Problem Sheet 4: Fubini's Theorem, L^p -spaces

- 1. Evaluate $\int_0^1 \left(\int_0^x e^{-y} \, dy \right) \, dx$ and $\int_0^1 \left(\int_0^{x-x^2} (x+y) \, dy \right) \, dx$
 - (a) directly;
 - (b) by reversing the order of integration.
- 2. In each of the following cases, is f integrable over the given region? [Give careful justification.]
 - (i) $f(x,y) = e^{-xy}$ over $[0,\infty) \times [0,\infty)$; (ii) $f(x,y) = e^{-xy}$ over $\{(x,y) : 0 < x < y < x + x^2\}$; (iii) $f(x,y) = \frac{(\sin x)(\sin y)}{x^2 + y^2}$ over $(-\frac{\pi}{2}, \frac{\pi}{2}) \times (-\frac{\pi}{2}, \frac{\pi}{2})$.
- 3. [Applications of Tonelli or Fubini should be carefully justified.]

(a) Let
$$J_0(x) = \frac{2}{\pi} \int_0^{\pi/2} \cos(x \cos \theta) \, d\theta$$
. Show that $\int_0^\infty J_0(x) e^{-ax} \, dx = \frac{1}{\sqrt{1+a^2}}$ if $a > 0$.
(b) Take $b > a > 1$. By considering x^{-y} over $(1, \infty) \times (a, b)$, show that $\int_1^\infty \frac{x^{-a} - x^{-b}}{\log x} \, dx$ exists, and find its value.

4. Let $f \in \mathcal{L}^1(\mathbb{R})$ be non-negative with $\int_{-\infty}^{\infty} f(x) dx = 1$, and let $F(x) = \int_{-\infty}^{x} f(y) dy$. Assume that $xf(x) \in \mathcal{L}^1(\mathbb{R})$. Use Fubini's Theorem to prove that

$$\int_0^\infty (1 - F(x)) \, dx = \int_0^\infty x f(x) \, dx, \qquad \int_{-\infty}^0 F(x) \, dx = -\int_{-\infty}^0 x f(x) \, dx.$$

Now let g be a bounded measurable function, and let

$$G(y) = \int_{\{g(x) \le y\}} f(x) \, dx.$$

Prove that

$$\int_0^\infty (1 - G(y) - G(-y)) \, dy = \int_{-\infty}^\infty f(x)g(x) \, dx.$$

[Remark (not a hint): Imagine that f is the probability density function of a random variable X. The first part of the question then says that $\mathbb{E}(X) = \int_0^\infty (\mathbb{P}[X > x] - \mathbb{P}[X \le -x]) dx$. This formula holds for all random variables (discrete, continuous, etc) with $\mathbb{E}(|X|) < \infty$. In particular it holds for g(X). Then the last part proves that $\mathbb{E}[g(X)] = \int_{-\infty}^\infty f(x)g(x) dx$, a fact sometimes known as the Law of the Unconscious Statistician.]

- 5. (a) Let $\alpha > 1$ and $f(x,y) = (x^2 + y^2)^{-\alpha}$ and $g(x,y) = (1 + x^2 + y^2)^{-\alpha}$. Show that f is integrable over $[1,\infty) \times [0,\infty)$ [Hint: Change of variables y = ux may help]. Deduce that f is integrable over $[0,1] \times [1,\infty)$, and that g is integrable over \mathbb{R}^2 .
 - (b) Use polar coordinates to show that g is integrable over \mathbb{R}^2 .
- 6. For p > 0, calculate $||f||_p$ when f is (i) $\chi_{(0,1)}$, (ii) $\chi_{(1,2)}$, (iii) $\chi_{(0,2)}$. Now assume that $0 . Is <math>|| \cdot ||_p$ a norm on L^p ? For $f, g \in L^p(\mathbb{R})$, let $d_p(f,g) = \int |f-g|^p$. Show that d_p is a metric on $L^p(\mathbb{R})$.
- 7. Consider the relation \sim on the space of measurable functions $f : \mathbb{R} \to \mathbb{R}$ given by: $f \sim g \iff f = g$ a.e.

State which properties of null sets are used to prove each of the following true statements (f, g, h, etc are measurable functions):

- (i) $f \sim f$,
- (ii) $f \sim g \implies g \sim f$,
- (iii) $f \sim g, g \sim h \implies f \sim h,$
- (iv) If $f_n \sim g_n$ for all $n \in \mathbb{N}$, then $\sup f_n \sim \sup g_n$,
- (v) If $f \sim g$, then $h \circ f \sim h \circ g$.

*Give an example where h is injective, $f \sim g$, but $f \circ h \not\sim g \circ h$.

- 8. Let p > 1. Give examples of sequences (f_n) and (g_n) in $L^p(0,1)$ such that
 - (i) $\lim_{n\to\infty} f_n(x) = 0$ a.e. but $\lim_{n\to\infty} ||f_n||_p \neq 0$;
 - (ii) $\lim_{n\to\infty} ||g_n||_p = 0$ but $\lim_{n\to\infty} g_n(x)$ does not exist for any $x \in (0,1)$.

For each $\varepsilon > 0$ find a measurable subset E_{ε} of [0, 1] such that $m(E_{\varepsilon}) < \varepsilon$ and $f_n(x) \to 0$ uniformly on $[0, 1] \setminus E_{\varepsilon}$.

Find a subsequence (g_{n_r}) such that $\lim_{r\to\infty} g_{n_r}(x) = 0$ a.e.

*9. A function $g:[0,\infty) \to \mathbb{R}$ is convex if

 $g(x) = \sup\{\alpha x + \beta : \alpha y + \beta \le g(y) \text{ for all } y \in [0, \infty)\}.$

If g is continuous on $[0,\infty)$ with non-negative second derivative on $(0,\infty)$, then g is convex.

Let $f: [0,1] \to [0,\infty)$ be bounded and measurable, $M_n \int_0^1 f^n dx = ||f||_{L^n}^n$, and $||f||_{L^{\infty}} = \inf\{\gamma > 0 : f(x) \le \gamma \text{ a.e.}\} < \infty$. Show that

- (i) $g\left(\int_0^1 f(x) \, dx\right) \leq \int_0^1 g(f(x)) \, dx$ for every convex function g;
- (ii) $M_n^2 \le M_{n+1} M_{n-1};$
- (iii) $||f||_{L^n} \le M_{n+1}/M_n \le ||f||_{L^\infty};$
- (iv) $\lim_{n \to \infty} M_{n+1}/M_n = ||f||_{L^{\infty}}.$

16.3.2021