
A3: Rings and Modules, 2020–2021

Tom Sanders

We begin with the course overview as described on https://courses.maths.ox.ac.

uk/node/44027.

Course Overview:

The first abstract algebraic objects which are normally studied are groups, which arise nat-

urally from the study of symmetries. The focus of this course is on rings, which generalise

the kind of algebraic structure possessed by the integers: a ring has two operations, addition

and multiplication, which interact in the usual way. The course begins by studying the fun-

damental concepts of rings (already met briefly in core Algebra): what are maps between

them, when are two rings isomorphic etc. much as was done for groups. As an applica-

tion, we get a general procedure for building fields, generalising the way one constructs the

complex numbers from the reals. We then begin to study the question of factorization in

rings, and find a class of rings, known as Unique Factorization Domains, where any element

can be written uniquely as a product of prime elements generalising the case of the integers.

Finally, we study modules, which roughly means we study linear algebra over certain rings

rather than fields. This turns out to have powerful applications to ordinary linear algebra

and to abelian groups.

Learning Outcomes:

Students should become familiar with rings and fields, and understand the structure theory

of modules over a Euclidean domain along with its implications. The material underpins

many later courses in algebra and number theory, and thus should give students a good

background for studying these more advanced topics.

Course Synopsis:

Recap on rings (not necessarily commutative) and examples: Z, fields, polynomial rings

(in more than one variable), matrix rings. Zero-divisors, integral domains. Units. The
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characteristic of a ring. Discussion of fields of fractions and their characterization (proofs

non-examinable) [2]

Homomorphisms of rings. Quotient rings, ideals and the first isomorphism theorem and

consequences, e.g. Chinese remainder theorem. Relation between ideals in R and R{I.

Prime ideals and maximal ideals, relation to fields and integral domains. Examples of

ideals. Application of quotients to constructing fields by adjunction of elements; examples

to include C “ RrXs{xX2 ` 1y and some finite fields. Degree of a field extension, the tower

law. [4]

Euclidean Domains. Examples. Principal Ideal Domains. EDs are PIDs. Unique factorisa-

tion for PIDs. Gauss’s Lemma and Eisenstein’s Criterion for irreducibility. [3]

Modules: Definition and examples: vector spaces, abelian groups, vector spaces with an

endomorphism. Submodules and quotient modules and direct sums. The first isomorphism

theorem. [2]

Row and column operations on matrices over a ring. Equivalence of matrices. Smith Normal

form of matrices over a Euclidean Domain. [1.5]

Free modules and presentations of finitely generated modules. Structure of finitely generated

modules of a Euclidean domain. [2]

Application to rational canonical form and Jordan normal form for matrices, and structure

of finitely generated Abelian groups. [1.5]

References

There is an alternative approach to the course given in Earl’s notes [Ear19] which is an

excellent source for further examples.

Forest green text denotes material which is unlectured background from previous courses.

Blue text denotes material which is unlectured and more advanced.
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1 Rings

A set R equipped with two binary operations ` and ˆ is a ring if

• R equipped with ` is a commutative group called the additive group;

• ˆ is an associative binary operation on R with an identity1;

• ˆ is distributive2 over `.

We call ` the addition of the ring. Identities of binary operations are unique when they

exist, and so we can unambiguously write 0 for the identity of addition – it is called the

zero of the ring. Inverses3 for elements w.r.t. associative binary operations are unique when

they exist and so we can unambiguously write ´x for the additive inverse of x P R; the

map RÑ R;x ÞÑ ´x is called negation and´p´xq “ x for all x P R, and ´0 “ 0 since an

identity for a binary operation is always an inverse for itself. We write x´ y for x` p´yq.

We call ˆ the multiplication of the ring and write xy in place of xˆ y. Again, we can

unambiguously write 1 for the identity of multiplication. Not all elements of R need have

a multiplicative inverse; those that do are called units and we write4 UpRq for the set of

units. Again, if x P UpRq we can unambiguously write x´1 for the multiplicative inverse of

x, px´1q´1 “ x for all x P UpRq, and 1 P UpRq with 1´1 “ 1.

Occasionally we shall have multiple rings and it will be instructive to clarify which

particular ring we are referring to. We shall do this with subscripts writing, for example,

`R, ˆR, 0R and 1R in reference to the addition, multiplication, zero, and multiplicative

identity of a ring R.

We say R is a commutative ring if the multiplication is commutative. !4The modern

notion of commutative ring can be traced back to Emmy Noether [Noe21, §1] (translated

into English in [Ber14]), though her definition does not assume the multiplication has an

identity.

Proposition 1.1 (Group of units). Suppose that R is a ring. Then multiplication on R

restricts to a well-defined binary operation on UpRq giving it the structure of a group with

identity 1, and if x P UpRq then x´1 P UpRq and it is the inverse of x with respect to this

group operation on UpRq. Furthermore, if R is commutative then so is the group UpRq.

Proof. First, suppose that x, y P UpRq. Then pxyqpy´1x´1q “ xppyy´1qx´1q “ xx´1 “ 1 and

similarly py´1x´1qpxyq “ 1 so that xy P UpRq. Hence multiplication on R restricts to a well-

defined binary operation on UpRq. Since multiplication is associative on R, it is a fortiori

1e is an identity for a binary operation ˚ on a set X if x ˚ e “ x “ e ˚ x for all x P X.
2Meaning xˆ py ` zq “ pxˆ yq ` pxˆ zq and px` yq ˆ z “ pxˆ zq ` py ˆ zq for all x, y, z P R.
3y is an inverse for x w.r.t. a binary operation ˚ on X if x ˚ y “ y ˚ x is an (and so the) identity for ˚.

4 !4Some authors (e.g. [Lan02, p84] and [Lam07, xiv]) write R˚ for UpRq.
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associative when restricted to UpRq. Since 1 P UpRq is an identity for multiplication on R

it is a fortiori an identity for multiplication restricted to UpRq. Finally, if x P UpRq then

xx´1 “ 1 “ x´1x and so x´1 P UpRq (with inverse x) and so every x P UpRq is invertible

w.r.t. multiplication on R restricted to UpRq, and its inverse is the same as its inverse in

R. Finally, if R is commutative then multiplication is commutative on R and a fortiori it

is commutative when restricted to UpRq. The result is proved.

Remark 1.2. If R is a finite commutative ring then UpRq is a finite commutative group, but

exactly which finite commutative groups occur as the group of units of a ring is an open

problem called Fuchs’ problem [Fuc58, Problem 72, p299].

To say that multiplication is distributive over addition is exactly to say that the left

and right multiplication maps5 are homomorphisms of the additive group. Group homo-

morphisms preserve identities and hence inverses; put another way:

Lemma 1.3. Suppose that R is a ring.

(i) (Zero annihilates) x0 “ 0x “ 0 for all x P R;

(ii) (Negation distributes) xp´yq “ p´xqy “ ´pxyq for all x, y P R.

Remark 1.4. Suppose that R is a ring and z P UpRq. Then p´zqp´z´1q “ p´p´zqqpz´1q “

zz´1 “ 1 and similarly p´z´1qp´zq “ 1, whence ´z P UpRq and p´zq´1 “ ´z´1. In

particular, since 1 P UpRq we have ´1 P UpRq.

We write4 R˚ for the set of non-zero elements of a ring R.

Remark 1.5. It is almost always the case that UpRq Ă R˚. Indeed, in view of Lemma 1.3

(i), 0 cannot have a multiplicative inverse unless 0 “ 1 (and of course if 0 “ 1 then 0 does

have a multiplicative inverse – it is 0) so that 0 P UpRq if and only if 0 “ 1.

If 0 “ 1 in a ring R we call it trivial, and if 0 ‰ 1 then we call it non-trivial.6

Proposition 1.6 (Trivial rings). Suppose that R is a ring. Then R is trivial if and only if

R has one element.

Proof. First, if R contains only one element, then since 0, 1 P R we must have 0 “ 1. On

the other hand, if 0 “ 1 then for any x P R we have x “ 1x “ 0x “ 0 by Lemma 1.3, and

so R “ t0u.

5The left (resp. right) multiplication maps are the maps R Ñ R; y ÞÑ xy (resp. R Ñ R; y ÞÑ yx) for

x P R.
6Some authors (e.g. [Lam07]) use the terms zero and non-zero in place of trivial and non-trivial.
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A ring R is said to be an integral domain if R is non-trivial, commutative, and R˚ is

closed under multiplication i.e. xy P R˚ whenever x, y P R˚.

In a ring R we call x P R a left (resp. right) zero divisor if there is y P R˚ such that

xy “ 0 (resp. yx “ 0).

Remark 1.7. If x P R is not a left (resp. right) zero divisor then left (resp. right) multipli-

cation by x, which is a group homomorphism of the additive group, has trivial kernel and

so is injective.

Remark 1.8. An integral domain has no non-zero zero divisors.

Remark 1.9. Units are never zero-divisors: if x P UpRq and xy “ 0, then 0 “ x´10 “

x´1pxyq “ px´1xqy “ 1y “ y so y R R˚.

We say that F is a field if it is a commutative ring with UpFq “ F˚.

Remark 1.10. Since 0 R UpFq, F is non-trivial.

2 Homomorphisms, isomorphisms, and subrings

A ring homomorphism7 is a map φ : RÑ S between two rings such that

φpx` yq “ φpxq ` φpyq and φpxyq “ φpxqφpyq for all x, y P R, and φp1q “ 1.

There are some basic properties of homomorphisms we shall need.

Lemma 2.1. Suppose that φ : RÑ S and ψ : S Ñ T are ring homomorphisms. Then ψ ˝φ

is a ring homomorphism RÑ T .

Proof. This is immediate from the definition.

Lemma 2.2. Suppose that φ : R Ñ S is a ring homomorphism. Then φp0q “ 0, φp´xq “

´φpxq for all x P R, and if x P UpRq then φpxq P UpSq and φpx´1q “ φpxq´1.

Proof. First, φp0q “ 0 and φp´xq “ ´φpxq for all x P R, since φ is a group homomorphism

of the additive group and homomorphisms preserve identities and inverses. If x P UpRq then

there is some y P UpRq such that xy “ yx “ 1 and hence φpxqφpyq “ φpyqφpxq “ φp1q “ 1

so that φpxq P UpSq. Thus φ restricts to a group homomorphism UpRq Ñ UpSq, and again

group homomorphisms preserve inverses so the result is proved.

Remark 2.3. !4If R is a non-trivial ring8 then the map φ : t0u Ñ R; 0 ÞÑ 0 has φp1q “

φp0q “ 0 ‰ 1 since t0u is trivial and R is non-trivial, and so it is not a ring homomorphism.

In particular, this example shows that we may not dispense with the requirement that

φp1q “ 1 in the definition of ring homomorphism.
7With an eye to generalisation, one might argue that the most natural definition of ring homomorphism

would include the conclusions of Lemma 2.2 – if they did not follow we would add them in as assumptions.

8 !4We have not yet shown that such a thing exists, but it is perhaps not surprising that it does.
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Proposition 2.4. Suppose that φ : F Ñ R is a ring homomorphism, F is a field and R is

non-trivial. Then φ is injective.

Proof. If φpxq “ φpyq and x ‰ y then x ´ y P F˚ and so there is u such that px ´ yqu “ 1

whence 0 “ 0φpuq “ pφpxq ´ φpyqqφpuq “ φppx ´ yquq “ φp1q “ 1, which contradicts the

non-triviality of R. We conclude that φ is injective as claimed.

A ring S is a subring of a ring R if the map j : S Ñ R; s ÞÑ s is a well-defined ring

homomorphism; S is a proper subring if S is a subring of R and S ‰ R.

Remark 2.5. Subrings inherit some properties of the containing ring, e.g. being commuta-

tive and being non-trivial, and hence being an integral domain; but not others e.g. being

a field.

A ring S is a (proper) subfield of a ring R if S is a field and a (proper) subring of R.

Remark 2.6. !4A ring that is not a field may have have a subfield.

Lemma 2.7 (Subring test). Suppose that R is a ring and S is a subset of R such that

1 P S,´x P S for all x P S, and x` y, xy P S for all x, y P S. (2.1)

Then the addition and multiplication on R restrict to well-defined operations on S giving it

the structure of a subring of R.

Proof. First S is non-empty and closed under addition and negation so by the subgroup test

addition on R restricts to a well-defined binary operation on S giving it the structure of a

commutative group. Since S is closed under multiplication it also restricts to a well-defined

binary operation on S, and is a fortiori associative since it is associative on R. Finally,

1 P S and since this is an identity for R it is a fortiori an identity for S. Multiplication

and addition restricted are a fortiori distributive when restricted to S, and so we conclude

that S is a ring. The inclusion map is then well-defined and a ring homomorphism and the

result is proved.

Given a subset satisfying the hypotheses of the above lemma, we make the common abuse

of calling it a subring on the understanding that we are referring to the induced operations.

Remark 2.8. Note that if R is a subring of S and S is a subring of T then R is a subring of

T in view of Lemma 2.1.

Proposition 2.9. Suppose that φ : R Ñ S is a homomorphism. Then Imφ is a subring of

S.

Proof. This is immediate from the subring test and Lemma 2.2.
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Example 2.10 (Centre of a ring). Given a ring R the centre (or center) is the set ZpRq :“

tz P R : zr “ rz for all r P Ru; in words it is the set of elements of R that commute with

all other elements of R. In particular, R is commutative if and only if ZpRq “ R.

The centre is a subring of R by the subring test: 1 P ZpRq since 1r “ r “ r1 for all

r P R; if x P ZpRq then p´xqr “ ´pxrq “ ´prxq “ rp´xq by Lemma 1.3; and if x, y P ZpRq

then px` yqr “ xr` yr “ rx` ry “ rpx` yq for all r P R by distributivity, so x` y P ZpRq;

and pxyqr “ xpyrq “ xpryq “ pxrqy “ prxqy “ rpxyq for all r P R by associativity of

multiplication, so xy P ZpRq.

Homomorphisms between rings can be particularly useful for endowing the image with

additional structure.

Proposition 2.11. Suppose that R is a ring, F is a field and φ : F Ñ R is a ring ho-

momorphism. Then the additive group of R equipped with scalar multiplication defined by

F ˆ R Ñ R; pλ, vq ÞÑ λ.v :“ φpλqv is an F-vector space. Furthermore, if the image of F
is in the centre of R then the ring multiplication on R considered as an F-vector space is

bilinear.9

Proof. First, the additive group of R is a commutative group by definition. Secondly,

pλµq.v “ λ.pµ.vq for all λ, µ P F and v P R since multiplication in R is associative and

φpxyq “ φpxqφpyq. Thirdly 1.v “ v for all v P R since 1 is a multiplicative identity and

φp1q “ 1. Finally, pλ` µq.v “ λ.v ` µ.v for all λ, µ P F and v P R since right multiplication

in R and φ are both group homomorphisms; and λ.pv ` wq “ λ.v ` λ.w for all λ P F and

v, w P R since left multiplication is a group homomorphism.

Suppose that λ, µ P F and u, v, w P R. Then the ring multiplication is linear in its first

argument since right multiplication is a group homomorphism and multiplication in R is

associative:

pλ.v ` µ.wqu “ pφpλqv ` φpµqwqu “ λ.pvuq ` µ.pwuq;

it is linear in its second argument since left multiplication is a group homomorphism, and

multiplication in R is associative and the image of F is in the centre of R:

upλ.v ` µ.wq “ upφpλqv ` φpµqwq “ upφpλqvq ` upφpµqwq

“ φpλqpuvq ` φpµqpuwq “ λ.puvq ` µ.puwq.

The result is proved.

A ring isomorphism is a map φ : RÑ S that is a bijective ring homomorphism.10

9In the literature this is sometimes expressed by saying that R is a unital associative F-algebra.
10If we did not have Lemma 2.12 then we would also insist here that the inverse map be a ring homomor-

phism. There is a comparison here with the situation in which topological spaces (or more concretely subsets

of the reals) replace rings and continuous maps replace homomorphisms. The map f : r0, 1q Y t2u Ñ r0, 1s

with fpxq :“ x if x ‰ 2 and fp2q :“ 1, is a continuous bijection but does not have a continuous inverse.
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Lemma 2.12. Suppose that φ : R Ñ S is a ring isomorphism. Then φ´1 is a ring homo-

morphism, and hence a ring isomorphism.

Proof. First, φp1q “ 1 and φ is a bijection so φ´1p1q “ 1. Secondly, φ is a bijective group

homomorphism of the additive group and so φ´1 is also a group homomorphism of the

additive group of S. Finally, if x, y P S then by surjectivity there are elements u, v P R such

that φpuq “ x and φpvq “ y, and

φ´1pxyq “ φ´1pφpuqφpvqq “ φ´1pφpuvqq “ uv “ φ´1pxqφ´1pyq.

We conclude that φ´1 is a homomorphism and the result is proved.

We say that two rings R and S are (ring) isomorphic and write R – S if there is a

ring isomorphism RÑ S.

Proposition 2.13. – is an equivalence relation.

Proof. The identity map on a ring is an isomorphism so – is reflexive. – is symmetric in

view of Lemma 2.12. Finally, – is transitive since the composition of bijections is a bijection,

and composition of ring homomorphisms is a ring homomorphism – this is Lemma 2.1.

3 The natural numbers

We write N0 for the natural numbers including 0, and N˚ for the naturals without 0. These

come equipped with a map11 N0 Ñ N0;x ÞÑ x` 1 which is an injection with image N˚; and

enjoy the inductive axiom that if X Ă N0 has 0 P X and X ` 1 Ă X then X “ N0. These

are essentially Peano’s axioms for the natural numbers and we shall not concern ourselves

with the question of whether such an object exists12.

The first axiom here is a way of capturing the fact that the natural numbers are infinite13

without reference to the usual definition of finite14 which would be circular. The second

axiom – induction – captures the fact that N0 is minimal subject to the requirement that it

is infinite.

11Called the successor function.
12We fall back on the 1886 quote “Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Men-

schenwerk” attributed to Kronecker by Weber [Web92, p19], and translated as “God made the integers, all

else is the work of man” by Gray [Gra08, p153].
13A set X is said to be Dedekind finite if any injection f : X Ñ X is surjective. In particular the

successor function bears witness to the fact that the naturals are not Dedekind finite.
14Recall that a set I is finite if there is some n P N0 and a bijection φ : t0, . . . , n ´ 1u Ñ I with the

convention that if n “ 0 (so that there is no natural number predecessor n ´ 1) then the domain is the

empty set.
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These properties of the naturals are basic to recursive definitions and can immediately

be used to produce the usual binary operations of addition15 and multiplication16. Addition

gives rise to a total order17 on N0 in which x ě y if and only if there is z P N0 such that

x “ y` z, and this also allows us to give an equivalent18 formulation of the induction axiom

as the well-ordering principle, that if X Ă N0 is non-empty then it has a minimal element.

Iterated sums and products in rings

Given a ring R, the binary operations of addition and multiplication can be applied recur-

sively: We define

Rn
Ñ R; px0, . . . , xn´1q ÞÑ

n´1
ÿ

i“0

xi and Rn
Ñ R; px0, . . . , xn´1q ÞÑ

n´1
ź

i“0

xi (3.1)

to be the constant values 0R and 1R respectively when n “ 0, and then recursively by

n
ÿ

i“0

xi :“

˜

n´1
ÿ

i“0

xi

¸

` xn and
n
ź

i“0

xi :“

˜

n´1
ź

i“0

xi

¸

xn.

We extend this notation so that for xm, . . . , xn P R we write

n
ÿ

i“m

xi :“
n´m
ÿ

i“0

xm`i and
n
ź

i“m

xi :“
n´m
ź

i“0

xm`i,

with the convention that if n ă m the sum is 0R and the product is 1R. Finally we also

write

xm ` ¨ ¨ ¨ ` xn :“
n
ÿ

i“m

xi and xm ¨ ¨ ¨ xn :“
n
ź

i“m

xi,

which is compatible with existing notation when n “ 2.

Iterated sums and products of the identities

Induction and the fact that 0R and 1R are identities for their respective operations gives

n´1
ÿ

i“0

0R “ 0R and
n´1
ź

i“0

1R “ 1R.

15x` 0 :“ x and x` py ` 1q :“ px` yq ` 1 for all x, y P N0.
16xˆ 0 :“ 0 and xˆ py ` 1q :“ xˆ y ` x for all x, y P N0.
17ě is a total order on X if ě is reflexive, meaning x ě x for all x; ě is transitive, meaning x ě y and

y ě z implies x ě z; ě is anti-symmetric, meaning x ě y and y ě x if and only if x “ y; and trichotomous

meaning x ě y or y ě x.
18There is a slight subtlety with this equivalence which we have avoided by insisting that the successor

function has image the whole of N˚ rather than just a proper subset. One can prove the former from the

latter using induction but not using well-ordering. See [Öhm19] for a discussion.
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Associativity of iterated sums and products

Induction with ring associativity (and the recursive definition of addition) shows that for

x P Rn`m we have

n`m´1
ÿ

i“0

xi “

˜

n´1
ÿ

i“0

xi

¸

`

˜

m´1
ÿ

i“0

xn`i

¸

and
n`m´1
ź

i“0

xi “

˜

n´1
ź

i“0

xi

¸˜

m´1
ź

i“0

xn`i

¸

.

Distributivity of iterated sums and products

A further induction with ring distributivity (and the recursive definition of multiplication)

shows that for x P Rn, y P Rm we have

nm´1
ÿ

k“0

zk “

˜

m´1
ÿ

i“0

xi

¸˜

n´1
ÿ

j“0

yj

¸

“

mn´1
ÿ

k“0

wk

where zni`j :“ xiyj and wmj`i :“ xiyj for 0 ď i ď m´ 1, 0 ď j ď n´ 1. As it happens these

two equalities are really the same because addition is commutative c.f. Exercise I.1.

Commutativity of iterated sums and (in commutative rings) products

Commutativity of ring addition coupled with the fact that the permutations of t0, . . . , n´1u

are generated by transpositions of consecutive elements shows that for x P Rn we have

n´1
ÿ

i“0

xπpiq “
n´1
ÿ

i“0

xi for all bijections π : t0, . . . , n´ 1u Ñ t0, . . . , n´ 1u. (3.2)

This fact permits a definition of unordered sum: suppose that I is a finite set and x P RI .

We write
ÿ

iPI

xi :“
n´1
ÿ

i“0

xσpiq where σ : t0, . . . , n´ 1u Ñ I is any bijection. (3.3)

Since I is finite14 there is an n P N0 such that such a bijection exists, and furthermore

different choices of bijection give rise to the same sum in view of (3.2).

In a commutative ring we have an analogue of (3.2) for products, and hence for x P RI

we can define an analogue of (3.3) for products which we write as
ś

iPI xi.

Homomorphisms of iterated sums and products

Finally, given a ring homomorphism φ : RÑ S and x P Rn, by induction we get

φ

˜

n´1
ÿ

i“0

xi

¸

“

n´1
ÿ

i“0

φpxiq and φ

˜

n´1
ź

i“0

xi

¸

“

n´1
ź

i“0

φpxiq.

Remark 3.1. One should not worry too much about the above. These definitions have to be

made, but the rough idea is that iterated operations ‘work in the way we expect’.
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The integers

By a series of inductions we can show that the natural numbers equipped with their usual

addition and multiplication satisfy all the axioms of a ring except for the existence of additive

inverses.

There is a standard construction for ‘adding in’ the negative numbers, which in some

sense goes back at least to Liu Hui (劉徽) [SCL99, p404], that extends the usual addition

and multiplication on the natural numbers, and is minimal in the sense that every integer

can be written as a difference of two natural numbers.

Example 3.2 (Z). The integers, denoted Z, have the structure of an integral domain in

which the zero is 0, the multiplicative identity is 1, and UpZq “ t´1, 1u.

In any ring we can write sums and products of differences as differences by the following

lemma.

Lemma 3.3. Suppose that R is a ring. Then

pa´ dq ` pb´ cq “ pa` bq ´ pc` dq and pa´ dqpb´ cq “ pab` dcq ´ pac` dbq

for all a, b, c, d P R.

Proof. The first of these follows by commutativity and associativity of addition and dis-

tributivity of negation over addition. The second by distributivity of multiplication, com-

mutativity and associativity of addition, and distributivity of negation over addition and

multiplication.

Remark 3.4. These identities can actually be used to define the addition and multiplication

on Z in terms of that on N0.

Remark 3.5. As a special case of the definition of the iterated product, for x P R we put

xn`1 :“ xnx for n P N0 and x0 :“ 1R. Induction shows that

x0 “ 1R, x
n`m

“ xnxm and xnm “ pxnqm for all n,m P N0 and x P R

Moreover, if x P UpRq then this extends to the integers by xn´m :“ xnpx´1qm for n,m P N0.

This extension is well-defined (in particular the two possible meanings of x´1 coincide) and

has

x0 “ 1R, px
n
q
´1
“ px´1qn, xn`m “ xnxm and xnm “ pxnqm for all n,m P Z and x P UpRq

Similarly, for addition we have 0.x :“ 0R and pn ` 1q.x :“ pn.xq ` x, and pn ´ mq.x :“

pn.xq ´ pm.xq which is also well-defined and has

0.x “ 0R,´pn.xq “ p´nq.x, pn`mq.x “ pn.xq ` pm.xq and pnmq.x “ n.pm.xq (3.4)

for all n,m P Z and x P R.
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Remark 3.6. !4n.px ` yq “ n.x ` n.y for all n P Z and x, y P R, but pxyqn “ xnyn for all

n P Z if and only if x and y commute. !4Of course x and y must be units in this last case.

The integers have an important relationship19 to rings in general captured by the follow-

ing proposition.

Proposition 3.7. Suppose that R is a ring. Then the map Z Ñ R;n ÞÑ n.1R is a ring

homomorphism into the centre of R, and this map is the only ring homomorphism ZÑ R.

Proof. First, 1.1R “ 0.1R ` 1R “ 0R ` 1R “ 1R. Secondly, pn `mq.1R “ n.1R `m.1R for

all n,m P Z by (3.4). Finally, induction using distributivity of multiplication in R gives

pnmq.1R “ pn.1Rqpm.1Rq for all n,m P N0 and then Lemma 3.3 for both Z and R extends

this to the integers. Hence the given map is a homomorphism. For n P N0, n.1R is in the

centre of R by induction and since the centre is a ring we conclude that the image of the

homomorphism is in the centre of R.

In the other direction, suppose that ψ : ZÑ R is a homomorphism. Then ψpnq “ n.1R

for all n P N0 by induction since ψ is a homomorphism of the additive group and ψp1q “ 1R.

But then ψpn´mq “ ψpnq´ψpmq “ n.1R´m.1R “ pn´mq.1R for all n,m P N0 by Lemma

2.2. The result is proved.

The characteristic of a ring R is 0 if n.1R “ 0 implies n “ 0, and otherwise it is the

smallest n P N˚ such that n.1R “ 0R.

Example 3.8. The characteristic of Z is 0.

Remark 3.9. Note that if S is a subring of R then the characteristic of S is the same as that

of R.

Example 3.10. Z has no proper subring: If S is a subring of Z, then the inclusion j : S Ñ Z
is a ring homomorphism. By Proposition 3.7 there a ring homomorphism φ : Z Ñ S, and

then j ˝ φ is a ring homomorphism ZÑ Z so by the uniqueness of Proposition 3.7 it is the

identity. It follows that j is surjective and hence S “ Z.

4 Examples

Perhaps unsurprisingly there are more examples of rings than just the integers.

19In the language of category theory the integers are an initial object in the category of rings, and

one might feel lured into describing them as one ring (up to isomorphism) ruling (by copies of the ‘line’ of

integers) all others, though the relevance of ambient light conditions and the extent to which the integers

actually find, bring or bind any other ring is less clear.
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Example 4.1 (ZN). Given N P N˚ we write x ” y pmod Nq if N � x ´ y. This is an

equivalence relation on Z and it is compatible with the addition and multiplication there,

meaning if x ” y pmod Nq and x1 ” y1 pmod Nq then

x` x1 ” y ` y1 pmod Nq and xx1 ” yy1 pmod Nq.

We write ZN for the set of congruence classes of integers under this relation, and the com-

patibility above means that the multiplication and addition on Z induce a ring structure

on ZN . This construction is an example of a quotient ring which we shall meet in more

generality in §5.

ZN is commutative, has the congruence class of 0 as its zero, the congruence class of 1

as its multiplicative identity, and the congruence class of ´x as the additive inverse of the

congruence class of x.

The characteristic of ZN is N .

If N is composite then N “ ab for 1 ă a, b ă N and so ab ” 0 pmod Nq while a, b ı 0

pmod Nq. It follows that ZN is not an integral domain.

Integers x and y are said to be coprime if their only common factors are units, meaning

if a � x and a � y then a is a unit i.e. a P t´1, 1u.

Theorem 4.2 (Bezout’s Lemma). Suppose that x, y P Z are coprime. Then there are

α, β P Z such that αx` βy “ 1.

This has been covered in Prelims Mathematics I but will also follow from Example 5.9.

A large part of the course will concern rings where we have an analogue of Bezout’s Lemma

– this is roughly what a PID is. This will be defined formally in Remark 5.10.

Example 4.3 (The field Fp, and the group of units of ZN). The units of ZN are the

(congruence classes of) integers coprime to N : If r and N are coprime then Bezout’s Lemma

exactly tells us that there is α P Z such that αr ” 1 pmod Nq, and so by commutativity of

ZN , the congruence class of r is a unit. Conversely, if a is a non-unit common factor of r

and N then rˆpN{aq ” 0 pmod Nq and so the congruence class of r is a zero-divisor (since

pN{aq ı 0 pmod Nq ) and so not a unit by Remark 1.9.

Suppose that p is prime. Then every 1 ď r ă p is coprime to p, and so UpZpq contains

every non-zero congruence class. Since p ą 1 we also have that Zp is non-trivial so UpZpq “
Z˚p . Finally, Zp is commutative and so it is a field; we write Fp for Zp to emphasise this

property.20

The rationals – another important example for us – are a field which can be constructed

from the integers in a way which generalises as follows to any integral domain.

20 !4Zp is sometimes (e.g. [Lam07]) used to denote a different ring (which we shall not consider) called

the p-adic integers.
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Theorem 4.4 (Field of fractions and its characterisation). Suppose that R is an integral

domain. Then there is a field F such that R is a subring of F, and no proper subfield of F
contains R. Moreover, if K is a field containing R and no proper subfield of K contains R

then there is an isomorphism φ : KÑ F which is the identity on R.

Remark 4.5. The proof is not hard and can be found in many places e.g. [Hun80, Theorem

4.3] and [Lan02, Chapter II, §4], and it is not dissimilar to the construction of the integers

from the naturals by ‘adding in’ the negative numbers. It is omitted from the syllabus

because all it really does is formalise the content of Remark 4.6 below.

Remark 4.6. Suppose that F is a field of fractions for R, and consider the set F pRq :“

tab´1 : a P R, b P R˚u as a subset of F. This contains 1 “ 1{1´1 and is closed under additive

inverses as well as addition and multiplication since

ac´1 ` bd´1 “ pad` bcqpcdq´1 and pac´1qpbd´1q “ pabqpcdq´1.

It follows from the subring test that F pRq is a subring and it contains R. Now, if ab´1 ‰ 0

then a P R˚ so ba´1 P F pRq, and hence F pRq is closed under multiplicative inverses and so

a field, whence F pRq “ F. This motivates the name field of fractions: all the elements of F
can be written as a ‘fraction’ ab´1.

Remark 4.7. Note that the field of fractions is not just unique up to isomorphism as a field,

but – and this is ensured by the part of the statement that says φ is the identity on R – R

‘sits inside’ its field of fractions in a unique way.

Example 4.8 (Q). The rationals, denoted Q, are the field of fractions of the integers. The

order on the integers extends to a total order (also denoted ě) on the rationals such that

x ` z ě y ` z whenever x ě y and xy ě 0 whenever x, y ě 0. Of course the well-ordering

of the naturals w.r.t. ě, which in Z manifests as the fact that every non-empty subset of Z
that is bounded below has a minimum element, does not extend to Q.

The rationals are an example of a field with a subring – Z – that is not a field, bearing

out the last part of Remark 2.5.

!4UpQq X Z Ć UpZq so being a unit in Q and an element of Z does not guarantee the

status of unit in Z.

!4Let ψ : Z Ñ Q be the usual inclusion and suppose f, g : Q Ñ R are ring homomor-

phisms such that21 f ˝ ψ “ g ˝ ψ. For m P Z˚ we have gp1{mq “ gp1{mqfpmqfp1{mq “

gp1{mqgpmqfp1{mq “ fp1{mq and hence gpn{mq “ gpnqgp1{mq “ fpnqfp1{mq “ fpn{mq

for all n P Z. It follows that f ” g despite the fact that ψ is not surjective.

21 !4As it happens this hypothesis is automatically satisfied for Z because there is a unique homomorphism

from Z Ñ R (Proposition 3.7) and the composition of homomorphisms is a homomorphism. It is included

because the purpose of the example is to illustrate that ‘right cancellability’ of ring homomorphisms does

not require them to be surjective, unlike functions more generally.

Page 14



Example 4.9 (R). The reals, like the rationals, are a field with a total order ě such that

x ` z ě y ` z whenever x ě y and xy ě 0 whenever x, y ě 0. However, they also have the

additional property that any non-empty subset of Rě0 that is bounded below has a greatest

lower bound (though this lower bound may not be in the set, unlike Z).

Example 4.10. The ring Qr
?

2s :“ ta ` b
?

2 : a, b P Qu is a subfield of R. Indeed, it is

a commutative subring of R by the subring test (since
?

2
2
P Q). Now suppose a ` b

?
2 P

Qr
?

2s˚ so that a2 ´ 2b2 ‰ 0 (since
?

2 is irrational). Then

pa` b
?

2q

ˆ

a

a2 ´ 2b2
´

b

a2 ´ 2b2

?
2

˙

“ 1

so that a` b
?

2 P UpQr
?

2sq as claimed.

Example 4.11 (C). The complex numbers are a ring whose additive group is a vector

space over R with basis 1 and i, and with bilinear multiplication determined by i2 “ ´1. In

particular, for z, w P C there are unique x, y, u, v P R such that z “ x` iy and w “ u` iv,

and we can compute that

´z “ p´xq ` ip´yq, z ` w “ px` uq ` ipy ` vq, and zw “ pxu´ yvq ` ipxv ` yuq.

!4Note that unlike the rationals and reals there is no total order ě on C such that

x ` z ě y ` z whenever x ě y, and xy ě 0 whenever x, y ě 0. Indeed, suppose that there

were. By trichotomy either 1 ě 0 or 0 ě 1; in the latter case p´1q ą 1 ` p´1q “ 0. Hence

either 1 “ 12 ě 0 or 1 “ p´1q2 ě 0; we conclude that 1 ą 0 (since 1 ‰ 0 by non-triviality of

C). Again, by trichotomy either i ě 0 or 0 ě i. In the former case ´1 “ i2 ě 0 so 0 ě 1, a

contradiction; in the latter ´i ě i ` p´iq “ 0 and so ´1 “ p´iq2 ě 0 and a contradiction

again.

Example 4.12. The ring Zris :“ ta`bi : a, b P Zu is called the ring of Gaussian integers.

It is a subring of C by the subring test since i2 P Z and so an integral domain, and UpZrisq “
t1,´1, i,´iu. To see this last fact suppose that pa ` ibqpc ` idq “ 1 for a, b, c, d P Z, then

taking absolute values we have pa2 ` b2qpc2 ` d2q “ 1. We conclude a2 ` b2 “ 1, and hence

pa, bq P tp1, 0q, p´1, 0q, p0, 1q, p0,´1qu as required.

Direct products of rings

For this we require some more notation. Suppose that Si is a set for each i P I. We write
ś

iPI Si for the set of x “ pxiqiPI with xi P Si for all i P I. If Si “ S for all i P I then we

write SI or
ś

iPI S for
ś

iPI Si, and for n P N0 we write Sn for St0,...,n´1u and sometimes

ps0, . . . , sn´1q in place of psiqiPt0,...,n´1u. In particular S0 “ SH contains one element which

we denote pq.
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Proposition 4.13. Suppose that pRiqiPI is a family of rings. Then
ś

iPI Ri may be equipped

with the structure of a ring, called the direct product and denoted
ś

iPI Ri, with

p´xqi “ ´xi, px` yqi “ xi ` yi, and pxyqi “ xiyi for all i P I, x, y P
ź

iPI

Ri,

and 0ś
iPI Ri

“ p0RiqiPI and 1ś
iPI Ri

“ p1RiqiPI , and

U

˜

ź

iPI

Ri

¸

“
ź

iPI

UpRiq and if x P U

˜

ź

iPI

Ri

¸

then px´1qi “ x´1i for all i P I.

Moreover,
ś

iPI Ri is commutative if and only if Ri is commutative for all i P I, and the

projection maps
ś

iPI Ri Ñ Rj;x ÞÑ xj are ring homomorphisms.

Proof. Since x “ y if and only if xi “ yi for all i P I, all the axioms of a ring, along with

the description of the group of units, and the commutativity of multiplication if it holds,

are inherited from the corresponding axioms for the rings Ri e.g addition is associative for
ś

iPI Ri because addition is associative in Ri for all i P I. The fact that the projection maps

are ring homomorphisms is a quick check.

Remark 4.14. The empty product of rings has the structure of the trivial ring.

Example 4.15. Given a ring R, R2 is never an integral domain: indeed, if R is trivial then

R2 is trivial and so not an integral domain; if R is non-trivial then p0, 1q, p1, 0q P pR2q˚, but

p0, 1qp1, 0q “ p0, 0q “ 0R2 and so R2 is not an integral domain.

Polynomial rings

Given a commutative ring R, the polynomial ring over R with indeterminate X is

a commutative ring, denoted RrXs and whose elements are called polynomials, with a

distinguished element X such that every element p “ ppXq P RrXs can be written in the

form

ppXq “ a0 ` a1X ` ¨ ¨ ¨ ` anX
n for some n P N0 and a0, . . . , an P R,

and furthermore,
n
ÿ

i“0

aiX
i
“ 0RrXs if and only if a0, . . . , an “ 0R. (4.1)

If ppXq “ a0 ` a1X ` ¨ ¨ ¨ ` anX
n P RrXs˚ then there is a largest d ď n such that ad ‰ 0R.

We call this d the degree of p and denote it deg p; we call a0, a1, . . . , ad the coefficients of

p; and we call ad the lead coefficient and a0 the constant coefficient.

Remark 4.16. It is reasonably straightforward to show that such a ring exists and is unique

though it is not especially illuminating to do so. The important point is that the ring

structure already tells us how to add and multiply polynomials as we shall discuss again in

Remark 4.20.
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Remark 4.17. The ‘freeness’ of the polynomial ring comes from the ‘only if’ part of (4.1);

when we are using it we shall often say ‘by equating coefficients’.

!4While the maps Fp Ñ Fp;λ ÞÑ λp and Fp Ñ Fp;λ ÞÑ λ are the same by Fermat’s

Little Theorem, the polynomials Xp and X in FprXs are distinct.

Example 4.18. Suppose that F is a field. Then the inclusion map F Ñ FrXs gives FrXs
the structure of an F-vector space by Proposition 2.11, and 1, X,X2, . . . is linearly indepen-

dent by the ‘only if’ part of (4.1), and spanning by definition of FrXs. We conclude that

1, X,X2, . . . is a basis for FrXs.
When we meet modules later, we shall see how this generalises to RrXs.

Remark 4.19. We define RrX1, . . . , Xns :“ RrX1, . . . , Xn´1srXns and call RrX1, . . . , Xns the

polynomial ring in the indeterminants X1, . . . , Xn.

Remark 4.20. There is some basic algebra of polynomial expressions that is useful. Suppose

that R is a subring of S and λ P S commutes with all elements of R. Then we have

´

˜

n
ÿ

i“0

aiλ
i

¸

“

n
ÿ

i“0

p´aiqλ
i, and22

˜

n
ÿ

i“0

aiλ
i

¸

`

˜

m
ÿ

i“0

biλ
i

¸

“

maxtn,mu
ÿ

i“0

pai ` biqλ
i, (4.2)

and
˜

n
ÿ

i“0

aiλ
i

¸˜

m
ÿ

i“0

biλ
i

¸

“

n`m
ÿ

i“0

˜

i
ÿ

j“0

ajbi´j

¸

λi. (4.3)

Note, in particular if S “ RrXs and λ “ X, then in particular we have the rules for adding

polynomials.

The important consequence of the ‘freeness’ mentioned in Remark 4.17 is the following.

Proposition 4.21. Suppose that φ : R Ñ S is a ring homomorphism from a commutative

ring R and λ P S commutes with all elements in the image of φ. Then the map

RrXs Ñ S; ppXq “ a0 ` a1X ` ¨ ¨ ¨ ` adX
d
ÞÑ ppλq :“ φpa0q ` φpa1qλ` ¨ ¨ ¨ ` φpadqλ

d

is a well-defined ring homomorphism.

Proof. The map is well-defined by the ‘freeness’ of the polynomial ring, that is (4.1), and

the additive algebra of the polynomials, that is (4.2); denote it by φ̃. We have φ̃p1q “ 1

since φp1q “ 1, and φ̃ is a homomorphism of the additive groups by the additive algebra of

polynomials since φ is a homomorphism of the additive groups, and φ̃ppqq “ φ̃ppqφ̃pqq by the

multiplicative algebra of polynomials, that is (4.3), and the fact homomorphisms respect

iterated sums (and also products), and the fact that λ commutes with all elements of the

image of φ.

22We take the convention convention that if m ă n ď maxtn,mu then bi “ 0R for m ă i ď n, and if

n ă m ď maxtn,mu then ai “ 0R for n ă i ď m.
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Remark 4.22. This homomorphism is called the evaluation homomorphism and its image

is a ring by Proposition 2.9; we denote it Rrλs.

!4Note that the particular homomorphism φ : R Ñ S does not appear in the notation

Rrλs. Often the homomorphism is the inclusion map. Indeed, the inclusion map RÑ RrXs

is a homomorphism (this is exactly the statement that R is a subring of RrXs) and X P RrXs

commutes with all elements of (the image under inclusion of) R. With this map the two

possible meanings of RrXs (the one here and the one defined when we defined polynomial

rings) coincide. Similarly the inclusion maps QÑ Qr
?

2s and ZÑ Zris for the rings already

defined in Examples 4.10 and 4.12 give notation that is compatible with that already set in

those examples.

Integral domains produce polynomial rings where the degree function behaves nicely:

Proposition 4.23. Suppose that R is a non-trivial commutative ring. Then TFAE:

(i) R is an integral domain;

(ii) RrXs is an integral domain;

(iii) for every p, q P RrXs˚ we have pq P RrXs˚ and deg pq “ deg p` deg q.

Proof. Certainly (ii) implies (i) since R is a subring of RrXs, and (iii) implies (ii) since R

is non-trivial and RrXs is commutative, and so the fact RrXs is an integral domain follows

by forgetting the second part of (iii).

To see (i) implies (iii) suppose that p, q P RrXs˚ have degree n and m, and lead coef-

ficients an and bm respectively. Then from the multiplicative algebra of polynomials (4.3)

we see that deg pq ď n ` m, and the coefficient of Xn`m is anbm P R˚ since R is an in-

tegral domain and an, bm P R
˚ by definition of degree. We conclude that pq P RrXs˚ and

deg pq “ n`m as required.

The constant polynomials are the degree 0 polynomials along with the zero polyno-

mial.

Example 4.24. Given an integral domain R the group of units of RrXs is the set of non-

zero constant polynomials whose (only) non-zero coefficient is a unit of R. Indeed, suppose

that p P UpRrXsq. Then there is some q P UpRrXsq such that pq “ 1, and so by Proposition

4.23 (iii) we have 0 “ deg p ` deg q and so deg p “ 0 and deg q “ 0 and hence ppXq “ a0

and qpXq “ b0 for some a0, b0 P R. Since a0b0 “ 1 and R is commutative we conclude that

a0 P UpRq as required. The converse is immediate.
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Matrix rings

Given a field F we write Mn,mpFq for the set of n ˆ m matrices with values in F and

MnpFq :“Mn,npFq.

Proposition 4.25. Suppose that F is a field and n P N˚. Then MnpFq is a ring with

addition and multiplication satisfying

A`B “ pAi,j `Bi,jq
n
i,j“1 and AB “

˜

n
ÿ

k“1

Ai,kBk,j

¸n

i,j“1

for A,B PMnpFq,

zero p0Fq
n
i,j“1, multiplicative identity I where Ii,i “ 1F for 1 ď i ď n and Ii,j “ 0F for i ‰ j,

and ´A “ p´Ai,jq
n
i,j“1 for A PMnpFq.

Remark 4.26. It is reasonably straightforward to show that such a ring exists though it is

not especially illuminating to do so. We shall revisit this in Proposition 13.9.

Example 4.27. The map F Ñ MnpFq;λ ÞÑ λI is a homomorphism mapping F into the

centre of MnpFq. Proposition 2.11 shows that this gives MnpFq the structure of an F-vector

space such that multiplication on MnpFq is bilinear, and the n2 matrices Epi,jq for 1 ď i, j ď n

(which have E
pi,jq
i,j “ 1F and E

pi,jq
k,l “ 0F when pk, lq ‰ pi, jq) form a basis.

Example 4.28. Given a field F and A P MnpFq, by FrAs we mean the ring defined in

Remark 4.22 with the homomorphism FÑMnpFq from Example 4.27; and if K is a subfield

of F, then by KrAs we mean the ring defined in Remark 4.22 with the homomorphism from

Example 4.27 composed with the inclusion homomorphism KÑ F.

Remark 4.29. For n ě 2 the ring MnpFq is not commutative. This is easy to check for n “ 2

where23

˜

1 1

0 1

¸˜

1 0

1 1

¸

“

˜

2 1

1 1

¸

‰

˜

1 1

1 2

¸

“

˜

1 0

1 1

¸˜

1 1

0 1

¸

.

For n ą 2 we get an example by embedding the matrices above: we place each one in the

top left of an nˆ n matrix and then fill the 3rd, 4th, . . . , and nth row and column with 0s.

Remark 4.30. The group UpMnpFqq is often denoted GLnpFq, the set of matrices with non-

zero determinant.

23 !4As it happens we can have 2 “ 0 in a field e.g. F2, but we cannot have 2 “ 1 since then 1 “ 0

contradicting non-triviality of the field. This latter impossibility is what we need for this example.
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5 Ideals and quotient rings

The rings ZN – discussed in Example 4.1 – are examples of a very general construction. To

describe this we first need a suitable generalisation of ‘multiple of N ’: An ideal24 in a ring

R is a subgroup of the additive group of R closed under left and right multiplication by

elements of R. The notation I C R is used in places (e.g. [Coh00, p12]) to mean I is an

ideal of R.

Remark 5.1. !4Note the difference between ideals and subrings: an ideal is closed under

multiplication by any element of the containing ring, while a subring is only closed under

multiplication by elements of itself. On the other hand a subring contains 1, while an ideal

doe not in general contain 1. The ring R itself is the only set that is both an ideal and a

subring.

Example 5.2. Given a ring R, the sets t0Ru and R are ideals.

Example 5.3. Given a commutative ring R and x P R the set xR :“ txr : r P Ru is an

ideal. !4The requirement that R be commutative cannot be dropped: suppose that F is a

field and consider the ring M2pFq and the matrices

A :“

˜

1 0

0 0

¸

and P :“

˜

0 1

1 0

¸

.

The set AM2pFq is a set of matrices all of which have rank at most 1, and if AM2pFq were

an ideal then it would contain I “ A` PAP which has rank 2.

Proposition 5.4. Suppose that R is a ring and pIiqiPS is collection of ideals of R (with S

non-empty). Then
Ş

iPS Ii is an ideal.

Proof. The requirement that S be non-empty ensures that the intersection is well-defined.

Since Ii is an (additive) subgroup of R for all i P S, we have 0R P Ii and hence 0R P
Ş

iPS Ii.

Now, suppose x, y P
Ş

iPS Ii. Then x, y P Ii for all i P S, and hence x ` p´yq P Ii for all

i P S, and x` p´yq P
Ş

iPS Ii; we conclude that
Ş

iPS Ii is a subgroup by the subgroup test.

Finally, if x P
Ş

iPS Ii and r P R then x P Ii for all i P S, and hence xr, rx P Ii for all i P I

so xr, rx P
Ş

iPS Ii. The result is proved.

Given a ring R and elements x1, . . . , xn P R we define

xx1, . . . , xny :“
č

tI : I is an ideal in R and x1, . . . , xn P Iu, (5.1)

which is an ideal by the preceding proposition and Example 5.2, which ensures that there

is at least some ideal containing x1, . . . , xn; we call xx1, . . . , xny the ideal generated by

x1, . . . , xn. An ideal generated by one element is called a principal ideal.

24When R is not commutative these are often called two-sided ideals.
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Remark 5.5. !4The ideal generated by an element depends on the ambient ring: for example

if N P N˚ then xNy “ NZ as an ideal in Z, while xNy “ Q as an ideal in Q.

Remark 5.6. If x P R is a unit then xxy “ R. Conversely, if R is commutative and xxy “ R

then there is y P R such that xy “ 1 and hence x P UpRq. !4Commutativity is essential

for the converse: with the notation of Example 5.3, xAy “M2pFq, but A is not a unit.

Given a ring R and A1, . . . , An Ă R we write

A1 ` ¨ ¨ ¨ ` An :“ ta1 ` ¨ ¨ ¨ ` an : a1 P A1, . . . , an P Anu.

Proposition 5.7. Suppose that R is a ring and I1, . . . , In are ideals in R. Then I1`¨ ¨ ¨`In

is an ideal in R.

Proof. Since 0R P Ii for all 1 ď i ď n we have 0R P I1 ` ¨ ¨ ¨ ` In. Suppose that r P R

and z, w P I1 ` ¨ ¨ ¨ ` In so that there are elements zi, wi P Ii for all 1 ď i ď n with

z “ z1 ` ¨ ¨ ¨ ` zn and w “ w1 ` ¨ ¨ ¨ ` wn. Then rz “
řn
i“1 prziq P I1 ` ¨ ¨ ¨ ` In by

distributivity, and similarly for zr. By commutativity and associativity of addition we have

z ´ w “ z ` p´1qw “
řn
i“1 pzi ` p´1qwiq P I1 ` ¨ ¨ ¨ ` In. Hence by the subgroup test

I1 ` ¨ ¨ ¨ ` In is a group, and so the result is proved.

Remark 5.8. Suppose that R is a commutative ring and x1, . . . , xn P R. Then

xx1, . . . , xny “ x1R ` ¨ ¨ ¨ ` xnR.

Indeed, certainly any ideal containing x1, . . . , xn must contain the set on the right, and by

Proposition 5.7 and Example 5.3 the right hand side is an ideal.

Example 5.9 (Ideals in Z). For each N P N0, xNy “ NZ is an ideal in Z – this is the set

of integer multiples of N .

In fact all ideals in Z have this form: suppose that I is a non-zero ideal in Z then I

contains a positive element (since ideals are closed under multiplication by ´1); let N P I

be the minimal positive element of I. Of course I Ą NZ; if IzNZ ‰ H then it contains a

positive element and so a minimal positive element, say M . By minimality of N we have

M ą N and of course M ´ N P I. By minimality of M and positivity of M ´ N we have

M ´ N P NZ whence M P NZ, a contradiction. It follows that I “ NZ and the result is

proved.

Remark 5.10. An integral domain in which every ideal is principal is called a principal

ideal domain or PID. Example 5.9 shows that Z is a PID. PIDs are the central object

of study of this course – roughly they capture the properties of Z which we are trying to

generalise.
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Example 5.11. The ideal x2, Xy in ZrXs is the set of polynomials with even constant

coefficient. Certainly the polynomials with even constant coefficient form an ideal in ZrXs
containing 2 and X, and conversely every such polynomial is in x2, Xy since it can be written

in the form 2q `XppXq for some p P ZrXs and constant polynomial q P ZrXs.
Now the ideal x2, Xy is not principal, so ZrXs is not a PID. To see this, suppose that

p P ZrXs is such that x2, Xy “ xpy. Then there would be polynomials q, r P ZrXs˚ such

that X “ ppXqqpXq and 2 “ ppXqrpXq. Since Z is an integral domain, Proposition 4.23

(iii) and the second of these tells us deg p “ 0, and then the first that deg q “ 1. Write

ppXq “ a and qpXq “ bX` c where a, b, c P Z. Then 0 “ pab´1qX`ac, and so ab “ 1. We

conclude that a is a unit. But then p is a unit in ZrXs and so xpy “ ZrXs. This contradicts

the fact that all polynomials in x2, Xy have even coefficients.

Kernels

Given a ring homomorphism φ : R Ñ S, the kernel of φ is its kernel as a homomorphism

of additive groups, that is the set of r P R such that φprq “ 0S.

Remark 5.12. In particular, a ring homomorphism φ : R Ñ S is injective if and only if

kerφ “ t0Ru.

Proposition 5.13. Suppose that φ : R Ñ S is a ring homomorphism. Then kerφ is an

ideal.

Proof. Since φ is a group homomorphism the kernel is an additive subgroup of R. Now

suppose x P kerφ and r P R. Then φpxrq “ φpxqφprq “ 0φprq “ 0 by Lemma 1.3, and

similarly φprxq “ 0. It follows that xr, rx P kerφ so that kerφ is an ideal.

Remark 5.14. Given a commutative ring R we say that λ is a root of p if ppλq “ 0. ppλq is

defined in Proposition 4.21 applied with the identity homomorphism RÑ R.

Example 5.15. Suppose that R is a commutative ring and λ P R. Then I :“ tp P RrXs :

ppλq “ 0u is an ideal (as it is the kernel of the evaluation homomorphism RrXs Ñ R; p ÞÑ

ppλq) and I “ xX ´ λy. To see this, first note that I contains X ´ λ, and so xX ´ λy; and

secondly, if p P I then

ppXq “ ppXq ´ ppλq “
d
ÿ

n“0

anpX
n
´ λnq

“ pX ´ λq
d
ÿ

n“1

anpX
n´1

` ¨ ¨ ¨ ` λn´1q P xX ´ λy.

This result is sometimes called the Factor Theorem.

The Factor Theorem already gives us a very useful result about integral domains.
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Proposition 5.16. Suppose that R is an integral domain and p P RrXs˚ has degree d. Then

p has at most d roots in R.

Proof. We proceed by induction on d. If d “ 0 then p is a non-zero constant and so has no

roots. Now, suppose that d ą 0 and λ is a root of p. Then there is a polynomial q such

that ppXq “ pX ´ λqqpXq, and since R is an integral domain Proposition 4.23 (iii) applies

so that deg q “ d´ 1 and so by induction q has at most d´ 1 roots. Since R is an integral

domain, if λ1 P R is a root of p then either λ1 ´ λ “ 0 or qpλ1q “ 0 so that λ1 is a root of q.

We conclude that p has at most 1` pd´ 1q “ d roots as claimed.

Remark 5.17. Note that if R is a non-trivial commutative ring that is not an integral domain

then there are elements a, b P R˚ with ab “ 0. Then polynomial aX P RrXs then has degree

1 but at least two roots: 0 and b.

Quotient rings and the isomorphism theorems

Ideals can be used to produce equivalence relations that are compatible with the underlying

ring operations in the same way as Example 4.1. This extends what happens for commutative

groups.

With this we can construct quotient rings.

Theorem 5.18 (Quotient Rings). Suppose that R is a ring and I is an ideal. Then the

commutative group R{I may be endowed with a multiplication such that the quotient map q

is a surjective ring homomorphism with kernel I. If R is commutative then so is R{I.

Proof. The key is to show that qpxyq “ qpx1y1q whenever x`I “ x1`I and y`I “ y1`I. By

distributivity of multiplication and negation we have that xy´ x1y1 “ px´ x1qy` x1py´ y1q.

But then x ´ x1 P I and y ´ y1 P I and so xy ´ x1y1 P Iy ` x1I Ă I since I is closed

under multiplication by any element of R (in this case y on the right and x1 on the left).

We conclude that qpxyq “ qpx1y1q as required, and so we may define pˆ on R{I: first, for

u, v P R{I let x, y P R be such that qpxq “ u and qpyq “ v. Then put upˆv :“ qpxyq, which

is well-defined.

For u, v, w P R{I, let x, y, z P R be such that u “ qpxq, v “ qpyq and w “ qpzq. Then

pupˆvqpˆw “ qppxyqzq “ qpxpyzqq “ upˆpvpˆwq so that pˆ is associative. qp1qqpxq “ qpxq “

qpxqqp1q so qp1q is an identity for pˆ since q is surjective. Finally, for qpxq P R{I, we have

qpxqpˆpqpyq ` qpzqq “ qpxpy ` zqq “ qpxy ` xzq “ qpxyq ` qpxzq “ qpxqpˆqpyq ` qpxqpˆqpzq

and since q is surjective it follows that left multiplication by qpxq is a homomorphism. So is

right multiplication by a similar argument, and hence (again since q is surjective) it follows

that pˆ distributes over addition.

Finally, we have seen that qp1q is the identity; q is a homomorphism of the additive

by definition of the quotient group; and q is multiplicative by definition. Thus q is a
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homomorphism. Moreover, pˆ is commutative if the multiplication on R is commutative.

The result is proved.

Remark 5.19. Given an ideal I of a ring R, we have

px` Iq `R{I py ` Iq “ px` yq ` I,´px` Iq “ p´xq ` I, and 0R{I “ I;

and

px` Iq ˆR{I py ` Iq “ pxyq ` I and 1R{I “ 1` I,

and if x P UpRq then x` I P UpR{Iq and px` Iq´1 “ x´1 ` I. !4Not every unit in R{I is

the image of a unit as can be seen by considering R “ Z and I “ xNy for N “ 5 or N ą 6.

Remark 5.20. If R “ Z and I “ xNy “ NZ then R{I is the ring ZN . In the light of this

we generalise the notation for modular arithmetic: if R is a ring and I is an ideal in R then

we write x pmod Iq in place of x` I or qpxq (where q is as in Theorem 5.18). The intuition

here is that quotient ring R{I is the ring R with the elements of I ‘set to zero’.

Example 5.21. Suppose that F is a field and that I is an ideal in F. Then the map

q : F Ñ F{I is a ring homomorphism with kernel I and so by Proposition 2.4 either F{I is

trivial i.e. I “ F; or this homomorphism is injective and so I “ t0u. It follows that for

fields the only two ideals are the whole field and the zero ideal c.f. Example 5.2.

!4The converse is not true, for example the ring of Exercise I.9, called the quaternions,

is a non-commutative ring (and so in particular not a field) with only two ideals.

Theorem 5.22 (First Isomorphism Theorem). Suppose that φ : RÑ S is a ring homomor-

phism. Then Imφ is a subring of S; kerφ is an ideal in R; and the map

ψ : R{ kerφÑ S;x` kerφ ÞÑ φpxq

is a well-defined injective ring homomorphism.

Proof. The first conclusion is Proposition 2.9, but it is perhaps clearer to say it is by the

subring test and Lemma 2.2; the second is Proposition 5.13, but it is also perhaps easier to

just say by Lemma 1.3. With this Theorem 5.18 tells us R{ kerφ is a ring.

Now, x ` kerφ “ y ` kerφ if and only if x ´ y P kerφ which is true if and only if

0 “ φpx´ yq “ φpxq ´ φpyq, which in turn is true if and only if φpxq “ φpyq. It follows that

ψ is a well-defined injection. ψ is a homomorphism of the additive group since

ψppx` kerφq ` py ` kerφqq “ ψppx` yq ` kerφq

“ φpx` yq “ φpxq ` φpyq “ ψpx` kerφq ` ψpy ` kerφq;
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and moreover

ψppx` kerφqpy ` kerφqq “ ψppxyq ` kerφq

“ φpxyq “ φpxqφpyq “ ψpx` kerφqψpy ` kerφq,

and ψp1` kerφq “ φp1q “ 1. The result is proved.

We turn to some applications.

Example 5.23. The First Isomorphism Theorem applied to the ring homomorphism RÑ

R;x ÞÑ x gives the isomorphism R{t0u – R.

Example 5.24. Suppose that R is a commutative ring and λ P R. Then RrXs{xX ´ λy is

isomorphic to R by applying the First Isomorphism Theorem to the evaluation homomor-

phism RrXs Ñ R; p ÞÑ ppλq.

Proposition 5.25. Suppose that R is an integral domain of characteristic p ‰ 0. Then p is

prime and the additive group of R is a vector space over Fp in such a way that multiplication

on R is bilinear.

Proof. Let ψ : Z Ñ R be the homomorphism of Proposition 3.7, and suppose that R has

characteristic p. If p “ ab for a, b ě 1 then 0R “ ψppq “ ψpaqψpbq, and since R is an integral

domain we conclude that ψpaq “ 0 or ψpbq “ 0; say the former. Then by definition a ě p

and so a “ p and b “ 1. We conclude that p is prime.

The kernel of ψ contains p and is an ideal in Z. Since Z is a PID it has the form

xNy for some N P N0, but then N � p, whence N “ 1 or N “ p. If N “ 1 then

1R “ ψp1q “ ψp0q “ 0R contradicting the non-triviality of R. We conclude that N “ p

and the ring Z{xpy is the ring Fp which is a field (Example 4.3). By the First Isomorphism

Theorem there is then an injective ring homomorphism Fp Ñ R and so R has the structure

of a vector space over Fp as described by Proposition 2.11.

Remark 5.26. For a finite field F the homomorphism ψ : Z Ñ F (from Proposition 3.7)

cannot be injective and so the kernel contains a non-zero, and hence positive element so

the characteristic is non-zero and hence by the above prime. It follows from this that every

finite field has order pn for some prime p and n P N˚. In Exercise II.9 it is shown that there

is a field of order pn for every prime p and n P N˚.

Remark 5.27. Integral domains of characteristic 0 need not be vector spaces – e.g. Z. If Z
were a vector space over a field F with scalar multiplication denoted λ.z for λ P F, z P Z,

then we have two cases: F has characteristic 2, so 0 “ p1F ` 1Fq.1 “ 1` 1, a contradiction;

or F has characteristic greater than 2, and there is λ P F such that p1F ` 1Fqλ “ 1F,

and 1 “ p1F ` 1Fq.pλ.1q “ 2pλ.1q, another contradiction since there is no integer with this

property.
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Example 5.28. In Example 3.10 we saw that Z had no proper subrings. On the other hand,

if R is a ring with no proper subrings then the image of the unique ring homomorphism

φ : ZÑ R afforded by Proposition 3.7 must be R (since the image is a subring by Proposition

2.9) and so by the First Isomorphism Theorem R is isomorphic to a quotient of Z. In

Example 5.9 we saw every ideal of Z has the form xNy for N P N0 and so that a ring with no

proper subrings must be isomorphic to Z (recall Example 5.23) or ZN for N P N˚. A short

check confirms that these rings really do not have any proper subrings (and the existence

of proper subrings is a property that is preserved by isomorphisms).

One can further test our understanding of rings by asking which (commutative) rings

have exactly one or two proper subrings, and this has been investigated in [ZD16].

Given an ideal I in R we write IdealsIpRq for the set of ideals in R containing I, and

IdealspRqp“ Idealst0upRqq for the set of ideals of R.

Theorem 5.29 (Relationship between ideals in R and R{I). Suppose that R is a ring and

I is an ideal in R. Then the map

φ : IdealsIpRq Ñ IdealspR{Iq; I 1 ÞÑ tx` I : x P I 1u.

is a well-defined inclusion-preserving bijection.

Proof. First, we show the map is well-defined. Suppose that I 1 P IdealsIpRq, and S, T P

φpI 1q. Then there are elements x, y P I 1 such that S “ x` I and T “ y ` I so S ` p´T q “

px ` Iq ` pp´yq ` Iq “ px ` p´yqq ` I P φpI 1q. Since φpI 1q is non-empty, the subgroup

test tells us that φpI 1q is an additive subgroup of R{I. Furthermore, if x ` I P R{I and

y` I P φpI 1q for some y P I 1 then xy, yx P I 1 and so px` Iq ˆ py` Iq “ pxyq ` I P φpI 1q and

py ` Iq ˆ px` Iq “ pyxq ` I P φpI 1q. Thus φpI 1q is genuinely an ideal in R{I.

φ is visibly inclusion-preserving; it is an injection since I 1 “
Ť

tx` I : x` I P φpI 1qu in

view of the fact that I Ă I 1.

Finally, if J P IdealspR{Iq then put I 1 :“
Ť

KPJ K. I Ă I 1 since I “ 0R{I P J . If x, y P I 1

then x ` I, y ` I P J and so px ` p´yqq ` I P J (since J is an additive group) and hence

x ` p´yq P I 1. It follows that I 1 is an additive group by the subgroup test. If x P R and

y P I 1 then px ` Iq ˆ py ` Iq P J and so pxyq ` I P J and xy P I 1, and similarly yx P I 1 so

we see that I 1 is an ideal. Moreover φpI 1q “ J , and φ is a surjection.

This result also goes by the name of the Correspondence Theorem and sometimes the

Fourth Isomorphism Theorem for rings.

6 Proper, prime, and maximal ideals

Suppose that R is a commutative ring. We say that an ideal I in R is proper if I ‰ R, and

have the following immediate fact.
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Lemma 6.1. Suppose that R is a commutative ring and I is an ideal in R. Then I is proper

if and only if R{I is non-trivial.

Remark 6.2. If R is a non-trivial ring then R always has a proper ideal – t0Ru – while we

saw in Example 3.10 that there are non-trivial rings (e.g. Z) with no proper subrings.

We say that an ideal I is prime if it is proper and whenever ab P I we have either a P I

or b P I.

Proposition 6.3. Suppose that R is a commutative ring and I is an ideal in R. Then I is

a prime if and only if R{I is an integral domain. In particular R is an integral domain if

and only if t0Ru is prime.

Proof. For ‘only if’ we have pa ` Iqpb ` Iq “ 0R{I “ I, so ab P I and therefore a P I or

b P I by primality. Consequently a ` I “ I “ 0R{I or b ` I “ I “ 0R{I i.e. R{I is an

integral domain. (R{I is non-trivial since I is proper.) In the other direction, I is proper

since R{I is non-trivial, and if ab P I then pa ` Iqpb ` Iq “ 0R{I , and a ` I “ 0R{I “ I or

b` I “ 0R{I “ I. We conclude a P I or b P I as required.

Example 6.4. The ideal xXy is prime in RrXs when R is an integral domain. To see this,

suppose that ppXqqpXq P xXy. We can write ppXq “ a`XgpXq and qpXq “ b`XhpXq for

g, h P RrXs, and hence ab `XpgpXq ` hpXq `XgpXqhpXqq “ XrpXq for some r P RrXs.

It follows that ab “ 0R and since R is an integral domain either a “ 0R and so p P xXy, or

b “ 0R and q P xXy.

We say that an ideal I is maximal if I is proper and whenever I Ă J Ă R for some

ideal J we have J “ I or J “ R.

Remark 6.5. !4Maximal here is maximal with respect to inclusion amongst proper ideals;

all ideals in R are contained in R.

Proposition 6.6. Suppose that R is a commutative ring and I is an ideal in R. Then I is

maximal if and only if R{I is a field. In particular R is a field if and only if t0u is maximal.

Proof. Suppose that R{I is a field. Then R{I is non-trivial and so I is proper; suppose J

is an ideal with I Ĺ J Ă R. Then there is x P JzI and since R{I is a field some y P R such

that xy` I “ 1` I whence 1 P xR` I Ă J and so J “ R, whence I is maximal as claimed.

Conversely, if I is maximal and x P R has x ` I ‰ I then I ` xR is an ideal properly

containing I and so by maximality equals R. It follows that there is some y P R such that

1 P xy ` I whence px ` Iqpy ` Iq “ 1R{I so that UpR{Iq “ pR{Iq˚ and R{I is a field as

required. (R{I is non-trivial as I is proper.)

Example 6.7. Given a prime p then xpy is maximal in Z since Z{xpy is a field (as we saw

in Example 4.3).
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Remark 6.8. It follows immediately from this and Proposition 6.3 that every maximal ideal

is prime, but this can also be proved directly. !4Although it will turn out that in PIDs all

non-zero prime ideals are maximal (essentially Proposition 7.11), this is not true in general

e.g. xXy in ZrXs is prime, and properly contained in the proper ideal x2, Xy.

It is not immediately obvious that a non-trivial commutative ring, R, should have a

maximal proper ideal. If R is finite then we might proceed iteratively: note that t0u is a

proper ideal (since R is non-trivial). Suppose we have constructed some proper ideal I. If

this is maximal then stop; if not then there is some proper ideal strictly containing I. In

the second case replace I by this new ideal. The new ideal is strictly larger, and since R is

finite this process must terminate.

If R is infinite this process might not terminate, but we still have the intuition that we

should be able to keep going until we exhaust all the element of R. This intuition can be

formalised through a transfinite induction, but the conclusion (in a slightly generalised form

which follows) is more commonly established via Zorn’s Lemma following [Zor35].

Theorem 6.9 (Krull’s Theorem). Suppose that R is a commutative ring and I is a proper

ideal in R. Then there is a maximal ideal J in R containing I.

We shall not prove this here, though it is not particularly involved. In fact we could

take it an an axiom – it is known to be equivalent to the Axiom of Choice or Zorn’s Lemma

[Hod79].

7 Divisibility

Suppose that R is a commutative ring. Principal ideals capture a notion of divisibility: we

say that a divides b or b is a multiple of a, and write a � b if any of the following equivalent

properties holds:

b P xay; or xby Ă xay; or there is some x P R such that b “ xa.

!4While the first two of these are equivalent even if the ring is not commutative, returning

to Example 5.3 we see that the third is not equivalent to the others: In the ring M2pFq,
xAy “ xIy, but for reasons of rank I is not a product of A with some other element.

Remark 7.1. The structure of ideals means that if a � bi for all 1 ď i ď n, and r1, . . . , rn P R

then a � b1r1 ` ¨ ¨ ¨ ` bnrn.

We say that a and b are associates and write a „ b if xay “ xby.

Proposition 7.2. Suppose that R is a commutative ring. Then � is reflexive and transitive,

and if x � x1 and y � y1 then xy � x1y1. Hence „ is an equivalence relation, and if x „ x1

and y „ y1 then xy „ x1y1. Furthermore, x „ 0 if and only if x “ 0, and x „ 1 if and only

if x P UpRq.
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Proof. Reflexivity and transitivity follow immediately from the corresponding facts for sub-

set inclusion. If x � x1 and y � y1 then there are elements a, b P R such that x1 “ ax and

y1 “ by so x1y1 “ pabqpxyq, and xy � x1y1.

Furthermore, 0 „ 0, and if x „ 0 then there is a P R such that x “ 0a “ 0. If x P UpRq

then xx´1 “ 1 so x � 1, and x “ 1x so x „ 1; and if x „ 1 then there is a P R such that

1 “ xa and hence x P UpRq.

Remark 7.3. !4Ideals depend on the ambient ring and so do � and „ e.g. 2 ffl 3 in Z, but

2 � 3 in Q.

Remark 7.4. For r P R and ppXq “ a0 ` a1X ` ¨ ¨ ¨ ` adX
d P RrXs we have r|p in RrXs if

and only if r � ai in R for all 0 ď i ď d by equating coefficients.

We say that c is a common divisor of a and b if c � a and c � b, and d is a greatest

common divisor (gcd) if it is a common divisor, and every common divisor of a and b is

a divisor of d. It follows immediately that if d and d1 are gcds of a and b then d „ d1.

Remark 7.5. All of this terminology coincides with its usual meaning in Z.

Proposition 7.6. Suppose that R is commutative ring in which every ideal is principal.

Then every pair a, b P R has a greatest common divisor.

Proof. Since every ideal in R is principal there is some d P R such that xa, by “ xdy, and d

is a common divisor of a and b. Now if c is a common divisor of a and b, then a, b P xcy and

so xdy “ xa, by Ă xcy as required.

We say that an element x P R is prime if xxy is a prime ideal; in other notation if (x  1

and) x � ab implies x � a or x � b. In particular, if R is an integral domain then Example

6.4 tells us that X is prime in RrXs.

Remark 7.7. By induction, given a prime x and a finite list of elements pyiqiPI such that

x �
ś

iPI yi, there is some i P I such that x � yi.

Proposition 7.8. Suppose that R is an integral domain and r P R is prime as an element

of R. Then r is also prime as an element of RrXs.

Proof. Suppose that ppXq “ a0 ` a1X ` ¨ ¨ ¨ ` anX
n and qpXq “ b0 ` b1X ` ¨ ¨ ¨ ` bmX

m

are such that r � pq in RrXs and r ffl p in RrXs so that there is some minimal k P N0 such

that r ffl ak in R. Suppose that l ě 0 and that we have shown r � bj in R for all j ă l. The

coefficient of Xk`l in pq is

k`l
ÿ

j“0

ajbk`l´j “
k´1
ÿ

j“0

ajbk`l´j ` akbl `
l´1
ÿ

j“0

ak`l´jbj.

r divides the left hand side (in R) by hypothesis; it divides the first summand on the right

(in R) since r � ai in R for all 0 ď i ă k by minimality of k; and it divides the last summand

Page 29



(in R) since r � bj in R for all 0 ď j ă l by the inductive hypothesis. It follows that r � akbl

in R. But r is prime in R and r ffl ak in R by hypothesis, so we conclude r � bl in R. Thus

by induction r � bl in R for all l P N0 so that r � q in RrXs as required.

Remark 7.9. !4Note that primality is not in general preserved on passage from a subring

to a ring: every integral domain is a subring of a field and the only prime in a field is 0.

We say that x P R is irreducible if whenever a � x we have a „ x or a „ 1 but not

both25. This is equivalent to saying that xxy is maximal amongst proper principal ideals.

Irreducible elements can behave in unexpected ways, for example 3 is irreducible in Z6

but 32 “ 3 in that ring. The next lemma is useful for showing that irreducible elements

behave better in integral domains.

Lemma 7.10 (Cancellation). Suppose that R is an integral domain, w � z (and z non-zero),

and xz � yw. Then x � y, and in particular, if z „ w (are both non-zero) then xz „ yw if

and only if x „ y.

Proof. Since w � z and xz � yw there are elements a and b such that z “ aw and bxz “ yw

so bxaw “ yw and since w is not a zero-divisor right multiplication by w is injective and so

pbaqx “ bxa “ y and x � y.

Proposition 7.11. Suppose that R is an integral domain and x P R˚ is prime. Then x is

irreducible.

Proof. Suppose that x P R˚ is prime (so that x  1) and a � x. Then there is b P R such

that x “ ab. By primality either x � a and so x „ a and we are done; or x � b so that

ax � ab “ x, and by cancellation a � 1 since x P R˚, ensuring a „ 1.

Remark 7.12. Exercise II.3 gives examples to show that even in integral domains, irreducible

elements need not be primes.

Remark 7.13. Note that 0R is always prime in an integral domain R, but it is irreducible if

and only if xxy “ R for all x P R˚, which is true if and only if R is a field.

Proposition 7.14. Suppose that R is an integral domain such that every pair of elements

has a greatest common divisor and x P R is irreducible. Then x is prime.

Proof. We show that if x � ab has x ffl a, then x � b. If b “ 0 then x � b as required, so

we may suppose b P R˚. By hypothesis xb and ab have a gcd, call it c. Since b � xb and

b � ab we have b � c, so that c “ db for some d P R. Since db “ c � xb and db “ c � ab, by

cancellation we have d � x and d � a. Irreducibility of x tells us that either d „ x or d „ 1;

we cannot have the former since d � a, but d „ x ffl a. Hence d „ 1 and so d P UpRq and

25 !4Note, in particular, that units are not irreducible since if x is a unit then x „ 1.
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d´1c “ b; in particular, c � b. But then x is a common factor of xb and ab and so x � c � b

as required.

Remark 7.15. Usually a positive integer is said to be prime if it is irreducible in the sense

of this section. Since Z is a PID it follows by Propositions 7.6, 7.11 and 7.14 that a positive

integer is prime in the usual sense if and only if it is prime in the sense of this section, and

there is no conflict in nomenclature.

Primes are particularly important because they ensure a uniqueness of factorisation.

To be precise a (possibly empty) vector px1, . . . , xrq is a factorisation of an element x if

x „ x1 ¨ ¨ ¨ xr; the xis are called the factors, and if all the factors are irreducible then we say

that x has a factorisation into irreducibles. We say that a factorisation px1, . . . , xrq of

x into irreducibles is unique if whenever py1, . . . , ysq is factorisation of x into irreducibles

there is a bijection π : t1, . . . , ru Ñ t1, . . . , su such that xi „ yπpiq for all 1 ď i ď r.

Remark 7.16. !4In particular, every unit has a unique factorisation into irreducibles.

Proposition 7.17. Suppose that R is an integral domain and x P R˚ has a (possibly empty)

factorisation in which every factor is prime. Then x has a unique factorisation into irre-

ducibles.

Proof. Let px1, . . . , xrq be a factorisation of x in which every factor is prime. Since x P R˚,

we have x1, . . . , xr P R
˚, and so by Proposition 7.11 we have that x has a factorisation into

irreducibles. We shall prove that if pyiqiPI are irreducible elements indexed by a finite set I

such that x „
ś

iPI yi then there is a bijection π : t1, . . . , ru Ñ I such that xi „ yπpiq for all

1 ď i ď r.

We proceed by induction on r. For r “ 0 we have
ś

iPI yi „ 1 (by definition of the

empty product) and so there is u P UpRq such that
ś

iPI yi “ u. Hence for all j P I, we

have yj

´

u´1
ś

iPIztju yi

¯

“ 1 and yj P UpRq. It follows that I is empty since no unit is

irreducible, and we have the base case.

Now, suppose that r ą 0. Then xr is prime and xr �
ś

iPI yi whence there is some

j P I such that xr � yj. But yj is irreducible and xr  1 and so xr „ yj. But then

x1 ¨ ¨ ¨ xr´1 „
ś

iPIztju yi by cancellation, and by the inductive hypothesis there is a bijection

π̃ : t1, . . . , r´1u Ñ Iztju such that xi „ yπ̃piq for all 1 ď i ď r´1. Extend this to a bijection

t1, . . . , ru Ñ I by setting πprq “ j and the result is proved.

We turn now to the problem of finding factorisations into irreducibles (Proposition 7.14

will then turn these into factorisations in which every factor is prime for use in Proposition

7.17).

We say that a commutative ring R has the ascending chain condition on principal

Page 31



ideals26 or ACCP if for every sequence pdnq
8
n“0 of elements of R with dn`1 � dn for all

n P N0, there is some N P N0 such that dn „ dN for all n ě N . The idea this captures is

that we cannot ‘keep dividing indefinitely’.

Proposition 7.18. Suppose that R is a PID. Then R has the ACCP.

Proof. Suppose that pdnq
8
n“0 has dn`1 � dn for all n P N0 and let

I :“ tr P R : dn � r for some n P N0u.

This is an ideal: if r, s P I then there are n,m P N0 such that dm � r and dn � s, but

dm`n � dn � r and dn`m � dm � s so dn`m � r´ s and r´ s P I; if r P I and s P R then there

is n P N0 such that dn � r so dn � rs and hence rs, sr P I; and finally 0 P I.

Since R is a PID there is some d P I such that I “ xdy. Since d P I there is some N P N0

such that dN � d, but then dn P I for all n P N0 and so dN � d � dn for all n P N0 and hence

dn „ dN for all n ě N . The result is proved.

Proposition 7.19. Suppose that R is an integral domain with the ACCP. Then every x P R˚

has a factorisation into irreducibles.

Proof. Write F for the set of elements in R˚ that have factorisation into irreducibles so that

all units and irreducible elements are in F . F is closed under multiplication, by design and

since R is an integral domain.

Were F not to be the whole of R˚ then there would be some x0 P R
˚zF . Now create a

chain iteratively: at step i suppose we have xi P R
˚zF . Since xi is not irreducible and not

a unit there is yi � xi with yi  1 and yi  xi; let zi P R
˚ be such that xi “ yizi. If zi „ xi,

then zi „ yizi and by cancellation 1 „ yi, a contradiction. We conclude yi, zi  xi.

Since F is closed under multiplication we cannot have both yi and zi in F . Let xi`1 P

tyi, ziu such that xi`1 R F ; by design xi`1 � xi and xi`1  xi. This process produces a

sequence ¨ ¨ ¨ � x2 � x1 � x0 in which xi  xi`1 for all i P N0 contradicting the ACCP.

Remark 7.20. Integral domains in which every non-zero element has a factorisation into

irreducibles are called factorisation domains or atomic domains. There are factorisation

domains not having the ACCP but these are not easy to construct; the first example was

given by Grams in [Gra74].

Finally, a unique factorisation domain or UFD is an integral domain in which every

x P R˚ has a unique factorisation into irreducibles.

26The reason for the name is that it can also be formulated as saying if pIiqiPN0
is an ascending chain

(meaning Ii Ă Ii`1 for all i P N0) of principal ideals then there is some N P N0 such that In “ IN for all

n ě N .
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Theorem 7.21. Suppose that R is a PID. Then R is a UFD.

Proof. By Propositions 7.18 and 7.19 we have that every x P R˚ has a factorisation into

irreducibles. But then every irreducible is prime by Propositions 7.6 and 7.14. The result

then follows by Proposition 7.17.

Remark 7.22. In particular, since Z is a PID the above gives the Fundamental Theorem of

Arithmetic.

Remark 7.23. ZrXs is an example of a UFD that is not a PID; see Exercise II.8 for details.

The division algorithm and Euclidean domains

A Euclidean function on R is a function f : R˚ Ñ N0 such that if a, b P R˚ then either

b � a; or there are q P R, r P R˚ such that a “ bq ` r and fprq ă fpbq. We say that an

integral domain R is a Euclidean domain if R supports at least one Euclidean function.

Remark 7.24. !4There are some variations on the definition of Euclidean function. Some-

times (e.g. [Gal13, p337]) a Euclidean function f is required to have the additional property

that fpaq ď fpabq for all a, b P R˚. (Exercise E.6 asks for a proof of this.)

On [Kea98, p17] Keating uses an even stronger definition of Euclidean function f re-

quiring that fpabq “ fpaqfpbq whenever a, b P R˚. This is a genuinely stronger definition,

meaning there are Euclidean domains in our sense but not in the sense of Keating, though

this is a recent discovery: [CNT19, Theorem 1.3]. We do not assume this stronger property

though many of our Euclidean functions will happen to satisfy it.

Example 7.25. Suppose that F is a field and let f : F˚ Ñ N0 be any function. Since every

two non-zero units divide each other in a field, f is a Euclidean function for F and so F is

a Euclidean domain. The function f : F˚ Ñ N0 taking all non-zero elements of F to 1 is

a Euclidean function in Keating’s sense from Remark 7.24 and is perhaps a slightly more

natural choice.

Example 7.26 (Division algorithm for Z). If a, b P Z˚ and b ffl a then let bq be (one of) the

multiple(s) of b nearest to a. Then r :“ a´ bq has |r| ă |b|, and | ¨ | is a Euclidean function

on Z.

!4Note that there were two choices for bq and hence for r in the case that b ffl a.

Example 7.27 (Division algorithm for FrXs). Suppose that F is a field and a, b P FrXs˚.
Let P :“ ta ` bq : q P FrXsu, and note that if b ffl a then P does not include the zero

polynomial.

If b ffl a, we let r P P be a polynomial of minimal degree. If deg r ě deg b, then we may let

λ be the ratio of the lead coefficient of r to that of b and note that rpXq´λXdeg r´deg bbpXq P
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P and has strictly smaller degree than r, a contradiction. It follows that deg r ă deg b and

deg is a Euclidean function for FrXs.

Remark 7.28. Suppose that f is a Euclidean function on an integral domain R such that

fpaq ď fpabq for all a, b P R˚, and for all a, b P R˚ either b � a or there is a unique pair

pq, rq P RˆR˚ with a “ bq` r and fprq ă fpbq. Then either R is itself a field or R “ FrXs
for a field F. Exercise E.6 develops a proof of this, and in particular since Z is neither a field

nor a polynomial ring over a field the choice mentioned in the warning in Example 7.26 was

in fact necessary.

Proposition 7.29. Suppose that R is a Euclidean domain. Then R is a PID.

Proof. Let f be a Euclidean function on R and suppose I is a non-zero ideal. Let x P I

have fpxq minimal, and suppose that y P I. If y R xxy then there is q P R and r P R˚ with

y “ qx` r and fprq ă fpxq so that r P I, contradicting minimality of fpxq.

Remark 7.30. In particular if F is a field then the ring FrXs is a PID.

Remark 7.31. There are examples of PIDs which are not Euclidean domains, one of which

is developed in Exercise III.9.

Remark 7.32. A Dedekind-Hasse function is a map N : R˚ Ñ N0 such that whenever

a, b P R˚ either b � a; or there are elements p, q P R, c P R˚ such that ap “ bq ` c and

Npcq ă Npbq. The definition of Euclidean function places the additional requirement that

p “ 1, so in particular any ring supporting a Euclidean function supports a Dedekind-Hasse

function.

It can be shown (see e.g. [Cla10, Theorem 49]) that an integral domain is a PID if and

only if it supports a Dedekind-Hasse function. In particular, from this point of view PIDs

and Euclidean domains may not seem to very different despite Remark 7.31. The important

feature of Euclidean functions is that they are often in some sense easy to compute without

knowing the factorisation of an element into primes. By contrast the construction of a

Dedekind-Hasse function for an arbitrary PID is usually done by letting Npaq be the number

of prime factors of a (well-defined by Theorem 7.21).

8 Fields and adjoining elements

A field K is a field extension of a field F if there is a ring homomorphism φ : F Ñ K.

!4Despite the fact we speak of K as a field extension of F without mentioning φ, in any
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given instance we will have a particular φ in mind.27 Often this will just the inclusion map

because F will be a subfield of K. Indeed, by relabelling the elements of F we can always

assume that F is a subfield of K because ring homomorphisms between fields are injective

(Proposition 2.4).

Proposition 2.11 shows us how to use φ to endow K with the structure of a vector space

over F such that multiplication is bilinear. We call the F-dimension of K w.r.t. this vector

space structure the degree of the field extension, denoted |K : F|.

Theorem 8.1. Suppose that F is a field and f P FrXs is irreducible of degree d. Then

K :“ FrXs{xfy is a field extension of F by the map F Ñ K;λ ÞÑ λ ` xfy, and writing

α :“ X ` xfy, 1K, α, . . . , α
d´1 is a basis for K in this F-vector space structure.

Proof. FrXs is a PID (Remark 7.30) and hence the fact that xfy is maximal amongst proper

principal ideals means it is maximal amongst all proper ideals and Proposition 6.6 tells us

that K “ FrXs{xfy is a field. The given map is formed by composing the inclusion map

F Ñ FrXs and the quotient map FrXs Ñ FrXs{xfy and so is a ring homomorphism, and

hence a field extension.

The elements 1K, α, . . . , α
d´1 are F-independent in K: indeed, suppose that a0, . . . , ad´1 P

F have 0K “ a0.1K ` a1.α ` ¨ ¨ ¨ ` ad´1.α
d´1. This says exactly that f � a0 ` a1X ` ¨ ¨ ¨ `

ad´1X
d´1. If the right hand side is non-zero then it has degree strictly smaller than d; a

contradiction. Hence the right is 0FrXs and so a0, . . . , ad´1 “ 0F as required.

On the other hand, if fpXq “ a0` a1X ` ¨ ¨ ¨ ` adX
d then every β P K has a polynomial

ppXq “ b0 ` b1X ` ¨ ¨ ¨ ` bnX
n P FrXs such that β “ ppXq ` xfy. By the division algorithm

for FrXs (Example 7.27), either p P xfy (and so β “ 0K) or there is some q P FrXs and

r P FrXs˚ with deg r ă deg f “ d such that ppXq “ qpXqfpXq ` rpXq. Then β “

rpXq ` xfy, and writing rpXq “ c0 ` c1X ` ¨ ¨ ¨ ` cd´1X
d´1 for c0, . . . , cd´1 P F we have

β “ c0.1K ` c1.α ` ¨ ¨ ¨ ` cd´1.α
d´1, and hence 1K, α, . . . , α

d´1 is a spanning set.

It follows that 1K, α, . . . , α
d´1 is a basis and the result is proved.

We say that K is the field F with the element α adjoined.

Remark 8.2. In view of the above it becomes important to identify irreducible polynomials

in FrXs. Every degree 1 polynomial in FrXs is irreducible. First f  1 since deg f ‰ 0.

Now, if g � f then let h P FrXs˚ be such that f “ gh and 1 “ deg f “ deg g ` deg h, so

either deg h “ 0 so h is a unit, and g „ f ; or deg h “ 1 and so deg g “ 0 and so g is a unit

and g „ 1 as required.

27Appearances are a bit deceptive here because if F is a field extension of Q or Fp then it is so uniquely

(this essentially follows from Proposition 3.7), so in fact we can identify the ring homomorphism just from

the fields. However, there are fields with non-trivial automorphisms (e.g. C Ñ C; z ÞÑ z) and so C is a

field extension of C in multiple ways. Tutors may discuss this when considering Exercise I.5.
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For some fields these are the only irreducible elements of the polynomial ring. Indeed,

in CrXs the Fundamental Theorem of Algebra tells us that every non-constant polynomial

has a root in C. We are done once we note the general fact that if f P FrXs of degree n ě 2

has a root then it is not irreducible. Indeed, if f has a root λ then X´λ � f , but X´λ  f

and X ´ λ  1 since degpX ´ λq ‰ deg f and degpX ´ λq ‰ deg 1; we conclude f is not

irreducible.

While there are polynomials of degree 4 or more without roots that are not irreducible

(e.g. pX2 ` 1q2 in RrXs), if f P FrXs is non-constant of degree at most 3 and no root then

it is irreducible. First, f  1 since f is non-constant. Now, suppose g � f has g  1 and

g  f , and write f “ gh for some h P FrXs. Since g  1 we have that deg g ‰ 0 and since

g  f we have deg h ‰ 0. Since deg g ` deg h ď 3 it follows that deg g “ 1 or deg h “ 1; in

the former case there is a P F˚ and b P F such that gpXq “ aX ` b and hence ´ba´1 is a

root of g and so a root of f ; and similarly in the latter.

Example 8.3. The polynomial X2` 1 is irreducible over R since it has no root, and hence

RrXs{xX2 ` 1y is a field and a 2-dimensional vector space over R. The map φ : RrXs Ñ
C; p ÞÑ ppiq (as defined in Proposition 4.21) is a ring homomorphism. It is surjective as

a basic property of C (Example 4.11). The kernel is principal (since RrXs is a PID) and

contains X2 ` 1 by definition of i. Since C (and therefore RrXs{ kerφ) is not trivial and

X2 ` 1 is irreducible we conclude that X2 ` 1 is a generator of the kernel and by the First

Isomorphism Theorem we have RrXs{xX2 ` 1y – C as rings. In fact this is one way of

constructing C.

Example 8.4. The polynomial X2 `X ` 1 is the only irreducible polynomial of degree 2

in F2rXs. Indeed, neither 0 nor 1 are roots so X2`X ` 1 is irreducible. On the other hand

there are only four degree 2 polynomials in F2rXs, and the other three are X2, X2`X and

X2 ` 1 which visibly have roots of 0, 0 (and 1), and 1 respectively. Hence these are not

irreducible.

The ring F2rXs{xX
2`X`1y is then a field of order 4 which is dentoed F4. !4This field

is not equal to the ring Z4 – indeed the latter is not even an integral domain since 22 “ 0

but 2 ‰ 0.

Finding irreducible polynomials is somewhat like finding primes in the integers, and

there are various tests for irreducibility which can help in this endeavour.

We say that f P ZrXs is primitive if there is no prime dividing all the coefficients of f .

Remark 8.5. Note that if f is primitive and of degree 0 then f is a unit in ZrXs since Z is

a UFD (and so every non-unit has a prime factor).

Theorem 8.6 (Gauss’ Lemma). Suppose that f P ZrXs. Then f is non-constant and

irreducible in ZrXs if and only if f is primitive and irreducible in QrXs.
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Proof. Suppose that f is irreducible in ZrXs. This immediately tells us that f is primitive

since if p were a prime dividing all the coefficients of f then p � f in ZrXs. Since p  1

we conclude that p „ f (in ZrXs) by irreducibility of f , contradicting the fact that f is

non-constant.

Now, suppose that f “ gh for g, h P QrXs. Then let λ P N˚ be minimal such that there

is q P Q˚ with λq´1g and qh both in ZrXs. Suppose that p P Z is prime with p � λ. Then p is

prime as a constant polynomial in ZrXs and since p � λf “ pλq´1gqpqhq, we have p � λq´1g

or p � qh (both in ZrXs). The former contradicts minimality of λ directly, and the latter

once we note that pq{pqh P ZrXs and pλ{pqpq{pq´1g “ λq´1g P ZrXs. We conclude that λ

has no prime factors and hence (since Z is a UFD) is a unit. Thus q´1g � f in ZrXs and so

by irreducibility of f in ZrXs we conclude that either q´1g „ 1 or q´1g „ f in ZrXs. Hence

either g „ 1 in QrXs or g „ f in QrXs and finally, since f is non-constant we have f  1

in QrXs and so f is irreducible in QrXs.
Conversely, suppose f P ZrXs is primitive and irreducible in QrXs. First, f  1 in QrXs

and so f is non-constant. Suppose g � f in ZrXs. By irreducibility of f in QrXs, either

g „ 1 in QrXs so deg g “ 0, and since f is primitive g „ 1 in ZrXs; or g „ f in QrXs, then

deg g “ deg f and writing f “ gh for h P ZrXs we have deg h “ 0, and since f is primitive

h „ 1 in ZrXs, whence g „ f in ZrXs. The result is proved.

Proposition 8.7 (Eisenstein’s Criterion). Suppose that fpXq “ anX
n ` ¨ ¨ ¨ ` a1X ` a0 is

a primitive polynomial in ZrXs and p is a prime such that p � ai for all 0 ď i ă n; p ffl an;

and p2 ffl a0. Then f is irreducible in ZrXs.

Proof. Suppose that f “ gh for g, h P ZrXs. The quotient map Z Ñ Fp and the inclusion

Fp Ñ FprXs compose to give a homomorphism Z Ñ FprXs, so there is an evaluation

homomorphism φ : ZrXs Ñ FprXs taking X to X. In particular, note that

φpfq “ φpgqφphq and deg q ě deg φpqq whenever φpqq P FprXs˚.

Since p � ai for all i ă n and p ffl an we have φpfq „ Xn.

Since X P FprXs is prime it follows that φpgq „ X i and φphq „ Xn´i (either by induction,

or because FprXs is a UFD). If i ą 0 then φpgq has zero constant coefficient and so p divides

the constant coefficient of g. a0 is the product of the constant coefficients of g and h and

since p2 ffl a0 we conclude that p does not divide the constant coefficient of h i.e. i “ n.

But then deg g ě deg φpgq “ n, and n “ deg f “ deg g ` deg h, so deg h “ 0. Since f

is primitive, h is then a unit and so g „ f . The case i “ 0 is handled similarly and has

g „ 1

Example 8.8. The polynomial X3´ 2 is irreducible in ZrXs by Eisenstein’s Criterion with

the prime 2 since it is visibly primitive (with the lead coefficient being 1). It is non-constant
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and so by Gauss’ Lemma is irreducible in QrXs. By Theorem 8.1, QrXs{xX3´2y is a degree

3 field extension of Q.

The reals contain a unique positive root to X3 ´ 2 denoted element 3
?

2 (this is from

Prelims Analysis) so we get an evaluation homomorphism QrXs Ñ R; p ÞÑ pp 3
?

2q. The

kernel of this map is principal (again QrXs is a PID), and since Qr 3
?

2s is not trivial and

X3´2 is irreducible we see that the kernel is xX3´2y. It follows from the First Isomorphism

Theorem that Qr 3
?

2s is isomorphic to QrXs{xX3 ´ 2y as a ring and, in particular, it is a

field.28

Finally, the evaluation map QrXs Ñ R above is Q-linear w.r.t. the two Q-vector space

structures on QrXs and R induced by Proposition 2.11 and the inclusions Q ãÑ QrXs and

Q ãÑ R. Thus by the First Isomorphism Theorem for vector spaces the Q-vector spaces

QrXs{xX3 ´ 2y and Qr 3
?

2s have the same dimension and so Qr 3
?

2s is a degree 3 field

extension of Q (where the extension homomorphism is the inclusion map).

Theorem 8.9 (Tower Law). Suppose that φ : K Ñ L and ψ : F Ñ K are field extensions.

Then φ ˝ ψ : F Ñ L is a field extension and if either |L : F| ă 8 or |L : K|, |K : F| ă 8
then |L : F| “ |L : K||K : F|.

Proof. First, the composition of homomorphisms is a homomorphism so that φ ˝ψ is a field

extension. Since all ring homomorphisms between fields are injective (Proposition 2.4), by

relabelling we may assume that F is a subfield of K and K is a subfield of L. We do this to

make the notation simpler.

Let e1, . . . , en be a basis for L as a vector space over K, and let f1, . . . , fm be a basis

for K as a vector space over F. Now, for x P L there are scalars λ1, . . . , λn P K such that

x “ λ1e1 ` ¨ ¨ ¨ ` λnen, and since f1, . . . , fm is spanning, for each 1 ď j ď n there are scalars

µ1,j, . . . , µm,j P F such that λj “ µ1,jf1 ` ¨ ¨ ¨ ` µm,jfm. Hence x “
řn
j“1

řm
i“1 µi,jfiej, so

by have that pfiejq
m,n
i“1,j“1 is an F-spanning subset of K. Now suppose µ1,1, . . . , µm,n P F are

such that
řn
j“1

řm
i“1 µi,jfiej “ 0L. Then

řn
j“1 p

řm
i“1 µi,jfiq ej “ 0L, but

řm
i“1 µi,jfi P K for

each 1 ď j ď n and since e1, . . . , en are K-linearly independent we have
řm
i“1 µi,jfi “ 0K

for all 1 ď j ď n. But now f1, . . . , fm are F-linearly independent and so µi,j “ 0F for all

1 ď i ď m and 1 ď j ď n. It follows that pfiejq
m,n
i“1,j“1 is a basis for L as an F-vector space

and the result follows.

Example 8.10. We can use the Tower Law to show that
?

2 is not a Q-linear combination

of 1, 3
?

2, and 3
?

2
2
. Indeed, if it were then Qr

?
2s would be a subfield of Qr 3

?
2s, and the

inclusions Q ãÑ Qr
?

2s and Qr
?

2s ãÑ Qr 3
?

2s would be field extensions. By the Tower Law

we would have 3 “ |Qr 3
?

2s : Q| “ |Qr 3
?

2s : Qr
?

2s||Qr
?

2s : Q| “ |Qr 3
?

2s : Qr
?

2s| ˆ 2, but

3 is not even.

28c.f. Example 4.10 where the fact that Qr
?

2s is a field is proved directly by producing inverse elements

rather than through the irreducibility of the polynomial X2 ´ 2.
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9 Modules

Modules can be viewed in a variety of ways. First, we shall think of them as vector spaces

with the field replaced by a ring. Concretely, suppose that R is a commutative ring. A

(left) R-module is a commutative group, also denoted M and called the additive group,

and a map . : R ˆM ÑM ; pr, xq ÞÑ r.x such that

(M1) 1.x “ x for all x PM ;

(M2) r.ps.xq “ prsq.x for all r, s P R and x PM ;

(M3) pr ` sq.x “ pr.xq ` ps.xq for all r, s P R and x PM ;

(M4) r.px` yq “ pr.xq ` pr.yq for all r P R and x, y PM .

The identity of M is denoted 0 (or 0M is disambiguation is called for) and is called the zero

of the module, and the map . is called the scalar multiplication of the module. If the

latter is clear we simply speak of the R-module M . !4Sometimes the scalar multiplication

really does need to be spelled out. See Example III.1.

Remark 9.1. Some quick checks reveal that 0R.x “ 0M and p´1q.x “ ´x for all x PM .

!4We take R to be commutative, but this is not necessary at this stage though it will

be for a number of our later results.

Example 9.2 (Vector spaces). Given a field F, a vector space V is exactly a (left) F-module,

with the two notions of scalar multiplication coinciding.

Example 9.3 (Zero module). For any commutative ring R the trivial group – usually

denoted t0u in this context – and the scalar multiplication defined by r.0 :“ 0 for all r P R

is a module called the zero (R-)module.

Groups arise naturally from considering the set of bijections from a set to itself; modules

arise naturally from considering the set of homomorphisms from a commutative group to

itself. To understand this we shall need a few facts about algebra of groups homomorphisms

of commutative groups.

By default we write ` for the binary operation on a commutative group; ´x for the

additive inverse of x; and 0 for the identity of the group. As with rings we may use subscripts

to disambiguate if there are multiple groups i.e. we may write `N for the group operation

on the commutative group N .

Proposition 9.4. Suppose that M and N are commutative groups. Then HompM,Nq, the

set of group homomorphisms M Ñ N , is itself a commutative group when endowed with the

operation p`, called pointwise addition, and defined by pφp`ψqpxq :“ φpxq ` ψpxq for all
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x P M ; identity M Ñ N ;x ÞÑ 0N ; and the inverse of a homomorphism φ being the map

M Ñ N ;x ÞÑ ´φpxq.

Suppose P is a further commutative group and φ P HompM,Nq and ψ P HompN,P q,

then ψ ˝ φ P HompM,P q; and if π P HompM,Nq then ψ ˝ pφp`πq “ pψ ˝ φqp`pψ ˝ πq; and if

π P HompN,P q then pψp`πq ˝ φ “ pψ ˝ φqp`pπ ˝ φq.

Proof. The commutativity (and associativity) of N here is crucial for ensuring that p` is

well-defined: In particular, suppose that φ, ψ P HompM,Nq then for all x, y PM we have

pφp`ψqpx`M yq “ φpx`M yq `N ψpx`M yq

“ pφpxq `N φpyqq `N pψpxq `N ψpyqq

“ pφpxq `N ψpxqq `N pφpyq `N ψpyqq

“ pφp`ψqpxq `N pφp`ψqpyq.

φ and ψ are

homomorphisms

associativity and

commutativity of `N

definition of p`

It follows that φp`ψ P HompM,Nq. Since the operation `N is associative and commutative,

so is the operation p`. The map M Ñ N ;x ÞÑ 0N is a homomorphism because 0N`0N “ 0N ,

and it is an identity for p` because 0N is an identity for `N . Finally, if φ P HompM,Nq then

the map M Ñ N ;x ÞÑ ´φpxq is a homomorphism because ´φpx`M yq “ ´pφpxq`N φpyqq “

p´φpyqq `N p´φpxqq “ p´φpxqq `N p´φpyqq for all x, y P M since `N is associative and

commutative, and it is an additive inverse for φ w.r.t. p` since ´φpxq is an additive inverse

for φpxq w.r.t. `N . The first part follows.

For the second the composition of homomorphisms is a homomorphism29 says exactly

that if φ P HompM,Nq and ψ P HompN,P q, then ψ ˝ φ P HompM,P q. Now, if φ, π P

HompM,Nq and ψ P HompN,P q, then

ψ ˝ pφp`πqpxq “ ψpφpxq ` πpxqq “ ψpφpxqq ` ψpπpxqq “ ppψ ˝ φqp`pψ ˝ πqqpxq

by definition and the fact that ψ is a homomorphism, and we have that ψ ˝ pφp`πq “

pψ ˝ φqp`pψ ˝ πq as claimed. On the other hand, if φ P HompM,Nq and ψ, π P HompN,P q,

then

pψp`πq ˝ φpxq “ ψpφpxqq ` πpφpxqq “ ppψ ˝ φqp`pπ ˝ φqqpxq

by definition.30

Remark 9.5. We use the notation p` for clarity in the proof above, and from now on we

29We have used this fact before – and the proof is barely a line – we have written it out again here to

show that the binary operation p` can take arguments like ψ ˝ φ.

30 !4For the identity ψ ˝ pφp`πq “ pψ ˝ φqp`pψ ˝ πq we used the homomorphism property of ψ, while the

identity pψp`πq ˝φ “ pψ ˝φqp`pπ ˝φq followed simply from the definition. It may be instructive to recall the

first part of Exercise I.3.
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extend the convention of writing ` for the group operation on a commutative group to the

group HompM,Nq.

Remark 9.6. The addition of commutative groups extends to iterated sums in the same way

as addition in a ring as discussed in §3 and we shall not revisit that here.

The second part of Proposition 9.4 is a pair of identities which look a great deal like the

distributivity axiom for a ring, and indeed there is an important ring lurking here.

Theorem 9.7. Suppose that M is a commutative group. Then HompM,Mq equipped with

pointwise addition as its addition and functional composition as its multiplication is a ring

whose multiplicative identity is the map M ÑM ;x ÞÑ x and where UpHompM,Mqq is the set

of bijective homomorphisms M ÑM , with the multiplicative inverse of φ P UpHompM,Mqq

being the inverse function.

Proof. Most of this follows from Proposition 9.4. In particular, HompM,Mq is a commuta-

tive group under this addition by the first part of that proposition, and the proposed multi-

plication distributes by the second part. It remains to recall that composition of functions

is associative so the proposed multiplication is associative, and the map M Ñ M ;x ÞÑ x is

certainly a homomorphism and an identity for composition.

Suppose that φ P UpHompM,Mqq. Then there is ψ P HompM,Mq such that φpψpxqq “

x “ ψpφpxqq for all x PM , and it follows that φ is a bijection. Conversely, if φ P HompM,Mq

is a bijection then the map taking each element of M to its unique preimage under φ, is

a homomorphism since φ is a homomorphism. Moreover it is an inverse for φ w.r.t. the

given multiplication because it is an inverse for φ under functional composition, and given

multiplication is just functional composition restricted to HompM,Mq.

Remark 9.8. Note that if φ P UpHompM,Mqq then the two possible meanings of φ´1 – one

as the functional inverse, and the other as the inverse with respect to the multiplication on

the ring HompM,Mq – coincide.

Specifying the scalar multiplication of an R-module on a commutative group M turns

out to be equivalent to specifying a ring homomorphism R Ñ HompM,Mq by a process

called currying:

Proposition 9.9 (Currying). Suppose that R is a commutative ring and M is a com-

mutative group. Let ScalarRpMq denote the set of functions . : R ˆ M Ñ M satisfy-

ing the axioms (M1)–(M4); and RingHompR,HompM,Mqq the set of ring homomorphisms

RÑ HompM,Mq. Then the currying map

ScalarRpMq Ñ RingHompR,HompM,Mqq

. : R ˆM ÑM ÞÑ
R Ñ HompM,Mq

r ÞÑ pM ÑM ;x ÞÑ r.xq
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and uncurrying map

RingHompR,HompM,Mqq Ñ ScalarRpMq

φ : RÑ HompM,Mq ÞÑ
R ˆM Ñ M

pr, xq ÞÑ φprqpxq

are well-defined and inverses of each other.

Proof. If . : R ˆM Ñ M is a scalar multiplication then R Ñ HompM,Mq; r ÞÑ pM Ñ

M ;x ÞÑ r.xq is well-defined since scalar multiplication distributes over addition (M4), and a

ring homomorphism because of (M1)–(M3). Hence the first map in the proposition is well-

defined. In the other direction, if φ : R Ñ HompM,Mq is a ring homomorphism then the

map R ˆM Ñ M ; pr, xq ÞÑ φprqpxq enjoys (M4) since φprq is a homomorphism of M , and

(M1)–(M3) since φ is a ring homomorphism. It follows that the second map is well-defined.

Finally a short check reveals that these maps are inverses of each other.

Remark 9.10. In the light of this proposition we shall often specify an R-module structure

on a commutative group M simply by defining a ring homomorphism RÑ HompM,Mq.

Example 9.11 (Abelian groups as modules). Suppose that M is a commutative31 group

with identity 0M . Then by Proposition 3.7 M there is a (unique) homomorphism Z Ñ

HompM,Mq which by uncurrying endows M with the structure of a Z-module.

Example 9.12 (Vector spaces with an endomorphism as modules). Suppose that V is an

F-vector space and T : V Ñ V is F-linear (this is the eponymous endomorphism). Then

by currying the vector space structure gives a homomorphism φ : F Ñ HompV, V q. Since

T is a group homomorphism of the additive group of V we have T P HompV, V q, and since

T pλ.vq “ λ.T pvq for all λ P F and v P V we have that T commutes with the image of φ and

so by Proposition 4.21 there is an evaluation homomorphism FrXs Ñ HompV, V q taking X

to T . By uncurrying this gives V the structure of an FrXs-module. Concretely the scalar

multiplication has p.v “ ppT qv for p P FrXs and v P V .

Remark 9.13. In the above example we write EndFpV q for the set of F-linear maps V Ñ V .

All linear maps are, in particular, homomorphisms of the additive group, so this is a subset

of HompV, V q where V is just considered as the additive group of the vector space. The

sum and composition of two linear maps is linear; if T is linear then ´T is linear; and the

identity map is linear. Hence by the subring test EndFpV q is a ring.

!4Note that EndCpCq does not include complex conjugation, but HompC,Cq does.

31In these notes we use the word commutative in place of Abelian.
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10 Linear maps, isomorphisms, and submodules

As with rings we shall be interested in the structure-preserving maps for modules: An R-

linear map between two R-modules M and N is a group homomorphism φ : M Ñ N

with

φpr.xq “ r.φpxq for all x PM, r P R.

!4The . on the left is the scalar multiplication on M and the . is the scalar multiplication

on N .

Remark 10.1. If F is a field this has the same meaning as F-linear for vector spaces.

The linear maps between modules are themselves structured.

Proposition 10.2. Suppose that R is a commutative ring and M and N are R-modules.

Then LpM,Nq, the set of R-linear maps M Ñ N , is a commutative group under pointwise

addition, and the map p. : R ˆ LpM,Nq Ñ LpM,Nq defined by prp. ψqpxq “ r.ψpxq for all

x PM is well-defined and gives the group LpM,Nq the structure of an R-module.

Proof. The zero map, M Ñ N ;x ÞÑ 0N is linear and so LpM,Nq is a non-empty subset

of HompM,Nq. If φ, ψ P LpM,Nq then φ ´ ψ is a homomorphism (since HompM,Nq is a

commutative group under pointwise addition) and

pφ´ ψqpr.xq “ φpr.xq ´ ψpr.xq “ r.φpxq ´ r.ψpxq “ r.pφpxq ´ ψpxqq “ r.ppφ´ ψqpxqq

for all r P R and x P M . We conclude that φ ´ ψ is linear and hence by the subgroup test

LpM,Nq is a commutative group.

To see that p. is well-defined, first note that

prp. ψqpx` yq “ r.pψpx` yqq “ r.pψpxq ` ψpyqq “ r.ψpxq ` r.ψpyq “ prp.ψqpxq ` prp.ψqpyq

for r P R, ψ P LpM,Nq and x, y P M , since ψ is a homomorphism and (M4) holds for ., so

that rp.ψ is a homomorphism. Secondly,

prp. ψqps.xq “ r.ψps.xq “ r.ps.ψpxqq “ prsq.ψpxq “ psrq.ψpxq “ s.pr.ψpxqq “ s.prp.ψqpxq

for all r, s P R, ψ P LpM,Nq and x P M , by linearity of ψ, (M2) for ., and commutativity

of R. It follows that rp.ψ is linear. It remains to check (M1)–(M4) for p.. (M1)–(M3) follow

from the corresponding axioms for ., and (M4) follows from (M4) for . and the definition of

pointwise addition.

Remark 10.3. Conventionally we drop the circumflex from p.; we used it above to make the

argument clearer.
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Example 10.4. Suppose that M and N are commutative groups. By Example 9.11 M and

N are uniquely equipped with the structure of a Z-module, and an induction shows that

any φ P HompM,Nq is Z-linear with respect to this module structure so that LpM,Nq “

HompM,Nq in this case. This is not typical: the example at the end of Remark 9.13 shows

that in general LpM,Nq may be strictly contained in HompM,Nq.

Lemma 10.5. Suppose that M , N , and P are R-modules and φ : M Ñ N and ψ : N Ñ P

are R-linear. Then ψ ˝ φ : M Ñ P is R-linear.

Proof. The composition of group homomorphisms is a group homomorphism, and pψ ˝

φqpr.xq “ ψpφpr.xqq “ ψpr.φpxqq “ r.ψpφpxqq “ r.pψ ˝ φqpxq for all r P R and x P M . The

result is proved.

Remark 10.6. Given an R-module M we extend the notation of Remark 9.13 and write

EndRpMq for the set of R-linear maps M ÑM . (Note that EndRpMq “ LpM,Mq.) Again

by the subring test (the identity map is R-linear, Proposition 10.2 gives sums and additive

inverses, and Lemma 10.5 gives products) this is a ring.

Lemma 10.7. Suppose that φ : M Ñ N is an R-linear map between R-modules. Then

φp0Mq “ 0N and φp´xq “ ´φpxq for all x PM .

Proof. This already follows from the fact that φ is a group homomorphism.

An R-module N is a submodule of an R-module M if the map j : N ÑM ;x ÞÑ x is a

well-defined R-linear map. We write N ďM when N is a submodule of M .

Lemma 10.8 (Submodule test). Suppose that M is an R-module and H ‰ N Ă M has

x ` y P N for all x, y P N , and r.x P N whenever x P N and r P R. Then addition on M

and scalar multiplication of R on M restrict to well-defined operations on N giving it the

structure of a submodule of M .

Proof. First, ´1 P R and p´1q.x “ x for all x P M so that by the hypotheses, N is

non-empty and x ´ y P N whenever x, y P N . It follows that N with binary operation the

addition on M restricted to N , is a subgroup of M by the subgroup test. The last hypothesis

ensures that scalar multiplication of R on M restricts to a well-defined function RˆN Ñ N

which a fortiori satisfies (M1)–(M4). Finally, the inclusion map is R-linear and the result

is proved.

Remark 10.9. As with rings (see the comment immediately after Lemma 2.7), given a subset

satisfying the hypotheses of the above lemma, we make the common abuse of calling it a

submodule on the understanding that we are referring to the induced operations.
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Example 10.10. Given an R-module M , the zero R-module t0Mu and M itself are sub-

modules of M . In this way modules are more like ideals (Example 5.2) than subrings (see

Example 3.10). This foreshadows the fact in Example 10.14 that ideals can be viewed as

submodules.

Given an R-linear map φ : M Ñ N , its kernel is its kernel as a homomorphism of

groups.

Proposition 10.11. Suppose that φ : M Ñ N is R-linear. Then kerφ is a submodule of

M and Imφ is a submodule of N .

Proof. Both are subgroups of the relevant groups by the corresponding result for groups, so

by the submodule test it is enough to note that if x P kerφ then 0N “ r.0N “ r.φpxq “ φpr.xq

and so r.x P kerφ, and if x P Imφ then there is y P M such that x “ φpyq and so

r.x “ r.φpyq “ φpr.yq P Imφ.

Remark 10.12. !4While kernels of ring homomorphisms need not be subrings, kernels of

module linear maps are submodules.

Proposition 2.11 showed how ring homomorphisms from fields give rise to vector space

structure. This is a special case of the fact that ring homomorphisms from commutative

rings give rise to module structure.

Proposition 10.13. Suppose that φ : RÑ S is a ring homomorphism from a commutative

ring R. Then the map R ˆ S Ñ S; pr, vq ÞÑ r.v :“ φprqv gives the additive group of S the

structure of an R-module such that right multiplication on S is R-linear and if φ maps into

the centre of S then left multiplication is R-linear too.

Proof. (M1) follows since φp1Rq “ 1S; (M2), since φprr1q “ φprqφpr1q and multiplication in S

is associative; (M3) since both φ and multiplication on the right in S are additive homomor-

phisms; and (M4) since multiplication on the left in S is an additive homomorphism. Linear-

ity of right multiplication follows since multiplication on the right in S is an additive homo-

morphism, and multiplication in S is associative (so pr.xqy “ pφprqxqy “ φprqpxyq “ r.pxyq).

Finally, left multiplication in S is an additive homomorphism, and if φ maps into the cen-

tre of S then xpr.yq “ xpφprqyq “ pxφprqqy “ pφprqxqy “ φprqpxyq “ r.pxyq so that left

multiplication is R-linear.

We say that the ring multiplication in S above is bilinear if multiplication on the left

and right is linear.

Example 10.14. Suppose that R is a commutative ring. Then R is an R-module by the

above proposition applied to the identity map. Furthermore, every submodule of this R-

module is an ideal in R, and conversely by the submodule test every ideal is a submodule.
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!4Many of the familiar rings (.e.g Z, Fp, Q, and R) only have one ring homomorphism

from the ring to itself, so that there is a unique way that Proposition 10.13 can be used to

give R the structure of an R-module in these cases. However, caution is warranted because

more generally there may be many. (See Exercise III.1.)

Example 10.15. Suppose that R is a commutative ring and φ : R Ñ S is a ring homo-

morphism with λ P S commuting with all elements of the image of φ. Then (by Proposition

4.21) there is an evaluation homomorphism RrXs Ñ Rrλs, and the above proposition gives

the ring Rrλs the structure of an RrXs-module such that multiplication is bilinear. When

φ is clear we shall speak of the RrXs-module Rrλs.

!4Given a field F and a matrix A P MnpFq there are two FrXs-modules naturally

associated with A: the first is the FrXs-module arising by the construction in Example 9.12

applied to the linear map Fn Ñ Fn; v ÞÑ vA. The second, recalling the conventional meaning

of FrAs from Example 4.28, is the FrXs-module FrAs defined in the present example.

That being said, FrAs is itself an F-vector space and the map Ã : FrAs Ñ FrAs; ppAq ÞÑ
AppAq is a well-defined F-linear map. The FrXs-module FrAs defined in this example is the

same as the vector-space-with-endomorphism module defined by Ã on the F-vector space

FrAs by Example 4.28.

Isomorphisms of modules

We say that φ : M Ñ N is an R-linear isomorphism if it is an R-linear bijection.

Lemma 10.16. Suppose that φ : M Ñ N is an R-linear isomorphism. Then φ´1 is R-

linear, and hence an R-linear isomorphism.

Proof. φ´1 is a group homomorphism since φ is a bijective group homomorphism. Hence it

is enough to show that: φ´1pr.xq “ φ´1pr.φpφ´1pxqqq “ φ´1pφpr.φ´1pxqqq “ r.φ´1pxq for all

x PM and r P R by the R-linearity of φ and the fact that φ´1 is a left and right inverse for

φ.

We write M – N if there is an R-linear isomorphism M Ñ N .

Proposition 10.17. – is an equivalence relation.

Proof. The identity map on an R-module is an R-linear isomorphism so – is reflexive. –

is symmetric in view of Lemma 10.16. Finally, – is transitive since the composition of

bijections is a bijection, and composition of R-linear maps is R-linear – this is Lemma

10.5.

Remark 10.18. !4Note that there are rings which also have a module structure that are

isomorphic as modules but not as rings (see Exercises IV.3 and I.8) and vice-versa (see

Exercises III.3 and I.6).
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Quotient modules and the First Isomorphism Theorem

Proposition 10.19 (Quotient modules). Suppose that M is an R-module and N is a sub-

module of M . Then the commutative group M{N may be endowed with the structure of an

R-module such that q : M ÑM{N ;x ÞÑ x`N is an R-linear surjection.

Proof. Since N is a commutative subgroup of M we have that M{N is a commutative

group and the map q is a homomorphism by definition of the quotient group construction.

Write . for the scalar multiplication on M and define a map p. : R ˆM{N Ñ M{N by

rp. qpxq :“ qpr.xq for all r P R and x P M . This is well-defined, first since q is surjective

so that for every W P M{N has W “ qpxq for some x; and since if qpxq “ qpyq so that

x ` N “ y ` N , then x ´ y P N and hence r.px ´ yq P N and so r.x ` N “ r.y ` N i.e.

qpr.xq “ qpr.yq.

(M1) follows since 1p. qpxq “ qp1.xq “ qpxq for all x P M by (M1) for .. (M2) follows

since rp. psp. qpxqq “ rp. qps.xq “ qpr.ps.xqq “ qpprsq.xq “ prsqp. qpxq for all r, s P R and x PM

by (M2) for .. (M3) follows since q is a homomorphism so pr ` sqp. qpxq “ qppr ` sq.xq “

qpr.x` s.xq “ qpr.xq` qps.xq “ rp. qpxq` sp. qpxq for all r, s P R and x PM by (M3). Finally,

(M4) follows since q is a homomorphism so rp. pqpxq ` qpyqq “ rp. qpx` yq “ qpr.px` yqq “

qpr.x` r.yq “ qpr.xq ` qpr.yq “ rp. qpxq ` rp. qpyq for all r P R and x, y PM by (M4).

Finally, it remains to note that q is R-linear by definition and the result is proved.

Example 10.20 (Example 10.14, continued). Suppose that R is a commutative ring and

I is an ideal in R. Then I is a submodule of R (as noted in Example 10.14) and hence

R{I is an R-module. Of course R{I is also a ring and Proposition 10.13 applied to the

quotient map endows R{I with the same module structure as the aforementioned one and

additionally gives that the multiplication on the ring R{I is bilinear. Put another way, the

ring structure and module structure on R{I are ‘compatible’.

Theorem 10.21 (First Isomorphism Theorem). Suppose that φ : M Ñ N is an R-linear

map between R-modules M and N . Then kerφ is a submodule of M ; Imφ is a submodule

of N ; and the map
rφ : M{ kerφÑ N ;x` kerφ ÞÑ φpxq

is an injective R-linear map with image Imφ.

Proof. The first two conclusions are in Proposition 10.11. By Proposition 10.19 M{ kerφ is

an R-module. The map is injective and well-defined since x`kerφ “ y`kerφ iff x´y P kerφ

iff φpx ´ yq “ 0 iff φpxq “ φpyq. It is a homomorphism by the First Isomorphism Theorem

for groups and so it remains to check that

rφpr.px` kerφqq “ rφppr.xq ` kerφq “ φpr.xq “ r.φpxq “ r.rφpx` kerφq.

The result is proved.
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Example 10.22. The First Isomorphism Theorem applied to the R-linear map M Ñ

M ;x ÞÑ x gives the isomorphism M{t0u –M ; c.f. Example 5.23.

11 Direct sums of modules

One may of generating new modules from old is through direct sums.

Proposition 11.1. Suppose that R is a commutative ring and pMiqiPI is a family of R

modules. Then the direct sum is the set
À

iPIMi, of families pxiqiPI with xi P Mi for all

i P I, and xi “ 0Mi
for all but finitely many i P I, endowed with the structure of an R-module

with addition and scalar multiplication defined by

x` y :“ pxi ` yiqiPI and r.x :“ pr.xiqiPI for all x, y P
à

iPI

Mi and r P R.

The zero of this module is p0Mi
qiPI , the additive inverse of pxiqiPI is p´xiqiPI . The embeddings

ιj : Mj Ñ
à

iPI

Mi where ιjpxqi “

$

&

%

xj if i “ j

0Mi
otherwise

are R-linear.

Proof. The direct sum of commutative groups is a commutative group with the given identity

and additive inverse. Moreover, (M1)–(M4) follow for the scalar multiplication on
À

iPIMi,

from the corresponding axioms coordinate-wise on the Mis. The linearity of the embeddings

follows since r.0Mi
“ 0Mi

for all r P R and 0Mi
` 0Mi

“ 0Mi
for all i P I.

Remark 11.2. If I “ H then
À

iPIMi is the zero module. If M1, . . . ,Mn are modules then

we write M1‘¨ ¨ ¨‘Mn for
À

iPt1,...,nuMi, and finally Mn for the direct sum of M with itself

n-times.

!4Although the direct sum M1 ‘ ¨ ¨ ¨ ‘Mn appears to have an order, its definition only

depends on the set t1, . . . , nu, not on an order of the elements of that set.

Remark 11.3. Given a commutative ring R we write
À

iPI R for the R-module that is the

direct sum of I copies of the R-module R (an R-module as in Example 10.14).

Example 11.4 (Baer-Specker group). The set ZN0 – that is the set of functions f : N0 Ñ Z
– has the structure of a ring (it is the direct product of N0 copies of the integers Z as

described in Proposition 4.13). By Proposition 3.7 there is a unique homomorphism Z Ñ
ZN0 , and this gives ZN0 the structure of a Z-module by Proposition 10.13. Concretely we

have pf ` gqpxq “ fpxq ` gpxq and pλ.fqpxq “ λfpxq for all x P N0.

!4The module ZN0 is uncountable, but
À

iPN0
Z – the direct sum of N0 copies of Z – is

countable so these modules are not isomorphic.
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Remark 11.5. There are a few expected relationships between direct sums: If pMjqjPJi is a

family of R-modules for each i P I then the map

à

jP
Ů

iPI Ji

Mj Ñ
à

iPI

˜

à

jPJi

Mj

¸

;x ÞÑ ppxjqjPJiqiPI

is a well-defined R-linear isomorphism. \ here denotes disjoint union; we assume the Jis

are disjoint for distinct is.

Furthermore, if pMiqiPI and pNiqiPI are families of R-modules with R-linear maps φi :

Mi Ñ Ni. Then the map

φ :
à

iPI

Mi Ñ
à

iPI

Ni;x ÞÑ pφipxiqqiPI (11.1)

is R-linear; if φi is an injection for all i P I then φ is an injection; if φi is a surjection for all

i P I then φ is a surjection.

Given elements pxiqiPI of an R-module M we write

xxi : i P Iy :“
č

tN : N ďM and xi P N for all i P Iu

which is a submodule of M by the submodule test c.f. (5.1). We call xxi : i P Iy the module

generated by pxiqiPI .

Remark 11.6. !4Note that if M is also a ring then xxi : i P Iy is ambiguous: it could mean

the ideal or module generated by these elements. Although in some important cases these

are the same (for example when M is the R-module R of Example 10.14), on other occasions

the meaning has to be determined from context.

Example 11.7. Suppose that V is an F-vector space and pxiqiPI are elements in V . Then

xxi : i P Iy is the span of the vectors in the family pxiqiPI .

Remark 11.8. Suppose M is an R-module and x1, . . . , xn PM . Then

xx1, . . . , xny :“ xxi : i P t1, . . . , nuy “

#

n
ÿ

i“1

ri.xi : r1, . . . , rn P R
n

+

since by the submodule test the right hand side is a module and so the middle is contained

in it. On the other hand since xxi : i P t1, . . . , nuy contains x1, . . . , xn it contains all sums

in the set on the right. It may be helpful to compare with Remark 5.8 in view of Example

10.14.

An R-module M is said to be finitely generated if it is generated by pxiqiPI for some

finite set I.

There are many examples of finitely generated modules.
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Example 11.9. A finite dimensional vector space has a finite spanning set and so is finitely

generated as a module over its field.

Example 11.10. Suppose that V is a vector space over F and T : V Ñ V is F-linear with

V having the endomorphism module structure as Example 9.12. If V is finite dimensional

as a vector space over F, then V is finitely generated as an FrXs-module: F is a subring of

FrXs in such a way that if λ P F and v P V then λ.v in the scalar multiplication of the vector

space V is the same as λ.v in the scalar multiplication in the FrXs-module. It follows that

any generating set for V as an F-space is also a generating set for V as an FrXs-module.

!4The converse does not hold: if V “ FrXs as a vector space and T : V Ñ V ; fpXq ÞÑ

XfpXq then T is F-linear and V is generated by 1 as an FrXs-module but it is infinite

dimensional.

An R-module M is said to be cyclic if M is generated by one element.

Example 11.11 (Examples 10.14 & 10.20, continued). Suppose that R is a commutative

ring and I is an ideal in R, and R (resp. I) as an R-module (resp. submodule) in the same

way as in Examples 10.14 & 10.20. Then R{I is cyclic, generated by 1` I.

Suppose that M is an R-module and x PM and r P R. Then we put

AnnRpxq :“ tr P R : r.x “ 0Mu and r.M :“ tr.z : z PMu.

We call AnnRpxq the annihilator of x.

Proposition 11.12. Suppose that R is a commutative ring and M is an R-module. Then

(i) for x P M , AnnRpxq is an ideal in R, and if M is generated by x then there is an

R-linear isomorphism R{AnnRpxq ÑM taking 1` AnnRpxq to x;

(ii) for r P R, r.M is a submodule of M , and if φ : M Ñ N is an isomorphism then

φ̃ : r.M Ñ r.N ; r.x ÞÑ r.φpxq is a well-defined isomorphism.

Proof. That AnnRpxq is an ideal of R is a short check from the axioms (using that R is

commutative). Moreover, by the First Isomorphism Theorem for modules (Theorem 10.21)

applied to the R-linear map R Ñ M ; r ÞÑ r.x (where we treat R as an R-module as in

Example 10.14), the map

R{AnnRpxq Ñ xxy; r ` AnnRpxq ÞÑ r.x

is a well-defined R-linear isomorphism.

The map M Ñ M ; z ÞÑ r.z is R-linear (using that R is commutative), and so by

Proposition 10.11 its image, r.M , is an R-module. Moreover, the given map φ̃ is well-defined
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since if r.z “ r.z1 then r.φpzq “ φpr.zq “ φpr.z1q “ r.φpz1q; conversely if r.φpzq “ r.φpz1q then

r.z “ r.z1 since φ is an injection, so φ̃ is an injection. The map is a surjection since φ is a

surjection, and it is linear since

φ̃pr.z ` r.z1q “ φ̃pr.pz ` z1qq “ r.φpz ` z1q “ r.φpzq ` r.φpz1q “ φ̃pr.zq ` φ̃pr.z1q

and (again using commutativity of R)

φ̃py.pr.zqq “ φ̃ppyxq.zq “ φ̃ppxyq.zq “ φ̃pr.py.zqq

“ r.φpy.zq “ r.py.φpzqq “ pxyq.φpzq “ pyxq.φpzq “ y.pr.φpzqq “ y.φ̃pr.zq.

The result is proved.

Remark 11.13. The above result is one of the places where we use commutativity of our

rings of interest. If they are not then the map M Ñ M ;x ÞÑ r.x need not be R-linear,

and AnnRpxq will only be a ‘one-sided’ ideal, meaning that it will only be closed under

multiplication by elements of the ring on one side c.f. footnote 24. Many results still follow,

but more care is needed, and for some questions attention is restricted to duo rings, that

is not-necessarily-commutative rings in which every one-sided ideal is two-sided.

In view of Proposition 11.12 and the fact that fields only have two ideals (as shown in

Example 5.21), we see that the only cyclic modules over a field are the zero module and

the field itself. It follows that for vector spaces the only direct sums of cyclic modules are

direct sums of copies of of the field. Moreover, two direct sums of copies of the field are

isomorphic if and only if their indexing sets are the same cardinality.32 In modules there are

some less obvious isomorphisms between direct sums of cyclic modules which are captured

by the following result.

Theorem 11.14 (Chinese Remainder Theorem). Suppose that R is a commutative ring and

I1, . . . , Ik are ideals in R such that Ij ` Ii “ R for all i ‰ j. Then the map

φ : RÑ pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Ikq; r ÞÑ pr ` I1, . . . , r ` Ikq

is a surjective R-linear map with kernel I1 X ¨ ¨ ¨ X Ik.

Proof. The quotient maps qi : RÑ R{Ii are R-linear and so are the embeddings ιi : R{Ii Ñ

pR{I1q‘¨ ¨ ¨‘pR{Ikq and hence φ “ ι1˝q1`¨ ¨ ¨`ιk ˝qk is R-linear. The kernel is I1X¨ ¨ ¨XIk;

proving the map is surjective is the rub.

32This is the so called Dimension Theorem for vector spaces which has been seen for finite direct sums

in Prelims. The finite case is sufficient for our understanding but a general proof may be found, for example,

in [Lan02, Theorem 5.2,Chapter III].
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Fix j and note that since Ij ` Ii “ R for all i ‰ j there are elements zi P Ij and wi P Ii

with zi ` wi “ 1. It follows that

1 “

˜

1´
ź

i:i‰j

p1´ ziq

¸

`

˜

ź

i:i‰j

wi

¸

“
ÿ

H‰SĂti:i‰ju

p´1q|S|`1
ź

sPS

zs `

˜

ź

i:i‰j

wi

¸

,

and so if we set yj :“
ś

i:i‰j wi then yj P Ii for all i ‰ j and 1 ´ yj P Ij. Thus for

u P pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Ikq we have

φ pu1y1 ` ¨ ¨ ¨ ` ukykq “ pu1y1 ` I1, . . . , ukyk ` Ikq “ pu1 ` I1, . . . , uk ` Ikq

and the map is surjective as required.

Remark 11.15. The history of this theorem is involved [She88], but the starting point is

work of Sun Zi (孫子) from around 400AD who gave an application of a method for solving

given simultaneous congruences.

This has the following immediate and more familiar corollary.

Corollary 11.16. Suppose that m1, . . . ,mk are pairwise coprime natural numbers and

a1, . . . , ak are integers. Then there is x P Z such that x ” ai pmod miq for all 1 ď i ď k.

Proof. Take R “ Z and Ii :“ xmiy. By Bezout’s Lemma (Theorem 4.2) xmiy ` xmjy “ Z
for i ‰ j since mi and mj are coprime, and so by Theorem 11.14 there is some z P Z such

that z ” ai pmod miq for all 1 ď i ď k.

Example 11.17. Since 2 and 3 are coprime in Z and x2yXx3y “ x6y, the First Isomorphism

Theorem for modules (Theorem 10.21) applied to the homomorphism from the Chinese

Remainder Theorem (Theorem 11.14) gives a Z-module isomorphism Z6 – Z2 ‘ Z3.

The above example seems to call into question the possibility of an analogue of the Di-

mension Theorem for direct sums of cyclic modules, as it produces an isomorphism between

different numbers of non-zero cyclic modules. Despite this there is a way to recover a result

as follows.

Theorem 11.18 (Uniqueness Theorem). Suppose that R is a commutative ring, M is an

R-module, and I1 Ă ¨ ¨ ¨ Ă In and J1 Ă ¨ ¨ ¨ Ă Jm are proper ideals such that M – pR{I1q ‘

¨ ¨ ¨ ‘ pR{Inq and M – pR{J1q ‘ ¨ ¨ ¨ ‘ pR{Jmq. Then n “ m and Jk “ Ik for all 1 ď k ď n.

Remark 11.19. !4Note that we need the ideals to be proper: if I “ R then R{I is the zero

module as an R-module, and if Z is a zero module then Zn – Zm for all n,m P N0.

We begin with a result which essentially bootstraps the Dimension Theorem for finite

dimensional vector spaces.
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Lemma 11.20. Suppose that R is a commutative ring, and I1 Ă ¨ ¨ ¨ Ă In are proper ideals.

Then pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inq is generated by a set of size n and by no smaller set.

Proof. Surjective R-linear maps take generating sets to generating sets. The R-module Rn

has a generating set of size n and so the R-linear surjection

Rn
Ñ pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inq; r ÞÑ pr1 ` I1, . . . , rn ` Inq

ensures the first part of the lemma. For the second, by Theorem 6.9 there is a maximal

ideal J Ą In and hence J Ą Ik for all 1 ď k ď n. The R-linear surjection

pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inq Ñ pR{Jqn; px1 ` I1, . . . , xn ` Inq ÞÑ px1 ` J, . . . , xn ` Jq

is therefore well-defined, and ensures that if pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inq has a generating set of

size t then so does pR{Jqn as an R-module. Let xp1q, . . . , xptq be a generating set for pR{Jqn

as an R-module, and note that for every x P pR{Jqn there are elements r1, . . . , rt P R such

that

x “ r1.x
p1q
` ¨ ¨ ¨ ` rt.x

ptq

“ pr1.x
p1q
1 ` ¨ ¨ ¨ ` rt.x

ptq
1 , . . . , r1.x

p1q
n ` ¨ ¨ ¨ ` rt.x

ptq
n q

“ ppr1 ` Jqx
p1q
1 ` ¨ ¨ ¨ ` prt ` Jqx

ptq
1 , . . . , pr1 ` Jqx

p1q
n ` ¨ ¨ ¨ ` prt ` Jqx

ptq
n q

“ pr1 ` Jq.x
p1q
` ¨ ¨ ¨ ` prt ` Jq.x

ptq,

where the scalar multiplication in the last line is that arising from uncurrying the natural

map R{J Ñ HomppR{Jqn, pR{Jqnq, which is a homomorphism by the First Isomorphism

Theorem for rings (Theorem 5.22) applied to the curried scalar multiplication of R on

pR{Jqn – the latter is a ring homomorphism RÑ HomppR{Jqn, pR{Jqnq with kernel J .

Proposition 6.6 ensures that R{J is a field and so pR{Jqn is a vector space over R{J

and the above calculation shows that xp1q, . . . , xptq is a spanning set for pR{Jqn as an pR{Jq-

module i.e. as a vector space over R{J . Since pR{Jqn is an n-dimensional vector space

over R{J any spanning set has size at least n i.e. t ě n.

Proof of Theorem 11.18. By Lemma 11.20 we have n “ m. For x P R (using Proposition

11.12 (ii) so that x.M is a module) we shall show that for 1 ď k ď n

Ik “ tx P R : x.M has a generating set with strictly fewer than k elementsu,

from which the result follows without loss of generality. Write Kk for the set on the right.

Suppose that x P R. R{Ik is an R-module and x.pR{Ikq “ xx`Iky, and so by Proposition

11.12 (i)

x.pR{Ikq – R{AnnRpx` Ikq. (11.2)
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Now AnnRpx ` Ikq “ tr P R : rpx ` Ikq “ Iku “ tr : rx P Iku, so x R Ik if and only if

AnnRpx`Ikq is proper33; and AnnRpx`I1q Ă ¨ ¨ ¨ Ă AnnRpx`Inq since the I1 Ă ¨ ¨ ¨ Ă Ik. Let

0 ď jpxq ď n be maximal such that x R Ijpxq (with jpxq “ 0 if x P I1) then by Proposition

11.12 (ii)

x.M – x.ppR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inqq

– x.pR{I1q ‘ ¨ ¨ ¨ ‘ x.pR{Inq

– pR{AnnRpx` I1qq ‘ ¨ ¨ ¨ ‘ pR{AnnRpx` Inqq

– pR{AnnRpx` I1qq ‘ ¨ ¨ ¨ ‘ pR{AnnRpx` Ijpxqqq

by definition

by (11.2) and (11.1)

AnnRpx ` Ikq not proper

ñ R{AnnRpx ` Ikq – t0u

with the convention that this is the zero module if jpxq “ 0 since then the sum is empty.

By Lemma 11.20 we conclude that if x R Ik then jpxq ě k and so x.M is not generated

by strictly fewer than jpxq (and hence k) elements and so x R Kk. On the other hand if

x P Ik then jpxq ă k and so x.M is generated by at most jpxq (i.e. strictly fewer than k)

elements and so x P Kk. The result is proved.

Remark 11.21. There remains the question of whether or not a module has a decomposition

of the type described in Theorem 11.18. We shall show that if R is a PID then every finitely

generated R-module can be decomposed into cyclic modules in this way. Commutative rings

with this property are called FGCF-rings and are characterised in [SW74]. However, there

remain open questions in this area, if we do not require the nesting of the ideals or if we

allow non-commutative rings like duo rings from Remark 11.13 e.g. [::006, Problem 2.45].

Theorem 11.22. Suppose that R is a PID and M is a finitely generated R-module. Then

there is n P N0 and proper ideals I1 Ă ¨ ¨ ¨ Ă In such that

M – pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inq

with the convention that this is the zero module if the sum is empty i.e. if n “ 0.

To prove this we need the following lemma to let us change variables.

Lemma 11.23. Suppose that R is a PID with elements a1, . . . , an, h P R, and xa1, . . . , any “

xhy, and M is an R-module with elements x1, . . . , xn P M . Then there are elements

y1, . . . , yn PM with xy1, . . . , yny “ xx1, . . . , xny such that h.yn “ a1.x1 ` ¨ ¨ ¨ ` an.xn.

Proof. If h “ 0 then a1, . . . , an “ 0 and the result is trivial with yi “ xi for 1 ď i ď n, so

we may assume h P R˚.

We proceed by induction on n; n “ 1 is immediate since a1 „ h in that case, so there

is a u P UpRq such that a1 “ hu and we can take y1 :“ u.x1. For n ą 1 let h1 be a

33If x P Ik then rx P Ik for all r P R since Ik is an ideal, and hence AnnRpx ` Ikq “ R. Conversely, if

AnnRpx` Ikq “ R then 1px` Ikq “ Ik and so x P Ik.
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generator of xa1, . . . , an´1y. By the inductive hypothesis we may take y1, . . . , yn´2, y
˚
n´1 such

that xy1, . . . , yn´2, y
˚
n´1y “ xx1, . . . , xn´1y and h1.y˚n´1 “ a1.x1 ` ¨ ¨ ¨ ` an´1.xn´1.

Let α, β P R be such that h1 “ αh and an “ βh. Since xhy “ xh1, any there are elements

γ, δ P R such that h “ δh1 ` γan and so αδ ` βγ “ 1 by cancellation (since h P R˚).

Now put yn´1 :“ γ.y˚n´1 ´ δ.xn and yn :“ α.y˚n´1 ` β.xn. Then xn “ ´α.yn´1 ` γ.yn and

y˚n´1 “ β.yn´1 ` δ.yn, and so

xy1, . . . , yny “ xy1, . . . , yn´2, y
˚
n´1, xny “ xx1, . . . , xny.

Finally, h.yn “ h1.y˚n´1 ` an.xn “ a1.x1 ` ¨ ¨ ¨ ` an.xn and the result is proved.

Proof of Theorem 11.22. We proceed inductively to show that there are elements z1, . . . , zn

generating M such that

M – pR{AnnRpz1qq ‘ ¨ ¨ ¨ ‘ pR{AnnRpznqq and AnnRpz1q Ă ¨ ¨ ¨ Ă AnnRpznq.

Since R is a PID, it is a UFD by Theorem 7.21 and in particular this means for every

x P R˚ there is34 a unique Npxq P N0 such that x „ x1 ¨ ¨ ¨ xNpxq for irreducible elements

x1, . . . , xNpxq. We declare Np0Rq “ 8 and note if x � y then Npxq ď Npyq with equality if

and only if x „ y.

Since M is finitely generated there is a minimal n P N0 such that M is generated by a

set of size n. Let x1, . . . , xn be a set of generators in which AnnRpxnq is generated by an

element rn (possibly 0R) with Nprnq minimal out of all possible sets of generators of size n.

Note that AnnRpxnq is proper since otherwise x1, . . . , xn´1 would generate M contradicting

the minimality of n.

Let M 1 :“ xx1, . . . , xn´1y and consider the map

Ψ : M 1
‘ xxny ÑM ; px, yq ÞÑ x` y.

This is an R-linear surjection; the key fact, however, is the following.

Claim. Ψ is an injection i.e. ker Ψ “ t0u.

Proof. Suppose that x`y “ 0 for some x PM 1 and y P xxny so that x “ a1.x1`¨ ¨ ¨`an´1.xn´1

and y “ an.xn for some a1, . . . , an P R. Let a˚n be such that xa˚ny “ xan, rny; α, β P R be

such that a˚n “ αan ` βrn; and h be such that xαa1, . . . , αan´1, a
˚
ny “ xhy. Apply Lemma

11.23 to get y1, . . . , yn PM with xy1, . . . , yny “ xx1, . . . , xny “M and

h.yn “ pαa1q.x1 ` ¨ ¨ ¨ ` pαan´1q.xn´1 ` a
˚
n.xn

“ α.pa1.x1 ` ¨ ¨ ¨ ` an.xnq ` pβrnq.xn “ α.px` yq ` β.prn.xnq “ α.0` β.0 “ 0.

Now h � a˚n � rn and so by minimality of rn we have h „ rn, and hence a˚n „ rn. But then

rn � an and an.xn “ 0 as required.

34It may be of interest to (re-)visit Remark 7.32.
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Finally, by the inductive hypothesis there are elements z1, . . . , zn´1 generating M 1 such

that M 1 – pR{AnnRpz1qq ‘ ¨ ¨ ¨ ‘ pR{AnnRpzn´1qq with AnnRpz1q Ă ¨ ¨ ¨ Ă AnnRpzn´1q.

Set zn :“ xn and since xxny – R{AnnRpznq the result is proved if we can show that

AnnRpzn´1q Ă AnnRpznq.

To see this last claim, suppose that r P AnnRpzn´1q and let h be such that xhy “ xr, rny.

Apply Lemma 11.23 to get y1, . . . , yn with xy1, . . . , yny “ xz1, . . . , zny “ M and h.yn “

r.zn´1 ` rn.zn “ 0. But h � rn and so by minimality of the number of irreducible factors of

rn we have h „ rn and hence rn � r i.e. r P xrny “ AnnRpznq.

12 The structure theorem for finitely generated mod-

ules over PIDs and applications

With the work of the last section we can now formulate the structure theorem.

Theorem 12.1 (Structure Theorem, Invariant Factor Form). Suppose that R is a PID and

M is a finitely generated R-module. Then there is a (possibly empty) sequence ar � ¨ ¨ ¨ � a1

of elements35 of R with ar  1 such that

M – pR{xa1yq ‘ ¨ ¨ ¨ ‘ pR{xaryq

and the sequence paiq
r
i“1 is unique up to associates.

Proof. The existence of this isomorphism follows from Theorem 11.22 and the fact that

ideals in a PID are generated by a single element. The divisibility relation between the

elements is exactly the nesting of the ideals; the fact that ar  1 is the fact that all the

ideals are proper.

The uniqueness now follows from Theorem 11.18 and the definition of association.

Theorem 12.2 (Structure Theorem, Primary Form). Suppose that R is a PID and M is a

finitely generated R-module. Then there are some s, t P N0, irreducible elements p1, . . . , pt P

R, and e1, . . . , et P N˚, such that

M – Rs
‘ pR{xpe11 yq ‘ ¨ ¨ ¨ ‘ pR{xp

et
t yq.

Proof. We being with some preliminaries about gathering associates in UFDs.36 Since R is

a PID, it is a UFD (by Theorem 7.21) and if a P R˚ there is some r P N0 and irreducible

elements x1, . . . , xr such that a „ x1 ¨ ¨ ¨ xr. By Proposition 7.2 „ is an equivalence relation;

35As usual 0 � 0 and so this sequence may end in a series of 0s.
36The idea here is just to group prime factors together, for example in Z instead of writing things like

540 “ 2ˆ 3ˆ 5ˆ 2ˆ 3ˆ 3 we will write 540 “ 22 ˆ 33 ˆ 5.
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let P be the partition of the (multi-)set tx1, . . . , xru induced by „. Let q1, . . . , ql be one

element from each equivalence class and let c1, . . . , cl P N˚ be the size of the corresponding

class. Then for every 1 ď i ď r there is a unique j such that xi „ qj, and
ś

i:xi„qj
xi „ q

cj
j

since (again part of Proposition 7.2) „ respects multiplication (meaning xy „ x1y1 if x „ x1

and y „ y1). It follows that a „ qc11 ¨ ¨ ¨ q
cl
l , and qi  qj for i ‰ j.

The ideal xqcii y ` xq
cj
j y is generated by some h P R (since R is a PID) and h � qcii and

h � q
cj
j . If p is a prime factor of h then p „ qi and p „ qj since R is a UFD, and by

transitivity of „ we have qi „ qj meaning i “ j. Thus, if i ‰ j then h has no prime factors

and hence h „ 1 i.e. xqcii y ` xq
cj
j y “ x1y. It follows from the Chinese Remainder Theorem

(Theorem 11.14) that

R{xay – pR{xqc11 yq ‘ ¨ ¨ ¨ ‘ pR{xq
cl
l yq (12.1)

as R-modules for irreducibles q1, . . . , ql and naturals c1, . . . , cl P N˚.
Finally, apply Theorem 12.1 to M to get a1, . . . , ar P R such that M – pR{xa1yq ‘

¨ ¨ ¨ ‘ pR{xaryq. If ai “ 0R then R{xaiy – R as an R-module (Example 10.22); if ai ‰ 0R

then we have an isomorphism of the form (12.1). Combining these isomorphisms using

commutativity of the direct sum (see Remark 11.2) and (11.1) we have the result.

Remark 12.3. There is a uniqueness statement for the primary form of the structure theorem

but we do not pursue that here. What is important about the Primary Form as compare

with the Invariant Factor Form is that the building blocks in the former cannot be further

decomposed.

We have a couple of important corollaries.

Theorem 12.4 (Structure Theorem for finitely generated commutative groups). Suppose

that G is a finitely generated commutative group. Then there are unique (non-zero) natural

numbers 1 ‰ dr � dr´1 � ¨ ¨ ¨ � d1 and s P N0 such that

G – Zs ‘ Zd1 ‘ ¨ ¨ ¨ ‘ Zdr .

Proof. G is a Z-module, so we may apply the Invariant Factor Form of Theorem 12.1 to get

the desired structure, writing Zs for the s copies of Z{x0y in the given decomposition. Then

uniqueness follows from the fact that UpZq “ t´1, 1u since we have restricted the dis to be

naturals.

Theorem 12.5 (Jordan Normal Form). Suppose that V is a finite-dimensional vector space

over C and T : V Ñ V is linear. Then there is a basis for V such that the matrix for T in

this basis is
¨

˚

˚

˚

˚

˚

˝

Jpλ1, n1q 0n1ˆn2 ¨ ¨ ¨ 0n1ˆnt

0n2ˆn1

. . . . . .
...

...
. . . . . . 0nt´1ˆnt

0ntˆn1 ¨ ¨ ¨ 0ntˆnt´1 Jpλt, ntq

˛

‹

‹

‹

‹

‹

‚
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where 0nˆm is the all zeros matrix in Mn,mpCq, and Jpλ, nq is the n ˆ n matrix, called a

Jordan block,
¨

˚

˚

˚

˚

˚

˚

˚

˝

λ 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

1 λ
. . .

...

0
. . . . . . . . .

...
...

. . . . . . λ 0

0 ¨ ¨ ¨ 0 1 λ

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

The scalars λ1, . . . , λt are all the eigenvalues of T .

Proof. We regard V as a CrXs-module in the way described in Example 9.12. Since C is a

subring of CrXs and V is finite dimensional as a C-vector space, the module V is finitely

generated by Example 11.10.

Since CrXs is a PID we may apply the Structure Theorem (Primary Form, Theorem

12.2) to V . We get s, t P N0, irreducible polynomials p1, . . . , pt P CrXs, and natural numbers

n1, . . . , nt P N˚ such that

φ : V Ñ pCrXsqs ‘ pCrXs{xpn1
1 yq ‘ ¨ ¨ ¨ ‘ pCrXs{xpntt yq

is a CrXs-linear bijection. In particular, φ is a C-linear bijection but V is finite-dimensional

and CrXs is infinite dimensional so s “ 0. The irreducible polynomials in CrXs are all

degree 1 (see Remark 8.2) thus there are λ1, . . . , λt P C such that xpnii y “ xpX´λiq
niy; write

Mi :“ CrXs{xpX ´ λiq
niy. For each 1 ď i ď t let pei,jq

ni
j“1 be such that

φpei,jq “ p0M1 , . . . , 0Mi´1
, pX ´ λiq

j´1
` xpX ´ λiq

niy, 0Mi`1
, . . . , 0Mtq.

Then φpe1,1q, . . . , φpe1,n1q, φpe2,1q, . . . , φpet´1,nt´1q, φpet,1q, . . . , φpet,ntq is a basis for the C-

vector space M1 ‘ ¨ ¨ ¨ ‘Mt and since φ is a C-linear isomorphism, the sequence of vectors

e1,1, . . . , e1,n1 , e2,1, . . . , et´1,nt´1 , et,1, . . . , et,nt (ordered in this way) is a basis for V as a vector

space over C.

The map φ is CrXs-linear so

φpTei,jq “ φpX.ei,jq “ X.φpei,jq “

$

&

%

φpei,j`1q ` λi.φpei,jq if j ă ni

λi.φpei,jq if j “ ni

“

$

&

%

φpei,j`1 ` λi.ei,jq if j ă ni

φpλi.ei,jq if j “ ni
.

Since φ is a C-linear bijection we conclude that T has the required form.

For the last part, certainly the λis are eigenvalues of T since Jpλ, nqp0, . . . , 0, 1qt “

λp0, . . . , 0, 1qt. On the other hand pJpλ, nq ´ λIqn “ 0 and so the minimal polynomial for T

divides pX ´ λ1q
n1 ¨ ¨ ¨ pX ´ λtq

nt and hence all the roots of the minimal polynomial are in
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the set tλ1, . . . , λtu. Finally, every eigenvalue of T is a root of the minimal polynomial and

so the claim is proved.

Remark 12.6. !4The λis in the theorem need not be distinct.

The fact that C is algebraically closed i.e. every polynomial with coefficients in C has

a root in C is vital to the Jordan normal form (and we used this fact when we appealed to

Remark 8.2), but there is another simple form available more generally.

Theorem 12.7 (Rational Canonical Form). Suppose that V is a finite-dimensional vector

space over F and T : V Ñ V is linear and not identically 0. Then there are monic polyno-

mials f1 � ¨ ¨ ¨ � fr of degree n1, . . . , nr respectively and with f1 non-constant, and a basis for

V such that the matrix for T in this basis is

¨

˚

˚

˚

˚

˚

˝

Cpf1q 0n1ˆn2 ¨ ¨ ¨ 0n1ˆnr

0n2ˆn1

. . . . . .
...

...
. . . . . . 0nr´1ˆnr

0nrˆn1 ¨ ¨ ¨ 0nrˆnr´1 Cpfrq

˛

‹

‹

‹

‹

‹

‚

where 0nˆm is the all zeros matrix in Mn,mpFq, and Cpfq is37 the n ˆ n matrix, called the

companion matrix, for the monic fpXq “ Xn ` an´1X
n´1 ` ¨ ¨ ¨ ` a1X ` a0,

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´a0

1
. . .

... ´a1

0
. . . . . .

...
...

...
. . . . . . 0 ´an´2

0 ¨ ¨ ¨ 0 1 ´an´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

The minimal polynomial for T is fr and the characteristic polynomial is f1 ¨ ¨ ¨ fr.

Proof. The argument is really the same as that for producing the Jordan Normal Form

except we apply the Invariant Factor Form of the Structure Theorem rather than the Primary

Form.

As before, we regard V as an FrXs-module in the way described in Example 9.12. Since

F is a subring of FrXs and V is finite dimensional as an F-vector space, the module V is

finitely generated by Example 11.10.

Since FrXs is a PID we may apply the Structure Theorem (Invariant Factor Form,

Theorem 12.1). Then we get polynomials f1 � ¨ ¨ ¨ � fr with f1  1 and

φ : V Ñ pFrXs{xf1yq ‘ ¨ ¨ ¨ ‘ pFrXs{xfryq
37If n “ 1 then Cpfq “ p´a0q.

Page 59



an FrXs-linear bijection. In particular, φ is an F-linear bijection but V is finite-dimensional

and FrXs{x0y is infinite dimensional so fi P FrXs˚ for all 1 ď i ď r. Thus we may put

ni :“ deg fi and may suppose that each fi is monic (since multiplying by a unit does not

change the ideal).

For 1 ď i ď r we write Mi :“ FrXs{xfiy and let pei,jq
ni
j“1 be such that

φpei,jq “ p0M1 , . . . , 0Mi´1
, Xj´1

` xfiy, 0Mi`1
, . . . , 0Mrq.

Then φpe1,1q, . . . , φpe1,n1q, φpe2,1q, . . . , φper´1,nr´1q, φper,1q, . . . , φper,nrq is a basis for the F-

vector space M1 ‘ ¨ ¨ ¨ ‘Mr and since φ is an F-linear isomorphism, the sequence of vectors

e1,1, . . . , e1,n1 , e2,1, . . . , er´1,nr´1 , er,1, . . . , er,nr (ordered in this way) is a basis for V as a vector

space over F.

Write fipXq “ Xni ` a
piq
ni´1

Xni´1 ` ¨ ¨ ¨ ` a
piq
1 X ` a

piq
0 for 1 ď i ď r. Then since φ is

FrXs-linear we have

φpT.ei,jq “ φpX.ei,jq “ X.φpei,jq “

$

&

%

φpei,j`1q if j ă ni

´a
piq
0 .φpei,1q ´ ¨ ¨ ¨ ´ a

piq
ni´1

.φpei,niq if j “ ni

“

$

&

%

φpei,j`1q if j ă ni

φp´a
piq
0 .ei,1 ´ ¨ ¨ ¨ ´ a

piq
ni´1

.ei,niq if j “ ni
.

Since φ is an F-linear bijection we conclude that T has the required form.

For the last part we first show that for a monic polynomial f the minimal polynomial of

Cpfq is f where f P FrXs˚ has degree n: First, the characteristic polynomial of Cpfq can

be computed using the Laplace expansion so

detptI ´ Cpfqq “ det

¨

˚

˚

˚

˚

˚

˚

˚

˝

t 0 ¨ ¨ ¨ 0 a0

´1
. . . . . .

... a1

0
. . . . . . 0

...
...

. . . . . . t an´2

0 ¨ ¨ ¨ 0 ´1 t` an´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ p´1qn`1a0t
0
p´1qn´1 ` ¨ ¨ ¨ ` p´1qn`1`iait

i
p´1qn´1´i ` ¨ ¨ ¨

` p´1q2n´1an´2t
n´2
p´1q1 ` p´1q2npt` an´1qt

n´1
p´1q0 “ fptq.

By Cayley-Hamilton, Cpfq satisfies f . Moreover, for 0 ď r ď n ´ 1 the first column of

Cpfqr is p0, . . . , 0, 1, 0, . . . , 0qt where the 1 is in the pr ` 1qst position, thus the matrices

I, Cpfq, . . . , Cpfqn´1 are linearly independent over F and hence the degree of the minimal

polynomial is at least n; we conclude the minimal polynomial is f .

Since fi � fr for all 1 ď i ď r we see that frpT q “ 0. On the other hand T is conjugate

to a matrix containing Cpfrq which we have seen has minimal polynomial fr and hence fr

is the minimal polynomial of T .
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The characteristic polynomial is invariant under change of basis, and hence the charac-

teristic polynomial of T is the product of the characteristic polynomials of the companion

matrices in the rational canonical form. It follows that it is
śr

i“1 fi as claimed.

Remark 12.8. The Rational Canonical Form is also sometimes called the Frobenius Nor-

mal Form.

13 Bases and matrices; computing with modules

As with vector spaces, generation in modules has an allied concept of linear independence:

Suppose that M is an R-module and pxiqiPI is a family of elements of M . We say that pxiqiPI

is linearly independent if whenever S Ă I is finite and

ÿ

sPS

λs.xs “ 0M with λs P R for all s P S,

then λs “ 0R for all s P S. We say that pxiqiPI is a basis for M if it is both linearly

independent and generating. An R-module M with a basis is said to be free.

Remark 13.1. In vector spaces this terminology coincides with existing terminology.

Remark 13.2. !4Unlike vector spaces38 not every module is free: for example ZN does not

even have a non-empty independent set as a Z-module, despite being a finitely generated

module over a PID, though it does have a basis as a ZN -module.

In particular, while the Structure Theorem (say Theorem 12.1) does afford us a nice

‘basis-like’ set of generators. In particular the module pR{xa1yq‘ ¨ ¨ ¨‘pR{xaryq is generated

by

p1R{xa1y, 0R{xa2y, . . . , 0R{xaryq, . . . , p0R{xa1y, . . . , 0R{xar´1y, 1R{xaryq

but in general this is not a basis.

Lemma 13.3. Suppose that M is an R-module and pxiqiPI is a family of elements of M .

Then there is a unique R-linear map Ψ :
À

iPI R Ñ M such that Ψpeiq “ xi for all i P I

where ei P
À

iPI R has 1R in the position indexed by i and 0R elsewhere.39

Moreover, pxiqiPI is linearly independent if and only if Ψ is injective; it is generating if

and only if Ψ is surjective; so it is a basis if and only if Ψ is bijective.

38Assuming the Axiom of Choice, every vector space has a basis [Lan02, Theorem 5.1, Chapter III]. (There

are different types of basis in different areas of mathematics, for example a Schauder basis is a type of basis

suitable for Banach spaces but Schauder bases are not in general bases in the sense we use here. When

necessary, the type of basis we are interested in here is disambiguated by calling it a Hammel basis.) It

turns out that the use of the Axiom of Choice is unavoidable in the strong sense that if every vector space

is assumed to have a basis then (in ZF) the Axiom of Choice follows [Bla84, Theorem 1].
39We are allowing infinite and unordered indexing sets I, but in the special case I “ t1, . . . , nu then

ei “ p0R, . . . , 0R, 1R, 0R, . . . , 0Rq where the 1R is in the ith position.
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Proof. The map

Ψ :
à

iPI

RÑM ; r ÞÑ
ÿ

i:ri‰0R

ri.xi

is well-defined since the sum on the right is finite by definition of the direct sum, and it

satisfies Ψpeiq “ xi in view of (M1). To see that Ψ is a homomorphism note that that for

u, v P
À

iPI R we have

Ψpu` vq “
ř

i:ui`vi‰0R
pui ` viq.xi

“
ř

i:ui‰0R or vi‰0R
pui ` viq.xi

“
ř

i:ui‰0R or vi‰0R
ui.xi `

ř

i:ui‰0R or vi‰0R
vi.xi

“
ř

i:ui‰0R
ui.xi `

ř

i:vi‰0R
vi.xi “ Ψpuq `Ψpvq.

J :“ ti : ui ` vi ‰ 0Ru

Ă K :“ ti : ui ‰ 0R or vi ‰ 0Ru

and
ř

iPKzJ pui ` viq.xi “ 0M

ř

i:ui“0R and vi‰0R
ui.xi “ 0M

and
ř

i:ui‰0R and vi“0R
vi.xi “ 0M

Similarly for u P
À

iPI R and r P R we have

Ψpr.uq “
ÿ

i:rui‰0R

pruiq.xi “
ÿ

i:ui‰0R

pruiq.xi “
ÿ

i:ui‰0R

r.pui.xiq “ r.

˜

ÿ

i:ui‰0R

ui.xi

¸

“ r.Ψpuq

as required.

Finally, for uniqueness, given two such maps Ψ and Φ the map Π :“ Ψ´Φ has Πpeiq “ 0M

for all i P I. But if u P
À

iPI R then u “
ř

i:ui‰0R
ui.ei and hence by linearity we have

Πpuq “
ř

i:ui‰0R
ui.Πpeiq “ 0M and so Ψ “ Φ as required.

The ‘moreover’ part follows by unpacking the definitions.

Remark 13.4. In view of the above an R-module M is free if and only if M –
À

iPI R for

some indexing set I.

Proposition 13.5. Suppose that R is a non-trivial commutative ring and M is an R-module

with a basis of size n. Then any generating set has size at least n.

Proof. In view of Remark 13.4 M – Rn. Now apply Lemma 11.20 with all the ideals equal

to t0u (which are proper since R is non-trivial).

Remark 13.6. This proposition implies that if R is a non-trivial commutative ring then any

two bases of the R-module M have the same size. Thus, in this case if M has a finite basis

of size n we say M has rank n and this is well-defined.

Remark 13.7. !4An independent subset of a rank n module having size n need not be a

basis: t2u is an independent subset of the rank one module Z having size 1 but it is not

a basis for Z. On the other hand, it is true (in our setting of commutative rings) that a

generating subset of a rank n module having size n is a basis, though this takes some work

(see e.g. [Lam99, §1B]). Moreover, it is also true (again, in our setting of commutative rings)

that a free submodule of a rank n module must have rank at most n (see e.g. [Lam99,

§1D]).

Page 62



Matrices and Smith Normal Form

Finite bases are particularly important because they let us write linear maps as matrices.

Given a commutative ring R we write Mn,mpRq for the set of nˆm matrices with values in

R, and MnpRq :“Mn,npRq. This notation generalises the matrix rings of Proposition 4.25.

Given R-modules M and N with bases X “ pxiq
m
i“1 and Y “ pyiq

n
i“1 respectively there

is a bijection Φ : LpM,Nq ÑMn,mpRq such that

Txi “
n
ÿ

j“1

ΦpT qj,i.yj for all 1 ď i ď m. (13.1)

We call ΦpT q the matrix of T with respect to the bases X and Y . The inverse of this

map takes A PMn,mpRq to the R-linear map

M Ñ N ;
m
ÿ

i“1

λi.xi ÞÑ
n
ÿ

j“1

˜

m
ÿ

i“1

Aj,iλi

¸

.yj,

which is well-defined since X is a basis for M .

Remark 13.8. The free module Rn come with the so called standard bases En, that is the

set of elements ei “ p0R, . . . , 0R, 1R, 0R, . . . 0Rq with 1R in the ith position. We can give

Mn,mpRq the structure of an R-module by taking the R-module structure on LpRm, Rnq

(afforded by Proposition 10.2) and using the bijection to above to bring it over to Mn,mpRq.

We shall not do this here, but the next proposition will do this for the ring structure on

EndRpR
nq “ LpRn, Rnq.

Proposition 13.9. Suppose that R is a commutative ring. Then MnpRq is a ring with

A`B “ pAi,j `Bi,jq
n
i,j“1 and AB “

˜

n
ÿ

k“1

Ai,kBk,j

¸n

i,j“1

for A,B PMnpRq,

zero p0Rq
n
i,j“1, multiplicative identity I where Ii,i “ 1R for 1 ď i ď n and Ii,j “ 0R for i ‰ j,

and ´A “ p´Ai,jq
n
i,j“1 for A PMnpRq.

Proof. Let Φ : EndRpR
nq Ñ MnpRq be the bijection taking an R-linear map Rn Ñ Rn

to its matrix w.r.t. to the standard basis En on both the domain and the codomain, as in

(13.1). In Remark 10.6 we saw that EndRpR
nq is a ring and the bijection Φ then makes

MnpRq into a ring by putting A`B :“ ΦpΦ´1pAq ` Φ´1pBqq, AB :“ ΦpΦ´1pAq ˝ Φ´1pBqq,

´A :“ Φp´Φ´1pAqq, 0MnpRq
:“ Φp0EndRpRnqq and 1MnpRq :“ Φp1EndRpRnqq.

The remainder of the proposition is computing what these definitions yield. First, the

zero map of EndRpR
nq maps to the zero matrix and the multiplicative identity maps to the

matrix I described in the proposition just by considering (13.1). Secondly, if A,B PMnpRq
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then

n
ÿ

j“1

pA`Bqj,i.ej “ Φ´1pA`Bqei “ pΦ
´1
pAq ` Φ´1pBqqpeiq

“ Φ´1pAqei ` Φ´1pBqei

“

n
ÿ

j“1

Aj,i.ej `
n
ÿ

j“1

Bj,i.ej “
n
ÿ

j“1

pAj,i `Bj,iq.ej,

and since pejq
n
j“1 is a basis, matrix addition has the form described. Since additive inverses

are unique and we have seen that the zero of MnpRq is the all zeros matrix, this also gives

that ´A has the described form. Finally for A and B again,

n
ÿ

k“1

pABqk,i.ek “ Φ´1pABqei “ pΦ
´1
pAq ˝ Φ´1pBqqpeiq

“ Φ´1pAqpΦ´1pBqeiq

“ Φ´1pAq

˜

n
ÿ

j“1

Bj,i.ej

¸

“

n
ÿ

j“1

Bj,i.
`

Φ´1pAqej
˘

“

n
ÿ

j“1

Bj,i.

˜

n
ÿ

k“1

Ak,j.ek

¸

“

n
ÿ

k“1

˜

n
ÿ

j“1

Ak,jBj,i

¸

.ek

and the result is proved.

Remark 13.10. It is perfectly reasonable to define matrix rings MnpRq when R is not com-

mutative using the identities in the above proposition. However, even for n “ 1 they do not

necessarily arise as R-linear maps R Ñ R because (as in Remark 11.13) multiplication by

scalars need not be linear.

Remark 13.11. In particular the above provides a proof of Proposition 4.25.

Remark 13.12. The group of units of MnpRq is denoted GLnpRq. In fact the usual formulae

for inverting matrices work with matrices over commutative rings with the modification that

rather than having the determinant non-zero we need it to be a unit. The determinant can

be defined in all the usual ways it was when considering the case when R is a field, and

detA “
ÿ

σPSn

sgnpσq
n
ź

i“1

Ai,σpiq.

We say that A,B P Mn,mpRq are equivalent if there are matrices S P GLnpRq and

T P GLmpRq such that A “ SBT , and that an nˆm matrix A is in Smith Normal Form
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if there are elements a1 � a2 � ¨ ¨ ¨ � amintn,mu such that Ai,i “ ai for 1 ď i ď mintn,mu and

Ai,j “ 0R otherwise. Note the divisibility condition so that, for example,

¨

˚

˝

1 0 0 0

0 ´2 0 0

0 0 0 0

˛

‹

‚

and

¨

˚

˚

˚

˚

˚

˚

˝

5 0 0

0 25 0

0 0 100

0 0 0

0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

are both in Smith Normal Form over Z, however neither of the matrices

¨

˚

˝

1 0 0

0 2 0

0 0 3

˛

‹

‚

and

¨

˚

˝

3 0 0

0 3 0

0 0 1

˛

‹

‚

is in Smith Normal Form over Z, although they are both in Smith Normal Form over Q.

Theorem 13.13 (Smith Normal Form). Suppose that R is a PID and A PMn,mpRq. Then

A is equivalent to a matrix in Smith Normal Form. Moreover, the entries of this matrix are

unique up to association.

Remark 13.14. We shall not prove this, but rather we shall give an algorithm for how to find

the equivalent Smith Normal Form of a matrix (and the invertible matrices corresponding

to the equivalence).

There are particular types of elements of GLnpRq whose left and right multiplication

correspond to row and column operations respectively. For A an n ˆ m matrix we write

c1, . . . , cm P R
n for the columns of A so A “ pct1, . . . , c

t
mq, and r1, . . . , rn P R

m for the rows of

A so that A “ pr1, . . . , rnq
t. Write Enpi, jq for the n ˆ n matrix with 0s everywhere except

for row i and column j where the entry is 1.

(i) (Transvections) Given 1 ď i, j ď m with i ‰ j and λ P R put Pmpi, j;λq “ Im `

λEmpi, jq. We write

A
cj ÞÑcj`λci
ÝÝÝÝÝÝÑ APmpi, j;λq.

to mean that the matrix A after the column operation replacing cj by cj ` λci is the

matrix A post-multiplied by Pmpi, j;λq. This can be checked by direct calculation.

Similarly

A
ri ÞÑri`λrj
ÝÝÝÝÝÝÑ Pnpi, j;λqA

means that the matrix A after the row operation replacing ri by ri`λrj is the matrix

A pre-multiplied by Pnpi, j;λq. Again this can be checked by direct calculation.
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(ii) (Dilations) Given 1 ď i ď m and u P UpRq let Dmpi;uq :“ Im`pu´1qEmpi, iq so that

Dmpi;uq is the matrix with 1s on the diagonal except for the ith element which is u,

and 0s elsewhere. As above we write

A
ci ÞÑuci
ÝÝÝÝÑ ADmpi;uq and A

ri ÞÑuri
ÝÝÝÝÑ Dnpi;uqA

to mean the matrix A with column ci replaced by uci etc.

(iii) (Interchanges) Given 1 ď i, j ď m let Smpi, jq “ Im `Empi, jq `Empj, iq ´Empi, iq ´

Empj, jq. By

A
ciØcj
ÝÝÝÑ ASmpi, jq and A

riØrj
ÝÝÝÑ Snpi, jqA

we mean the matrix A with ci and cj swapped etc.

Remark 13.15. These three types of operations are the elementary column and row

operations respectively. The matrices are all invertible, since their pre- and post- multi-

plication corresponds to row and column operations respectively, and these operations are

easily seen to be invertible. This invertibility is the reason for restricting dilates to elements

of the group of units.

In view of the invertibility of these matrices we see that applying these elementary row

and column operations to a matrix preserves equivalence of matrices.

Remark 13.16. The subgroup of GLnpRq generated by the elementary row operations is

denoted GEnpRq. Of course GEnpRq ď GLnpRq, and for some rings it is a proper subgroup

(in fact the ring A in Exercise III.9 is such an example [Gel77], and it is an open problem

[SZ14, (3), §7] whether every PID with GE2pRq “ GL2pRq is Euclidean; certainly if R is

Euclidean then it is a PID and it happens that GE2pRq “ GL2pRq.

Putting a matrix into Smith Normal Form using elementary oper-

ations

Suppose that R is a Euclidean Domain with Euclidean function f , and A P Mn,mpRq.

We shall proceed iteratively either decreasing the quantity µpAq :“ mini,j:Ai,j‰0R fpAi,jq or

leaving it the same and increasing the number of 0R entries.

Suppose that Ai,j “ µpAq. For j1 ‰ j the Euclidean function tells us that either

(i) there is q P R and r P R˚ such that Ai,j1 “ qAi,j ` r where fprq ă Ai,j and so

µpAPmpj, j
1;´qqq ă µpAq;

(ii) or there is q P R such that Ai,j1 “ qAi,j and so APmpj, j
1;´qq has an extra zero in it

unless Ai,j1 “ 0R.
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This process eventually terminates with Ai,j1 “ 0R for all j1 ‰ j. All the operations were

column operations adding to every column except the jth, and thus we can proceed similarly

to eliminate all the non-zero entries (apart from the ith) in the jth column. The matrix

looks like:
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ¨ ¨ ¨ ˚ 0R ˚ ¨ ¨ ¨ ˚

...
. . .

...
...

...
. . .

...

˚ ¨ ¨ ¨ ˚ 0R ˚ ¨ ¨ ¨ ˚

0R ¨ ¨ ¨ 0R Ai,j 0R ¨ ¨ ¨ 0R

˚ ¨ ¨ ¨ ˚ 0R ˚ ¨ ¨ ¨ ˚

...
. . .

...
...

...
. . .

...

˚ ¨ ¨ ¨ ˚ 0R ˚ ¨ ¨ ¨ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

After this process, if Ai,j does not divide every entry of the matrix, then take a row (or

column) with an entry it does not divide and add it to the ith row, or jth column. Then

an application of (i) above reduces µpAq. We can repeat this whole process and it must

eventually terminate since either µpAq decreases, or it stays the same and the number of

zeros in the ith row or jth column increases.

A final column and row switch moves the Ai,j to the top left of the matrix, and we now

repeat the process with the bottom right matrix in Mn´1,m´1pRq. Any common factor of all

the matrix entries remains under the application of the elementary operations, and so when

the process terminates we have a matrix in Smith Normal Form as required.

Remark 13.17. !4While the above process is sure to work, any sequence of operations is

allowed so in practice there can be better ways to proceed.

A finite presentation of an R-moduleM is a linear map T : Rn Ñ Rm and isomorphism

Rm{ ImT ÑM . A module M is said to be finitely presented if it has a finite presentation.

Remark 13.18. For comparison, Lemma 13.3 shows that for every finitely generated module

M there is an R-linear surjection T : Rn ÑM and hence by the First Isomorphism Theorem

M – Rn{ kerT .

Remark 13.19. !4There are finitely generated modules that are not finitely presented (see

e.g. Exercise E.16), but the next result shows that this cannot be so for PIDs.

Proposition 13.20. Suppose that R is a PID and M is a finitely generated R-module.

Then M is finitely presented.

Proof. Theorem 12.1 tells us that there are elements a1 � ¨ ¨ ¨ � ar such that M – pR{xa1yq‘

¨ ¨ ¨ pR{xaryq so

T : Rn
Ñ Rn;x ÞÑ pa1x1, . . . , anxnq

is an R-linear map such that M – Rn{ ImT , as required.
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As in Remark 13.8, linear maps T : Rn Ñ Rm are in one-to-one correspondence with ma-

trices A PMn,mpRq and so we often simply speak of the finitely presented module Rm{ARn.

Lemma 13.21. Suppose that A,B P Mn,mpRq are equivalent matrices. Then Rm{ARn –

Rm{BRn.

Proof. Let PA “ BQ for P P GLmpRq and Q P GLnpRq. Then the map

Rm
{ARn

Ñ Rm
{BRn;x` ARn

ÞÑ Px`BRn

is a well-defined R-linear isomorphism. First, x´x1 P ARn if and only if P px´x1q P PARn “

BQRn since P is invertible. But since Q is invertible QRn “ Rn and so x´ x1 P ARn if and

only if Px´ Px1 P BRn so that the map is well-defined and injective. Since P is invertible

the map is surjective and it is easily seen to be linear.

Remark 13.22. !4The converse of this lemma is not true: if Rm{ARn – Rm{BRn it need

not be the case that A and B are equivalent. See Exercise E.15.

Remark 13.23. In view of this lemma we see that putting a matrix in SNF can be used to

produce a particularly simple representation of a finitely presented module.

Describing the structure of a commutative group using the SNF

Suppose that G is a commutative group with generators g1, g2, g3, g4, g5 and relations

2.g1 ` 6.g2 ´ 8.g3 “ 0, g1 ` g2 ` g4 “ 0, and 5.g1 ` 5.g4 ` 25.g5 “ 0.
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This group is isomorphic to Z10 ‘ Z2, and to show this we use the Smith Normal Form.

First we put the relation matrix, R, into Smith Normal Form:

R :“

¨

˚

˝

2 6 ´8 0 0

1 1 0 1 0

5 0 0 5 25

˛

‹

‚

r1Ør2
ÝÝÝÝÑ

¨

˚

˝

1 1 0 1 0

2 6 ´8 0 0

5 0 0 5 25

˛

‹

‚

c2 ÞÑc2´c1
c4 ÞÑc4´c1
ÝÝÝÝÝÝÑ

¨

˚

˝

1 0 0 0 0

2 4 ´8 ´2 0

5 ´5 0 0 25

˛

‹

‚

r2 ÞÑr2´2r1
r3 ÞÑr3´5r1
ÝÝÝÝÝÝÑ

¨

˚

˝

1 0 0 0 0

0 4 ´8 ´2 0

0 ´5 0 0 25

˛

‹

‚

r2 ÞÑr2`r3
ÝÝÝÝÝÝÑ

¨

˚

˝

1 0 0 0 0

0 ´1 ´8 ´2 25

0 ´5 0 0 25

˛

‹

‚

r3 ÞÑr3´5r2
ÝÝÝÝÝÝÑ

¨

˚

˝

1 0 0 0 0

0 ´1 ´8 ´2 25

0 0 40 10 ´100

˛

‹

‚

c3 ÞÑc3´8c2
c4 ÞÑc4´2c2
c5 ÞÑc5`25c2
ÝÝÝÝÝÝÝÑ

¨

˚

˝

1 0 0 0 0

0 ´1 0 0 0

0 0 40 10 ´100

˛

‹

‚

c3Øc4
ÝÝÝÑ

¨

˚

˝

1 0 0 0 0

0 ´1 0 0 0

0 0 10 40 ´100

˛

‹

‚

c4 ÞÑc4´4c3
c5 ÞÑc5`10c3
ÝÝÝÝÝÝÝÑ

¨

˚

˝

1 0 0 0 0

0 ´1 0 0 0

0 0 10 0 0

˛

‹

‚

.

Thus we have P P GL3pZq and Q P GL5pZq such that

P

¨

˚

˝

2 6 ´8 0 0

1 1 0 1 0

5 0 0 5 25

˛

‹

‚

Q “

¨

˚

˝

1 0 0 0 0

0 ´1 0 0 0

0 0 10 0 0

˛

‹

‚

.
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We can compute the matrix Q by applying the column operations to the identity matrix:

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

c2 ÞÑc2´c1
c4 ÞÑc4´c1
ÝÝÝÝÝÝÑ

¨

˚

˚

˚

˚

˚

˚

˝

1 ´1 0 ´1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

c3 ÞÑc3´8c2
c4 ÞÑc4´2c2
c5 ÞÑc5`25c2
ÝÝÝÝÝÝÝÑ

¨

˚

˚

˚

˚

˚

˚

˝

1 ´1 8 1 ´25

0 1 ´8 ´2 25

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

c3Øc4
ÝÝÝÑ

¨

˚

˚

˚

˚

˚

˚

˝

1 ´1 1 8 ´25

0 1 ´2 ´8 25

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

c4 ÞÑc4´4c3
c5 ÞÑc5`10c3
ÝÝÝÝÝÝÝÑ

¨

˚

˚

˚

˚

˚

˚

˝

1 ´1 1 4 ´15

0 1 ´2 0 5

0 0 0 1 0

0 0 1 ´4 10

0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

.

Similarly we can compute P :

¨

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‚

r1Ør2
ÝÝÝÝÑ

¨

˚

˝

0 1 0

1 0 0

0 0 1

˛

‹

‚

r2 ÞÑr2´2r1
r3 ÞÑr3´5r1
ÝÝÝÝÝÝÑ

¨

˚

˝

0 1 0

1 ´2 0

0 ´5 1

˛

‹

‚

r2 ÞÑr2`r3
ÝÝÝÝÝÝÑ

¨

˚

˝

0 1 0

1 ´7 1

0 ´5 1

˛

‹

‚

r3 ÞÑr3´5r2
ÝÝÝÝÝÝÑ

¨

˚

˝

0 1 0

1 ´7 1

´5 30 ´4

˛

‹

‚

.

This gives us a well-defined isomorphism

φ : GÑ Z10 ‘ Z2

z1.g1 ` ¨ ¨ ¨ ` z5.g5 ÞÑ pz1 ´ 2z2 ` z4, 4z1 ` z3 ´ 4z4,´15z1 ` 5z2 ` 10z4 ` z5q.
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For a matrix A we write RowSpanpAq for the Z-module generated by the rows of A. To see

that φ is a well-defined injection note:

z1.g1 ` ¨ ¨ ¨ ` z5.g5 “ z11.g1 ` ¨ ¨ ¨ ` z
1
5.g5

ôpz1 ´ z
1
1, . . . , z5 ´ z

1
5q P RowSpanpRq

ôpz1 ´ z
1
1, . . . , z5 ´ z

1
5q P RowSpanpPRq

ôpz1 ´ z
1
1, . . . , z5 ´ z

1
5qQ P RowSpanpPRQq

ôpz1 ´ z
1
1, . . . , z5 ´ z

1
5qQ P tpu,´v, 10w, 0, 0q : u, v, w P Zu

ôφppz1 ´ z
1
1q.g1 ` ¨ ¨ ¨ ` pz5 ´ z

1
5q.g5q “ 0

ôφpz1.g1 ` ¨ ¨ ¨ ` z5.g5q “ φpz11.g1 ` ¨ ¨ ¨ ` z
1
5.g5q.

Definition of G

Since P P GL3pZq

Since Q P GL5pZq

Design of PRQ

Definition of φ

The map φ is also certainly Z-linear (in fact we have already used this to some extent above).

Moreover, since φ is well-defined and φpg5q “ p0, 0, 1q, φpg3q “ p0, 1, 0q, and φpg1 ´ 4.g3 `

15.g5q “ p1, 0, 0q we see that the image of φ contains a generating set for the codomain and

hence φ is a surjection. The claim that φ is an isomorphism is complete.

Computing the rational canonical form using the SNF

Suppose we wish to compute the rational canonical form of the matrix

A “

¨

˚

˝

1 ´1 1

0 0 1

0 1 0

˛

‹

‚

.

We begin by putting the matrix XI ´A in Smith Normal Form over the Euclidean domain

QrXs:
¨

˚

˝

X ´ 1 1 ´1

0 X ´1

0 ´1 X

˛

‹

‚

c1Øc2
ÝÝÝÑ

¨

˚

˝

1 X ´ 1 ´1

X 0 ´1

´1 0 X

˛

‹

‚

c2 ÞÑc2´pX´1qc1
c3 ÞÑc3`c1

ÝÝÝÝÝÝÝÝÝÝÑ

¨

˚

˝

1 0 0

X X ´X2 X ´ 1

´1 X ´ 1 X ´ 1

˛

‹

‚

r2 ÞÑr2´Xr1
r3 ÞÑr3`r1
ÝÝÝÝÝÝÝÑ

¨

˚

˝

1 0 0

0 X ´X2 X ´ 1

0 X ´ 1 X ´ 1

˛

‹

‚

c2Øc3
ÝÝÝÑ

¨

˚

˝

1 0 0

0 X ´ 1 X ´X2

0 X ´ 1 X ´ 1

˛

‹

‚

c3 ÞÑc3`Xc2
ÝÝÝÝÝÝÝÑ

¨

˚

˝

1 0 0

0 X ´ 1 0

0 X ´ 1 X2 ´ 1

˛

‹

‚

r3 ÞÑr3´r2
ÝÝÝÝÝÝÑ

¨

˚

˝

1 0 0

0 X ´ 1 0

0 0 X2 ´ 1

˛

‹

‚

.
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As above we can identify the matrices P,Q P GL3pQrXsq such that

¨

˚

˝

1 0 0

´X 1 0

X ` 1 ´1 1

˛

‹

‚

¨

˚

˝

X ´ 1 1 ´1

0 X ´1

0 ´1 X

˛

‹

‚

¨

˚

˝

0 0 1

1 1 1

0 1 X

˛

‹

‚

“

¨

˚

˝

1 0 0

0 X ´ 1 0

0 0 X2 ´ 1

˛

‹

‚

.

This form can be used to identify the rational canonical form of A: the invariant polynomials

are read off the diagonal as X ´ 1 and X2 ´ 1 and A is similar to

¨

˚

˝

1 0 0

0 0 1

0 1 0

˛

‹

‚

.
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