, 0 ≤ θ < 2π, (r cos θ, r sin θ) ∈ E} and g(r, θ) =
rf(r cos θ, r sin θ) (r, θ ∈ E′). Then f is integrable over E if and only if g is integrable
over E′. In that case,∫

E
f(x, y) d(x, y) =

∫
E′
f(r cos θ, r sin θ) r d(r, θ).

Example 7.10. In Example 7.6 we evaluated
∫∞

0 e−x
2
dx, using Fubini’s Theorem.

Here, we shall evaluate the same integral by the more common method of polar coor-
dinates.

Let E = (0,∞)× (0,∞) and f(x, y) = e−(x2+y2). Then∫ ∞
0

∫ ∞
0

f(x, y) dy dx =

(∫ ∞
0

e−x
2
dx

)(∫ ∞
0

e−y
2
dy

)
=

(∫ ∞
0

e−x
2
dx

)2

<∞.

It follows from Tonelli’s Theorem that f is integrable over E. In the notation of
Theorem 7.9, E′ = {(r, θ) : 0 < r, 0 < θ ≤ π/2}, so it follows from Theorem 7.9 and
Fubini’s Theorem that(∫ ∞

0
e−x

2
dx

)2

=

∫
E′
e−r

2
r d(r, θ) =

∫ π/2

0

∫ ∞
0

e−r
2
r dr dθ =

π

4
.

This confirms that
∫∞

0 e−x
2
dx =

√
π/2.
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Example 7.11. As in Example 7.7, let f(x, y) =
xy

x4 + y4
. In the notation of Theorem

7.9, g(r, θ) =
1

r

sin θ cos θ

sin4 θ + cos4 θ
. Since g is not integrable over [0,∞) × [0, 2π) (because

r−1 is not integrable over [0,∞)), f is not integrable over R2.

Example 7.12. Let f(x, y) =
x2 − y2

(x2 + y2)2
. The square (0, 1) × (0, 1) is not very con-

venient for polar coordinates, but we can easily overcome this problem. Since f is
bounded, hence integrable, over the bounded region {(x, y) : 0 < x < 1, 0 < y < 1, 1 <
x2 + y2}, f is integrable over the square if and only if it is integrable over the quadrant
E = {(x, y) : 0 < x < 1, 0 < y < 1, x2 + y2 ≤ 1}. In the notation of Theorem 7.9,
E′ = {(r, θ) : 0 < r ≤ 1, 0 < θ < π/2} and

g(r, θ) = r
r2(cos2 θ − sin2 θ)

r4
=

cos 2θ

r
.

Since r−1 is not integrable over (0, 1), g is not integrable over the rectangle E′ (in
(r, θ)-space), so f is not integrable over E.

Now we state a version of Theorem 7.9 for general changes of coordinates. Let
T : (u, v) 7→ (x, y) be a change of variables, and suppose that x, y are differentiable
functions of u, v. Let JT be the Jacobian matrix:

JT =

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
.

Observe that JS◦T = JSJT (Chain Rule).

Theorem 7.13. Let E′ be an open subset of R2, T : E′ → R2 be a one-to-one differ-
entiable function of E′ onto a subset E of R2, and f : E → R be a function. Then f is
integrable over E if and only if (f ◦ T )| det JT | is integrable over E′. In that case,∫

E
f =

∫
E′

(f ◦ T )| det JT |.

Writing ∂(x,y)
∂(u,v) for det JT , this formula becomes∫

E
f(x, y) d(x, y) =

∫
E′
f(u, v)

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ d(u, v).

To recover Theorem 7.9 from Theorem 7.13, take T (r, θ) = (r cos θ, r sin θ), so ∂(x,y)
∂(r,θ) =

r.

In the situation of Theorem 7.13, E is always measurable (continuous image of a
Borel set) although this is not obvious.

One can extend Section 7 to Rn instead of R2. Moreover, for any (σ-finite) measure
spaces (Ω1,F1, µ1) and (Ω2,F2, µ2), one can define a product (Ω1×Ω2,F1⊗F2, µ1×µ2)
such that Fubini’s and Tonelli’s theorems hold.
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8. Lp-spaces

A useful measure of distance between two integrable functions f and g is:

d(f, g) =

∫
|f − g| =: ‖f − g‖1.

Then

(i) ‖f‖1 = 0 if and only if f = 0 a.e. (Proposition 4.8(5),(7));
(ii) ‖αf‖1 = |α|‖f‖1;
(iii) ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1.

Consequently,

(i)′ d1(f, g) = 0 if and only if f = g a.e.
(ii)′ d1(g, f) = d1(f, g);
(iii)′ d1(f, h) ≤ d1(f, g) + d1(g, h).

So ‖ · ‖1 is almost a norm and d1 is almost a metric (cf., Metric Spaces). The problems
are that we have not yet defined a suitable vector space, and ‖f‖1 = 0 does not imply
that f is the zero function.

If we allow our integrable functions to take the values ∞ and −∞, then f + g
may not be everywhere defined (but it is almost everywhere defined). Any integrable
function is real-valued almost everywhere, so we will now take L1 to be the space of all
integrable functions with real (or complex) values. Then we identify functions which
are almost everywhere equal (actually, we have effectively been doing this for some
time). Define an equivalence relation on L1 by

f ∼ g ⇐⇒ f = g a.e.

Let [f ] be the equivalence class of f , and N = [0] = {f : R→ R : f = 0 a.e.}. Then N
is a subspace of the vector space L1, and we can form the quotient space L1 := L1/N
as a vector space whose elements are the equivalence classes [f ] (cf., Linear Algebra).
Let

‖[f ]‖1 =

∫
|f |.

Then ‖ · ‖1 is well-defined, and it is a norm on L1. The distinction between [f ] and f
is usually a distracting nuisance, so we suppress it, and we just write ‖f‖1 as the norm
of f . However it is occasionally necessary to be aware of the difference.

Now we have a notion of convergence:

fn → f in L1-norm ⇐⇒ lim
n→∞

‖fn − f‖1 = 0 ⇐⇒
∫
|fn − f | → 0.

In probability this may be called convergence in mean. Actually, convergence in mean
square is more convenient in some respects. For that, one considers the space L2 of
all measurable functions f such that |f |2 is integrable. Suppose that f, g ∈ L2. Then
simple inequalities for real/complex numbers give

|f + g|2 ≤ 2(|f |2 + |g|2), |fg| ≤ 1
2(|f |2 + |g|2)
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So f + g ∈ L2 and fg is integrable. Thus L2 is a vector space, and we can put

〈f, g〉2 =

∫
fg.

Then 〈·, ·〉2 is positive-semidefinite, linear in the first variable, and conjugate-symmetric,
so it is almost an inner product. Again there is a small problem that 〈f, f〉2 = 0 implies
only that f ∈ N . So we form L2 = L2/N , and we obtain an inner product on L2. Hence,
we get a well-defined norm on L2 given by

‖[f ]‖2 = ‖f‖2 = 〈f, f〉1/22 =

(∫
|f |2

)1/2

.

Now, ‖fn − f‖2 → 0 (convergence in L2-norm) corresponds exactly to convergence in
mean square in the case of probability spaces.

Let’s see what happens if the indices 1 and 2 are replaced by some other real p > 0.
Let Lp be the set of all measurable functions f such that |f |p is integrable. Note that

(|f + g|)p ≤ (2 max(|f |, |g|))p = 2p max(|f |p, |g|p) ≤ 2p(|f |p + |g|p),
Lp is a vector space. Let Lp = Lp/N , and

‖f‖p =

(∫
|f |p

)1/p

.

Now it is not obvious whether the triangle inequality holds.

Proposition 8.1. [Minkowski’s Inequality] For p ≥ 1 and f, g ∈ Lp, ‖f + g‖p ≤
‖f‖p + ‖g‖p.

Proof. If f = 0 a.e. or g = 0 a.e., the inequality is trivial. So suppose that α := ‖f‖p > 0
and β := ‖g‖p > 0.

The function t 7→ tp is continuous on [0,∞) and its second derivative p(p− 1)tp−2

is positive on (0,∞). This implies that it is convex, i.e.

(λs+ (1− λ)t)p ≤ λsp + (1− λ)tp

for 0 ≤ λ ≤ 1, s, t ≥ 0. Apply this with

λ =
α

α+ β
, s =

|f(x)|
α

, t =
|g(x)|
β

.

This gives (
|f |+ |g|
α+ β

)p
≤ |f |

p

αp−1
+
|g|p

βp−1
.

Using |f + g| ≤ |f |+ |g|, integrating, and taking pth roots gives the required inequality.
�

So Lp becomes a normed vector space, whenever p ≥ 1.

A related result is:

Proposition 8.2. [Hölder’s Inequality] Let p, q ∈ (1,∞) with 1/p + 1/q = 1. Let
f ∈ Lp and g ∈ Lq. Then fg ∈ L1 and ‖fg‖1 ≤ ‖f‖p‖g‖q.
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For p = q = 2, Hölder’s Inequality is the Cauchy-Schwarz Inequality.

Proof. Note first that the function t 7→ log t is concave on [0,∞), because its second
derivative −t−2 is negative. Hence

1

p
log s+

1

q
log t ≤ log

(
s

p
+
t

q

)
.

Exponentiate to obtain s1/pt1/q ≤ s
p + t

q . Let s = (|f(x)|/‖f‖p)p and t = (|g(x)|/‖g‖q)q.
This gives

|fg|
‖f‖p‖g‖q

≤ |f |p

p‖f‖pp
+
|g|q

q‖g‖qq
.

Integrate. �

Corollary 8.3. If 1 ≤ p1 < p2 <∞ and f ∈ Lp2(a, b), then f ∈ Lp1(a, b) and

‖f‖p1 ≤ (b− a)
1
p1
− 1
p2 ‖f‖p2 .

Hence if fn ∈ Lp2(a, b) and ‖fn‖p2 → 0, then ‖fn‖p1 → 0.

Proof. Apply Proposition 8.2 to the functions |f |p1 and χ(a,b), with p = p2/p1. Then
raise both sides to the power (1/p1) �

The inclusion Lp2(a, b) ⊂ Lp1(a, b) in Corollary 8.3 is strict: consider xα on (0, 1).

Corollary 8.3 holds if (a, b) is replaced by any finite measure space. However,
Lp1(1,∞) is not contained in Lp2(1,∞) (exercise).

For p ≥ 1, Lp is a normed space and hence a metric space for dp(f, g) = ‖f − g‖p.
How does convergence in Lp-norm compare with pointwise a.e. convergence?

Examples 8.4. 1. Convergence a.e. does not imply convergence in Lp-norm: If fn(x) =
n2xn(1− x) (0 ≤ x ≤ 1), then fn(x)→ 0 a.e., but ‖fn‖1 → 1.

2. Convergence in Lp-norm does not imply convergence a.e.: For n = 2r + k, where
0 ≤ k < 2r, let fn be the characteristic function of [k2−r, (k+ 1)2−r]. Then ‖fn‖1 =
2−r ≤ 2/n → 0, but for each x ∈ [0, 1], fn(x) takes the values 0 and 1 infinitely
often.

Theorem 8.5. Let p ∈ [1,∞), and let (fn) be a sequence in Lp which is Cauchy, i.e.,
for each ε > 0, there exists N such that ‖fn − fm‖p < ε whenever m,n ≥ N . Then
there exists f ∈ Lp such that

1. There is a subsequence (fnk) such that limk→∞ fnk(x) = f(x) a.e.
2. limn→∞ ‖fn − f‖p = 0.

Thus Lp is a complete metric space.

Proof. [For p = 1.] By assumption, there exist N1 < N2 < N3 < . . . such that∫
|fn − fm| < 2−(r+1) whenever n,m ≥ Nr. In particular,

∫
|fNr+1 − fNr | < 2−(r+1).
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Let g1 = fN1 and gr = fNr − fNr−1 for r = 2, 3, . . . , so
∫
|gr| < 2−r for r ≥ 2. By

Lebesgue’s Series Theorem 5.9,
∑∞

r=1 gr converges a.e. to f ∈ L1. Now

fNk =

k∑
r=1

gr → f a.e.,

‖f − fNk‖1 =

∫ ∣∣∣∣∣
∞∑

r=k+1

gr

∣∣∣∣∣ ≤
∫ ∞∑

r=k+1

|gr| =
∞∑

r=k+1

∫
|gr| < 2−k → 0.

If a Cauchy sequence has a convergent subsequence, then the whole sequence is con-
vergent. See Prelims proof that every Cauchy sequence in R is convergent.

For general p, the use of LST has to be replaced by Minkowski’s inequality plus
Fatou’s Lemma. �

Corollary 8.6. 1. If ‖fn−f‖p → 0, then there is a subsequence (fnr) which converges
to f a.e.

2. If ‖fn − f‖p → 0 and fn → g a.e., then f = g a.e.

The Convergence Theorems provide situations when a.e. convergence implies con-
vergence in Lp-norm. Here is a general result in that direction with a weaker conclusion.

Theorem 8.7. [Egorov’s Theorem] Suppose that fn → f a.e. Let E be a measurable
set with m(E) < ∞ and let ε > 0. Then there is a measurable subset F of E with
m(E \ F ) < ε such that fn → f uniformly on F . In particular, ‖fn − f‖Lp(F ) → 0 for
all p ≥ 1.

Another very useful theorem is the following.

Theorem 8.8. If f ∈ Lp(R) where 1 ≤ p < ∞, there is a sequence of step functions
ψn such that limn→∞ ‖f − ψn‖p = 0.

This result is closely related to Theorem 3.10, that measurable functions are point-
wise (a.e.) limits of sequences of step functions. For a proof when p = 1, see Stein &
Shakarchi, Theorem 2.4, p.71.

Let f ∈ L1(R). The Fourier transform of f is the function f̂ : R→ C defined by

f̂(s) =

∫
R
f(x)e−isx dx.

This definition appeared in the short option Integral Transforms (Chapter 4), and now
we can give rigorous proofs of some of the properties shown in that course without full
rigour.

Theorem 8.9. Let f ∈ L1(R).

1. |f̂(s)| ≤ ‖f‖1 for all s,

2. f̂ is continuous,

3. f̂(s)→ 0 as s→ ±∞. [Riemann–Lebesgue Lemma]

4. Let g(x) = xf(x). If g ∈ L1(R) then f̂ is differentiable everywhere and (f̂)′(s) =
−iĝ(s).
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5. If f has a continuous derivative f ′ ∈ L1(R), then the Fourier transform of f ′ is

isf̂(s).

Proof. (1) follows from |f(x)e−isx| = |f(x)|. (2) follows from the continuous-parameter
DCT (Theorem 6.2) with g(x) = |f(x)|.

For (3), For f = χ(a,b), f̂(s) =
i(e−isb − e−isa)

s
→ 0 as |s| → ∞. This extends to

step functions, by linearity. For general f ∈ L1(R) and ε > 0, there is a step function
ϕ such that ‖f − ϕ‖1 < ε by Theorem 8.8, and there exists K such that |ϕ̂(s)| < ε
whenever |s| > K. Then

|f̂(s)| ≤ |f̂(s)− ϕ̂(s)|+ |ϕ̂(s)| ≤ ‖f − ϕ‖1 + |ϕ̂(s)| < 2ε.

[Note that (2) can be proved by observing that f̂ is a uniform limit of continuous
functions ϕ̂n where ϕn are step functions converging to f in L1-norm.]

(4) can be proved by applying Theorem 6.5 with |g| as dominating function. (5)
can be proved by using integration by parts over intervals [an, bn] where an → −∞,
f(an)→ 0, bn →∞ and f(bn)→ 0. �

The theorem about the Fourier transform of the convolution of two integrable
functions (Theorem 81) is an application of Fubini/Tonelli.

9. Absolutely continuous functions

Recall from Section 4 that the Fundamental Theorem of Calculus is true for func-
tions with a continuous derivative on [a, b] (Theorem 4.11, but proved in Prelims), but
it is false for the Cantor-Lebesgue function Φ whose derivative exists and equals 0 a.e.
on [0, 1] (Example 4.12).

The ideal Fundamental Theorem of Calculus would identify a class A of functions
F on [a, b] with both the following properties:

(i) If F ∈ A, then F is differentiable a.e., F ′ ∈ L1(a, b), and
∫ x
a F

′(y) dy = F (x)−F (a)
for all x ∈ [a, b].

(ii) If f ∈ L1(a, b) and F (x) =
∫ x
a f(y) dy for x ∈ [a, b], then F ∈ A and F ′ = f a.e.

It is not obvious that such a class exists—its existence implies that the indefinite integral
F of an integrable function f is differentiable a.e. and F ′ = f a.e.

In fact, this is true. Then A is the class of all functions of the form F (x) := c+
∫ x
a f

for some c ∈ R and some f ∈ L1(a, b). Remarkably there is an intrinsic characterisation
of such functions.

Let I be an interval. A function F : I → R is said to be absolutely continuous on
I if, for each ε > 0, there exists δ > 0 such that

n∑
r=1

|F (br)− F (ar)| < ε



40 INTEGRATION, H.T. 2021

whenever n ∈ N, (ar, br) (r = 1, . . . , n) are disjoint subintervals of I and
n∑
r=1

(br−ar) < δ.

If we only allowed n = 1 in this definition, we would have the definition of uniform
continuity on I. Recall from Prelims that any continuous function on [a, b] is uniformly
continuous.

Examples 9.1. 1. Recall that F is Lipschitz if there exists c such that |F (y)−F (x)| ≤
c|y − x| for all x, y. Any Lipschitz function is absolutely continuous (take δ = ε/c).

2. If f is a bounded measurable function and F (x) =
∫ x
a f(y) dy, then F is Lipschitz.

3. The Cantor-Lebesgue function is not absolutely continuous on [0, 1].

Theorem 9.2. Let f ∈ L1(I) and F (x) =
∫ x
a f(y) dy. Then F is absolutely continuous

on I.

Theorem 9.3. Let F be an absolutely continuous function on [a, b]. Then F is differ-
entiable a.e., F ′ ∈ L1(a, b) and F (x)− F (a) =

∫ x
a F

′(y) dy for all x ∈ [a, b].

One way to a proof of Theorem 9.2 is outlined in an optional exercise on the
Supplementary Problem Sheet. There are various other proofs.

Theorem 9.3 is rather hard to prove. There is a proof in Capinski & Kopp, Section
7.3. It is a remarkable theorem as differentiability (a.e.) is inferred from an assumption
that seems to be only a type of continuity.

A corollary of Theorem 9.3 is that every Lipschitz function is differentiable a.e.
Thus the Lipschitz functions are precisely the indefinite integrals of bounded measurable
functions.


