A3: Rings and Modules, 2020-2021

Tom Sanders

We begin with the course overview as described on https://courses.maths.ox.ac.
uk/node/44027.

Course Overview:

The first abstract algebraic objects which are normally studied are groups, which arise nat-
urally from the study of symmetries. The focus of this course is on rings, which generalise
the kind of algebraic structure possessed by the integers: a ring has two operations, addition
and multiplication, which interact in the usual way. The course begins by studying the fun-
damental concepts of rings (already met briefly in core Algebra): what are maps between
them, when are two rings isomorphic etc. much as was done for groups. As an applica-
tion, we get a general procedure for building fields, generalising the way one constructs the
complex numbers from the reals. We then begin to study the question of factorization in
rings, and find a class of rings, known as Unique Factorization Domains, where any element
can be written uniquely as a product of prime elements generalising the case of the integers.
Finally, we study modules, which roughly means we study linear algebra over certain rings
rather than fields. This turns out to have powerful applications to ordinary linear algebra

and to abelian groups.

Learning Outcomes:

Students should become familiar with rings and fields, and understand the structure theory
of modules over a Euclidean domain along with its implications. The material underpins
many later courses in algebra and number theory, and thus should give students a good

background for studying these more advanced topics.

Course Synopsis:

Recap on rings (not necessarily commutative) and examples: Z, fields, polynomial rings

(in more than one variable), matrix rings. Zero-divisors, integral domains. Units. The
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characteristic of a ring. Discussion of fields of fractions and their characterization (proofs

non-examinable) [2]

Homomorphisms of rings. Quotient rings, ideals and the first isomorphism theorem and
consequences, e.g. Chinese remainder theorem. Relation between ideals in R and R/I.
Prime ideals and maximal ideals, relation to fields and integral domains. Examples of
ideals. Application of quotients to constructing fields by adjunction of elements; examples
to include C = R[X]/{X? + 1) and some finite fields. Degree of a field extension, the tower
law. [4]

Euclidean Domains. Examples. Principal Ideal Domains. EDs are PIDs. Unique factorisa-

tion for PIDs. Gauss’s Lemma and Eisenstein’s Criterion for irreducibility. [3]

Modules: Definition and examples: vector spaces, abelian groups, vector spaces with an
endomorphism. Submodules and quotient modules and direct sums. The first isomorphism
theorem. [2]

Row and column operations on matrices over a ring. Equivalence of matrices. Smith Normal

form of matrices over a Euclidean Domain. [1.5]

Free modules and presentations of finitely generated modules. Structure of finitely generated

modules of a Euclidean domain. [2]

Application to rational canonical form and Jordan normal form for matrices, and structure

of finitely generated Abelian groups. [1.5]

References

There is an alternative approach to the course given in Earl’s notes [Earl9] which is an

excellent source for further examples.

Forest green text denotes material which is unlectured background from previous courses.

Blue text denotes material which is unlectured and more advanced.
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1 Rings

A set R equipped with two binary operations + and x is a ring if
e R equipped with + is a commutative group called the additive group;
e X is an associative binary operation on R with an identityﬂ;
e x is distributivdd over +.

We call + the addition of the ring. Identities of binary operations are unique when they
exist, and so we can unambiguously write 0 for the identity of addition — it is called the
zero of the ring. Inverseﬁ for elements w.r.t. associative binary operations are unique when
they exist and so we can unambiguously write —x for the additive inverse of x € R; the
map R — R;z — —uz is called negation and—(—x) = z for all x € R, and —0 = 0 since an
identity for a binary operation is always an inverse for itself. We write x — y for x + (—y).

We call x the multiplication of the ring and write xy in place of x x y. Again, we can
unambiguously write 1 for the identity of multiplication. Not all elements of R need have
a multiplicative inverse; those that do are called units and we Writeﬁ U(R) for the set of
units. Again, if z € U(R) we can unambiguously write 2! for the multiplicative inverse of
z, (™)' =z for all x € U(R), and 1 € U(R) with 17! = 1.

Occasionally we shall have multiple rings and it will be instructive to clarify which
particular ring we are referring to. We shall do this with subscripts writing, for example,
+Rr, Xgr, Og and 1g in reference to the addition, multiplication, zero, and multiplicative
identity of a ring R.

We say R is a commutative ring if the multiplication is commutative. /N The modern
notion of commutative ring can be traced back to Emmy Noether [Noe21l §1] (translated
into English in [Berl4]), though her definition does not assume the multiplication has an

identity.

Proposition 1.1 (Group of units). Suppose that R is a ring. Then multiplication on R
restricts to a well-defined binary operation on U(R) giving it the structure of a group with
identity 1, and if v € U(R) then x=' € U(R) and it is the inverse of x with respect to this
group operation on U(R). Furthermore, if R is commutative then so is the group U(R).

Proof. First, suppose that z,y € U(R). Then (zy)(y 'z™') = z((yy")z™') = 22~ = 1 and
similarly (y~'z7')(zy) = 1 so that zy € U(R). Hence multiplication on R restricts to a well-

defined binary operation on U(R). Since multiplication is associative on R, it is a fortiori

le is an identity for a binary operation # on a set X if x xe = 2 = e x « for all x € X.

2Meaning = x (y +2) = (x x y) + (x x 2) and (v +y) x z = (v x 2) + (y x 2) for all z,y,2 € R.
3y is an inverse for x w.r.t. a binary operation * on X if x * y = y * x is an (and so the) identity for =.

4&80me authors (e.g. [Lan02, p84] and [Lam07, xiv]) write R* for U(R).
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associative when restricted to U(R). Since 1 € U(R) is an identity for multiplication on R
it is a fortiori an identity for multiplication restricted to U(R). Finally, if x € U(R) then
rzt =1 =z"'r and so 27! € U(R) (with inverse x) and so every x € U(R) is invertible
w.r.t. multiplication on R restricted to U(R), and its inverse is the same as its inverse in
R. Finally, if R is commutative then multiplication is commutative on R and a fortior: it

is commutative when restricted to U(R). The result is proved. [

Remark 1.2. If R is a finite commutative ring then U(R) is a finite commutative group, but

exactly which finite commutative groups occur as the group of units of a ring is an open
problem called Fuchs’ problem [Fuch8, Problem 72, p299].

To say that multiplication is distributive over addition is exactly to say that the left
and right multiplication mapﬂ are homomorphisms of the additive group. Group homo-

morphisms preserve identities and hence inverses; put another way:
Lemma 1.3. Suppose that R is a ring.

(1) (Zero annihilates) 20 = 0z = 0 for all x € R;

(11) (Negation distributes) x(—y) = (—x)y = —(zy) for all z,y € R.

Remark 1.4. Suppose that R is a ring and z € U(R). Then (—2)(—271) = (=(—2))(z7}) =
zz7! = 1 and similarly (—271)(=2) = 1, whence —z € U(R) and (—z)"! = —z71. In
particular, since 1 € U(R) we have —1 € U(R).

We writé? R* for the set of non-zero elements of a ring R.

Remark 1.5. It is almost always the case that U(R) < R*. Indeed, in view of Lemma
0 cannot have a multiplicative inverse unless 0 = 1 (and of course if 0 = 1 then 0 does

have a multiplicative inverse — it is 0) so that 0 € U(R) if and only if 0 = 1.
If 0 =1 in aring R we call it trivial, and if 0 # 1 then we call it non-trivialﬁ

Proposition 1.6 (Trivial rings). Suppose that R is a ring. Then R is trivial if and only if

R has one element.

Proof. First, if R contains only one element, then since 0,1 € R we must have 0 = 1. On
the other hand, if 0 = 1 then for any z € R we have = 1x = 0z = 0 by Lemma [1.3] and
so R = {0}. O

5The left (resp. right) multiplication maps are the maps R — R;y ~ xy (resp. R — R;y > yx) for
z € R.
6Some authors (e.g. [Lam07]) use the terms zero and non-zero in place of trivial and non-trivial.
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A ring R is said to be an integral domain if R is non-trivial, commutative, and R* is
closed under multiplication i.e. xy € R* whenever x,y € R*.

In a ring R we call z € R a left (resp. right) zero divisor if there is y € R* such that
zy = 0 (resp. yx = 0).
Remark 1.7. If z € R is not a left (resp. right) zero divisor then left (resp. right) multipli-
cation by x, which is a group homomorphism of the additive group, has trivial kernel and
so is injective.
Remark 1.8. An integral domain has no non-zero zero divisors.
Remark 1.9. Units are never zero-divisors: if z € U(R) and zy = 0, then 0 = 2710 =
v M ay) = (a7 le)y =1y =y soy ¢ R".

We say that F is a field if it is a commutative ring with U (F) = F*.
Remark 1.10. Since 0 ¢ U(F), F is non-trivial.

2 Homomorphisms, isomorphisms, and subrings

A ring homomorphism('|is a map ¢ : R — S between two rings such that

oz +y) = ¢(z) + ¢(y) and d(zy) = ¢(x)d(y) for all 7,y € R, and ¢(1) = 1.
There are some basic properties of homomorphisms we shall need.

Lemma 2.1. Suppose that ¢ : R — S and ¢ : S — T are ring homomorphisms. Then 1o ¢

s a ring homomorphism R — T.
Proof. This is immediate from the definition. O]

Lemma 2.2. Suppose that ¢ : R — S is a ring homomorphism. Then ¢(0) = 0, ¢(—x) =
—¢(x) for all x € R, and if v € U(R) then ¢(x) € U(S) and ¢p(z7') = ¢(z)~ "

Proof. First, ¢(0) = 0 and ¢(—x) = —¢(x) for all z € R, since ¢ is a group homomorphism
of the additive group and homomorphisms preserve identities and inverses. If x € U(R) then
there is some y € U(R) such that zy = yx = 1 and hence ¢(z)¢(y) = ¢(y)o(z) = ¢(1) =1
so that ¢(x) € U(S). Thus ¢ restricts to a group homomorphism U(R) — U(S), and again

group homomorphisms preserve inverses so the result is proved. O

Remark 2.3. /NIf R is a non-trivial rin then the map ¢ : {0} — R;0 — 0 has ¢(1) =
#(0) = 0 # 1 since {0} is trivial and R is non-trivial, and so it is not a ring homomorphism.
In particular, this example shows that we may not dispense with the requirement that

¢(1) = 1 in the definition of ring homomorphism.

"With an eye to generalisation, one might argue that the most natural definition of ring homomorphism
would include the conclusions of Lemma — if they did not follow we would add them in as assumptions.
8&\7\76 have not yet shown that such a thing exists, but it is perhaps not surprising that it does.
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Proposition 2.4. Suppose that ¢ : F — R is a ring homomorphism, F s a field and R is

non-trivial. Then ¢ is injective.

Proof. If ¢(x) = ¢(y) and x # y then x — y € F* and so there is u such that (z — y)u = 1
whence 0 = 0¢(u) = (¢(z) — d(y))p(u) = ¢((x — y)u) = ¢(1) = 1, which contradicts the

non-triviality of R. We conclude that ¢ is injective as claimed. O

A ring S is a subring of a ring R if the map j : S — R;s — s is a well-defined ring
homomorphism; S is a proper subring if S is a subring of R and S # R.

Remark 2.5. Subrings inherit some properties of the containing ring, e.g. being commuta-
tive and being non-trivial, and hence being an integral domain; but not others e.g. being
a field.

A ring S is a (proper) subfield of a ring R if S is a field and a (proper) subring of R.
Remark 2.6. /\A ring that is not a field may have have a subfield.

Lemma 2.7 (Subring test). Suppose that R is a ring and S is a subset of R such that
1leS,—xeS forallxze S, andx+y,xye S forall z,y e S. (2.1)

Then the addition and multiplication on R restrict to well-defined operations on S giving it

the structure of a subring of R.

Proof. First S is non-empty and closed under addition and negation so by the subgroup test
addition on R restricts to a well-defined binary operation on .S giving it the structure of a
commutative group. Since S is closed under multiplication it also restricts to a well-defined
binary operation on S, and is a fortiori associative since it is associative on R. Finally,
1 € S and since this is an identity for R it is a fortior: an identity for S. Multiplication
and addition restricted are a fortior: distributive when restricted to S, and so we conclude
that S is a ring. The inclusion map is then well-defined and a ring homomorphism and the

result is proved. 0

Given a subset satisfying the hypotheses of the above lemma, we make the common abuse

of calling it a subring on the understanding that we are referring to the induced operations.

Remark 2.8. Note that if R is a subring of S and S is a subring of 7" then R is a subring of

T in view of Lemma 2.1

Proposition 2.9. Suppose that ¢ : R — S is a homomorphism. Then Im ¢ is a subring of
S.

Proof. This is immediate from the subring test and Lemma [2.2] O
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Example 2.10 (Centre of a ring). Given a ring R the centre (or center) is the set Z(R) :=
{z € R: zr =rzfor all r € R}; in words it is the set of elements of R that commute with
all other elements of R. In particular, R is commutative if and only if Z(R) = R.

The centre is a subring of R by the subring test: 1 € Z(R) since 1r = r = rl for all
r € R;if v € Z(R) then (—z)r = —(a2r) = —(rz) = r(—z) by Lemma[L.3} and if z,y € Z(R)
then (x +y)r = ar+yr = re+ry = r(x+y) for all r € R by distributivity, so z +y € Z(R);
and (zy)r = z(yr) = x(ry) = (zr)y = (ro)y = r(xy) for all » € R by associativity of
multiplication, so zy € Z(R).

Homomorphisms between rings can be particularly useful for endowing the image with

additional structure.

Proposition 2.11. Suppose that R is a ring, F is a field and ¢ : F — R is a ring ho-
momorphism. Then the additive group of R equipped with scalar multiplication defined by
Fx R — R;(\v) — Av:= ¢(Nv is an F-vector space. Furthermore, if the image of F
is in the centre of R then the ring multiplication on R considered as an F-vector space is
bilinearl

Proof. First, the additive group of R is a commutative group by definition. Secondly,
(A).v = A(pw) for all A\,u € F and v € R since multiplication in R is associative and
o(zy) = ¢(x)p(y). Thirdly 1.v = v for all v € R since 1 is a multiplicative identity and
(1) = 1. Finally, (A + p).v = Av + p.v for all A, u € F and v € R since right multiplication
in R and ¢ are both group homomorphisms; and A\.(v + w) = A.v + A.w for all A € F and
v, w € R since left multiplication is a group homomorphism.

Suppose that A\, p € F and u,v,w € R. Then the ring multiplication is linear in its first
argument since right multiplication is a group homomorphism and multiplication in R is

associative:
(Av + paw)u = (¢(AN)v + d(p)w)u = A.(vu) + p.(wu);
it is linear in its second argument since left multiplication is a group homomorphism, and

multiplication in R is associative and the image of F is in the centre of R:

(v + ) = (Ao + (w) = u(@\)v) + u(d()w)
BN (uv) + d(p2) (1) = A.(uv) + p.(ww).

The result is proved. O

A ring isomorphism is a map ¢ : R — S that is a bijective ring homomorphism.ﬂ

9Tn the literature this is sometimes expressed by saying that R is a unital associative F-algebra.
10Tf we did not have Lemma then we would also insist here that the inverse map be a ring homomor-

phism. There is a comparison here with the situation in which topological spaces (or more concretely subsets
of the reals) replace rings and continuous maps replace homomorphisms. The map f : [0,1) U {2} — [0,1]

with f(z) =z if x # 2 and f(2) := 1, is a continuous bijection but does not have a continuous inverse.
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Lemma 2.12. Suppose that ¢ : R — S is a ring isomorphism. Then ¢~ is a ring homo-

morphism, and hence a ring isomorphism.

Proof. First, ¢(1) = 1 and ¢ is a bijection so ¢~ '(1) = 1. Secondly, ¢ is a bijective group
homomorphism of the additive group and so ¢! is also a group homomorphism of the
additive group of S. Finally, if z,y € S then by surjectivity there are elements u, v € R such
that ¢(u) = z and ¢(v) = y, and

¢~ (wy) = 07 (B(W)o(v)) = 67 (d(uv)) = uv = ¢ (2)¢™" (y).
We conclude that ¢! is a homomorphism and the result is proved. O

We say that two rings R and S are (ring) isomorphic and write R =~ S if there is a

ring isomorphism R — S.
Proposition 2.13. =~ is an equivalence relation.

Proof. The identity map on a ring is an isomorphism so = is reflexive. =~ is symmetric in
view of Lemma 2.12] Finally, =~ is transitive since the composition of bijections is a bijection,

and composition of ring homomorphisms is a ring homomorphism — this is Lemma 2.1, O

3 The natural numbers

We write Ny for the natural numbers including 0, and N* for the naturals without 0. These
come equipped with a maﬂ Ny — Ny; 2z — x + 1 which is an injection with image N*; and
enjoy the inductive axiom that if X < Ny has 0 € X and X + 1 < X then X = Nj. These
are essentially Peano’s axioms for the natural numbers and we shall not concern ourselves
with the question of whether such an object existg |

The first axiom here is a way of capturing the fact that the natural numbers are infinitd™|
without reference to the usual definition of finitd™ which would be circular. The second
axiom — induction — captures the fact that Ny is minimal subject to the requirement that it

is infinite.

1 Called the successor function.
12We fall back on the 1886 quote “Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Men-

schenwerk” attributed to Kronecker by Weber [Web92, p19], and translated as “God made the integers, all

else is the work of man” by Gray [Gra08, p153].
BA set X is said to be Dedekind finite if any injection f : X — X is surjective. In particular the

successor function bears witness to the fact that the naturals are not Dedekind finite.
HMRecall that a set I is finite if there is some n € Ny and a bijection ¢ : {0,...,n — 1} — I with the

convention that if n = 0 (so that there is no natural number predecessor n — 1) then the domain is the

empty set.
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These properties of the naturals are basic to recursive definitions and can immediately
be used to produce the usual binary operations of additiorﬂ and multiplicatiorﬂ Addition
gives rise to a total ordexEl on Ny in which x > y if and only if there is z € Ny such that
x = y+ 2z, and this also allows us to give an equivalenﬂ formulation of the induction axiom

as the well-ordering principle, that if X < Ny is non-empty then it has a minimal element.

Iterated sums and products in rings

Given a ring R, the binary operations of addition and multiplication can be applied recur-

sively: We define

n—1 n—1
R" — R;(zo,...,xp_1) — Z x; and R" — R; (zg,...,Tp_ 1) — H T (3.1)
i=0

1=0

to be the constant values Oz and 1 respectively when n = 0, and then recursively by

n n—1 n n—1
in = sz + x, and nxz = sz T
i=0 i=0 i=0 i=0

We extend this notation so that for z,,,...,x, € R we write

n n—m n n—m
Z T = Z Tmyi and | | T = | | Tm+tis
i=0 i=0

i=m i=m

with the convention that if n < m the sum is Or and the product is 1. Finally we also

write

n n
T + -+ Ty 1= Z’El and z,, - - - T, ::Hxi,
i=m i=m

which is compatible with existing notation when n = 2.

Iterated sums and products of the identities

Induction and the fact that Oz and 1z are identities for their respective operations gives

n—1 n—1
ZOR:ORand HlR:lR'
1=0 1=0

Byrt+0:=xandz+ (y+1):=(z+y)+1 for all 2,y € No.
6y x0:=0and 2 x (y+1):=x x y +a for all 7,y € No.
17> is a total order on X if > is reflexive, meaning « > x for all x; > is transitive, meaning x > y and

y = z implies © > z; > is anti-symmetric, meaning = > y and y > x if and only if x = y; and trichotomous
meaning x =y or y = x.

BThere is a slight subtlety with this equivalence which we have avoided by insisting that the successor
function has image the whole of N* rather than just a proper subset. One can prove the former from the

latter using induction but not using well-ordering. See m for a discussion.
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Associativity of iterated sums and products

Induction with ring associativity (and the recursive definition of addition) shows that for

x € R"™ we have
n+m—1 n—1 n+m—1 n—1 m—1
S (z) (z ) TRIEE (n) (n)
i=0 i=0 i=0 i=0

Distributivity of iterated sums and products

A further induction with ring distributivity (and the recursive definition of multiplication)

shows that for x € R",y € R™ we have

nm—1 m—1 n—1 mn—1
- (S) (2] - E w
k=0 i Jj=0 k=0

where 2z, 1= z;y; and wy,j1; = 2y for 0 <t <m—1,0< — 1. As it happens these

two equalities are really the same because addition is commutative c.f. Exercise [T}

Commutativity of iterated sums and (in commutative rings) products

Commutativity of ring addition coupled with the fact that the permutations of {0,...,n—1}

are generated by transpositions of consecutive elements shows that for x € R™ we have

n—1 n—1
Z Ty = Z x; for all bijections 7 : {0,...,n —1} - {0,...,n — 1}. (3.2)

i=0
This fact permits a definition of unordered sum: suppose that I is a finite set and x € R'.
We write

n—1
in = Z To@;) where o : {0,...,n — 1} — I is any bijection. (3.3)
icl i=0

Since I is finitd® there is an n € Ny such that such a bijection exists, and furthermore
different choices of bijection give rise to the same sum in view of ([3.2)).
In a commutative ring we have an analogue of ([3.2) . for products, and hence for z € R’

we can define an analogue of ([3.3) for products which we write as [ |

ZGI

Homomorphisms of iterated sums and products
Finally, given a ring homomorphism ¢ : R — S and x € R", by induction we get

(szl ) Z¢xl and¢(l_[xl>::ﬁ¢(x

=0

Remark 3.1. One should not worry too much about the above. These definitions have to be

made, but the rough idea is that iterated operations ‘work in the way we expect’.
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The integers

By a series of inductions we can show that the natural numbers equipped with their usual
addition and multiplication satisfy all the axioms of a ring except for the existence of additive
inverses.

There is a standard construction for ‘adding in’ the negative numbers, which in some
sense goes back at least to Liu Hui (BI%80) [SCLI9, p404], that extends the usual addition
and multiplication on the natural numbers, and is minimal in the sense that every integer

can be written as a difference of two natural numbers.

Example 3.2 (Z). The integers, denoted Z, have the structure of an integral domain in
which the zero is 0, the multiplicative identity is 1, and U(Z) = {—1, 1}.

In any ring we can write sums and products of differences as differences by the following

lemma.

Lemma 3.3. Suppose that R is a ring. Then
(a—=d)+(b—c)=(a+b)—(c+d) and (a —d)(b—c) = (ab + dc) — (ac + db)
for all a,b,c,d € R.

Proof. The first of these follows by commutativity and associativity of addition and dis-
tributivity of negation over addition. The second by distributivity of multiplication, com-
mutativity and associativity of addition, and distributivity of negation over addition and

multiplication. O

Remark 3.4. These identities can actually be used to define the addition and multiplication

on Z in terms of that on Nj.

Remark 3.5. As a special case of the definition of the iterated product, for x € R we put

= g7y for n € Ny and 2° := 1. Induction shows that

T
¥ = 1g, 2" = 2"2™ and "™ = (2™)™ for all n,m € Ny and x € R

Moreover, if z € U(R) then this extends to the integers by "™ := z™(x~1)™ for n,m € Nj,.
This extension is well-defined (in particular the two possible meanings of z~! coincide) and

has
¥ = 1g, (") = (271", 2™ = 2"2™ and 2™ = (2™)" for all n,m € Z and z € U(R)

Similarly, for addition we have 0.z := Og and (n + 1).x := (n.z) + z, and (n — m).z :=

(n.x) — (m.z) which is also well-defined and has
0.z = 0g, —(n.x) = (—n).xz,(n + m).x = (n.x) + (m.z) and (nm).x = n.(m.x) (3.4)

for all n,m € Z and x € R.
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Remark 3.6. An(m +y) =nx+nyforallneZand z,y € R, but (xy)" = 2"y" for all

n € Z if and only if x and y commute. /N Of course z and y must be units in this last case.

The integers have an important relationshiﬂ to rings in general captured by the follow-

ing proposition.

Proposition 3.7. Suppose that R is a ring. Then the map Z — R;n — n.lr is a ring

homomorphism into the centre of R, and this map is the only ring homomorphism 7Z — R.

Proof. First, 1.1 = 0.1g + 1g = Og + 1g = 1. Secondly, (n + m).1g = n.1g + m.1g for
all n,m € Z by . Finally, induction using distributivity of multiplication in R gives
(nm).1g = (n.1g)(m.1g) for all n,m € Ny and then Lemma [3.3| for both Z and R extends
this to the integers. Hence the given map is a homomorphism. For n € Ny, n.1 is in the
centre of R by induction and since the centre is a ring we conclude that the image of the
homomorphism is in the centre of R.

In the other direction, suppose that ¢ : Z — R is a homomorphism. Then ¢ (n) = n.1g
for all n € Ny by induction since 1 is a homomorphism of the additive group and ¢ (1) = 1.
But then ¢(n—m) = ¢(n) —(m) = n.lg —m.1g = (n—m).1g for all n,m € Ny by Lemma
2.2l The result is proved. O

The characteristic of a ring R is 0 if n.1z = 0 implies n = 0, and otherwise it is the

smallest n € N* such that n.1z = Op.
Example 3.8. The characteristic of Z is 0.

Remark 3.9. Note that if S is a subring of R then the characteristic of S is the same as that
of R.

Example 3.10. Z has no proper subring: If S is a subring of Z, then the inclusion j : S — Z
is a ring homomorphism. By Proposition there a ring homomorphism ¢ : Z — S, and
then j o ¢ is a ring homomorphism Z — Z so by the uniqueness of Proposition it is the
identity. It follows that j is surjective and hence S = Z.

4 Examples

Perhaps unsurprisingly there are more examples of rings than just the integers.

9Tn the language of category theory the integers are an initial object in the category of rings, and
one might feel lured into describing them as one ring (up to isomorphism) ruling (by copies of the ‘line’ of
integers) all others, though the relevance of ambient light conditions and the extent to which the integers

actually find, bring or bind any other ring is less clear.
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Example 4.1 (Zy). Given N € N* we write z = y (mod N) if N | © —y. This is an
equivalence relation on Z and it is compatible with the addition and multiplication there,

meaning if z =y (mod N) and 2’ =y (mod N) then
z+2'=y+9y (mod N)and zz’ =yy' (mod N).

We write Zy for the set of congruence classes of integers under this relation, and the com-
patibility above means that the multiplication and addition on Z induce a ring structure
on Zy. This construction is an example of a quotient ring which we shall meet in more
generality in §5

Zy is commutative, has the congruence class of 0 as its zero, the congruence class of 1
as its multiplicative identity, and the congruence class of —x as the additive inverse of the
congruence class of x.

The characteristic of Zy is N.

If N is composite then N = ab for 1 < a,b < N and so ab =0 (mod N) while a,b # 0

(mod N). It follows that Zy is not an integral domain.

Integers x and y are said to be coprime if their only common factors are units, meaning

if a | x and a | y then a is a unit i.e. a€ {—1,1}.

Theorem 4.2 (Bezout’s Lemma). Suppose that x,y € Z are coprime. Then there are
«, B € Z such that ax + Py = 1.

This has been covered in Prelims Mathematics I but will also follow from Example 5.9
A large part of the course will concern rings where we have an analogue of Bezout’s Lemma
— this is roughly what a PID is. This will be defined formally in Remark

Example 4.3 (The field F,, and the group of units of Zy). The units of Zy are the
(congruence classes of) integers coprime to N: If r and N are coprime then Bezout’s Lemma
exactly tells us that there is « € Z such that ar =1 (mod N), and so by commutativity of
Zy, the congruence class of r is a unit. Conversely, if a is a non-unit common factor of r
and N then 7 x (N/a) =0 (mod N) and so the congruence class of r is a zero-divisor (since
(N/a) #0 (mod N) ) and so not a unit by Remark [1.9]

Suppose that p is prime. Then every 1 < r < p is coprime to p, and so U(Z,) contains
every non-zero congruence class. Since p > 1 we also have that Z, is non-trivial so U(Z,) =

Zy. Finally, Z, is commutative and so it is a field; we write F,, for Z, to emphasise this

propertym

The rationals — another important example for us — are a field which can be constructed

from the integers in a way which generalises as follows to any integral domain.

20&210 is sometimes (e.g. [Lam07]) used to denote a different ring (which we shall not consider) called

the p-adic integers.
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Theorem 4.4 (Field of fractions and its characterisation). Suppose that R is an integral
domain. Then there is a field F such that R is a subring of F, and no proper subfield of F
contains R. Moreover, if K is a field containing R and no proper subfield of K contains R

then there is an tsomorphism ¢ : K — F which is the identity on R.

Remark 4.5. The proof is not hard and can be found in many places e.g. [Hun80, Theorem
4.3] and [Lan02, Chapter II, §4], and it is not dissimilar to the construction of the integers
from the naturals by ‘adding in’ the negative numbers. It is omitted from the syllabus
because all it really does is formalise the content of Remark below.

Remark 4.6. Suppose that F is a field of fractions for R, and consider the set F(R) :=
{ab™' : a € R,be R*} as a subset of F. This contains 1 = 1/17! and is closed under additive

inverses as well as addition and multiplication since
act +bd™' = (ad + be)(ed) ™ and (ac™t)(bd™') = (ab)(cd) ™.

It follows from the subring test that F'(R) is a subring and it contains R. Now, if ab™! # 0
then a € R* so ba~! € F(R), and hence F(R) is closed under multiplicative inverses and so
a field, whence F'(R) = F. This motivates the name field of fractions: all the elements of F

can be written as a ‘fraction’ ab™!.

Remark 4.7. Note that the field of fractions is not just unique up to isomorphism as a field,
but — and this is ensured by the part of the statement that says ¢ is the identity on R — R

‘sits inside’ its field of fractions in a unique way.

Example 4.8 (Q). The rationals, denoted Q, are the field of fractions of the integers. The
order on the integers extends to a total order (also denoted =) on the rationals such that
x + 2z =y + 2z whenever x > y and xy > 0 whenever z,y > 0. Of course the well-ordering
of the naturals w.r.t. >, which in Z manifests as the fact that every non-empty subset of Z
that is bounded below has a minimum element, does not extend to Q.

The rationals are an example of a field with a subring — Z — that is not a field, bearing
out the last part of Remark [2.5]

AU(Q) N Z ¢ U(Z) so being a unit in Q and an element of Z does not guarantee the
status of unit in Z.

AN Let Y : Z — Q be the usual inclusion and suppose f,g: Q — R are ring homomor-
phisms such that’™] f oy = got. For m € Z* we have g(1/m) = g(1/m)f(m)f(1/m) =
9(1/m)g(m)f(1/m) = f(1/m) and hence g(n/m) = g(n)g(1/m) = f(n)f(1/m) = f(n/m)
for all n € Z. It follows that f = ¢ despite the fact that v is not surjective.

21&As it happens this hypothesis is automatically satisfied for Z because there is a unique homomorphism
from Z — R (Proposition [3.7) and the composition of homomorphisms is a homomorphism. It is included
because the purpose of the example is to illustrate that ‘right cancellability’ of ring homomorphisms does

not require them to be surjective, unlike functions more generally.
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Example 4.9 (R). The reals, like the rationals, are a field with a total order > such that
x4+ z =y + z whenever x > y and zy > 0 whenever x,y > 0. However, they also have the
additional property that any non-empty subset of R>, that is bounded below has a greatest
lower bound (though this lower bound may not be in the set, unlike Z).

Example 4.10. The ring Q[v2] := {a + bv/2 : a,b € Q} is a subfield of R. Indeed, it is
a commutative subring of R by the subring test (since 9 Q). Now suppose a + by/2 €
Q[v2]* so that a? — 2b% # 0 (since 4/2 is irrational). Then

a b
2 — 21 =1
(a +bv2) <a2 — 202 a?—20? f)

so that a + byv/2 € U(Q[v/2]) as claimed.

Example 4.11 (C). The complex numbers are a ring whose additive group is a vector
space over R with basis 1 and 4, and with bilinear multiplication determined by i = —1. In
particular, for z,w € C there are unique z,y,u,v € R such that z = x + iy and w = u + v,

and we can compute that
—z=(—z)+i(—y),z+w= (v +u)+i(y +v), and zw = (xu — yv) + i(xv + yu).

/NNote that unlike the rationals and reals there is no total order > on C such that
r+ 2z =y + 2z whenever x > y, and xy > 0 whenever z,y > 0. Indeed, suppose that there
were. By trichotomy either 1 = 0 or 0 > 1; in the latter case (—1) > 1 + (—1) = 0. Hence
either 1 =12 > 0 or 1 = (—1)% = 0; we conclude that 1 > 0 (since 1 # 0 by non-triviality of
C). Again, by trichotomy either 7 > 0 or 0 > 7. In the former case —1 =i*>0s00>1, a
contradiction; in the latter —i > ¢ + (—i) = 0 and so —1 = (—i)? = 0 and a contradiction

again.

Example 4.12. The ring Z[i] := {a+bi : a,b € Z} is called the ring of Gaussian integers.
It is a subring of C by the subring test since i> € Z and so an integral domain, and U (Z[i]) =
{1,—1,4,—i}. To see this last fact suppose that (a + ib)(c + id) = 1 for a,b,c,d € Z, then
taking absolute values we have (a® + b*)(c* + d?) = 1. We conclude a? + b? = 1, and hence
(a,b) € {(1,0),(—1,0),(0,1),(0,—1)} as required.

Direct products of rings

For this we require some more notation. Suppose that S; is a set for each ¢ € I. We write
[ L.c; Si for the set of v = (x;)ie; with x; € S; for all i € 1. If S; = S for all i € I then we

write ST or [],.; S for [[,.; Si, and for n € Ny we write S™ for S{%"=1} and sometimes

(50, - .., 8n—1) in place of (8;)iefo,..n—1}- In particular S° = S9 contains one element which

we denote ().
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R; may be equipped

Proposition 4.13. Suppose that (R;)ier is a family of rings. Then ||

el

with the structure of a ring, called the direct product and denoted | |

el
(—2); = =z, (x +y)i = x; + yi, and (zy); = x;y; forallie [, x,y € H R;,
el

and OHiGI R, = (ORi)iEI and 1Hie[ R, = (1Ri)i€I; and

U (H R@) = [[UR) and ifzeU (H Ri) then (z74); = ;% for allie I.

1€l i€l i€l
Moreover, | [..; Ri is commutative if and only if R; is commutative for all i € I, and the

projection maps | [,.; Ri — R;;x — x; are ring homomorphisms.

Proof. Since x = y if and only if z; = y; for all « € I, all the axioms of a ring, along with
the description of the group of units, and the commutativity of multiplication if it holds,
are inherited from the corresponding axioms for the rings R; e.¢g addition is associative for
[ [,e; Ri because addition is associative in R; for all ¢ € I. The fact that the projection maps

are ring homomorphisms is a quick check. ]
Remark 4.14. The empty product of rings has the structure of the trivial ring.

Example 4.15. Given a ring R, R? is never an integral domain: indeed, if R is trivial then
R? is trivial and so not an integral domain; if R is non-trivial then (0,1), (1,0) € (R?)*, but

(0,1)(1,0) = (0,0) = Og2 and so R? is not an integral domain.

Polynomial rings

Given a commutative ring R, the polynomial ring over R with indeterminate X is
a commutative ring, denoted R[X] and whose elements are called polynomials, with a
distinguished element X such that every element p = p(X) € R[X] can be written in the
form

p(X)=ay+ X + -+ a, X" for some n € Ny and ay,...,a, € R,
and furthermore,

ZaiXi = Oppx) if and only if ag, ..., a, = Og. (4.1)
i=0

If p(X) =ap+a; X + -+ a,X" € R[X]* then there is a largest d < n such that ag # Og.
We call this d the degree of p and denote it deg p; we call ag, aq, ..., ay the coefficients of

p; and we call aq the lead coefficient and ag the constant coefficient.

Remark 4.16. It is reasonably straightforward to show that such a ring exists and is unique
though it is not especially illuminating to do so. The important point is that the ring
structure already tells us how to add and multiply polynomials as we shall discuss again in
Remark [4.201
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Remark 4.17. The ‘freeness’ of the polynomial ring comes from the ‘only if’ part of ;
when we are using it we shall often say ‘by equating coefficients’.

/N While the maps F, — F,; A — M and F, — F,; A\ — X are the same by Fermat’s
Little Theorem, the polynomials X? and X in F,[X] are distinct.

Example 4.18. Suppose that F is a field. Then the inclusion map F — F[X] gives F[X]
the structure of an F-vector space by Proposition , and 1, X, X2, ... is linearly indepen-
dent by the ‘only if’ part of , and spanning by definition of F[X]. We conclude that
1,X,X? ... is a basis for F[X].

When we meet modules later, we shall see how this generalises to R[X].
Remark 4.19. We define R[ X}, ..., X, ] := R[Xy,..., X,,-1][X,] and call R[ X}, ..., X,] the
polynomial ring in the indeterminants X;,..., X,,.

Remark 4.20. There is some basic algebra of polynomial expressions that is useful. Suppose

that R is a subring of S and A € S commutes with all elements of R. Then we have

n n n m max{n,m}
— (Z az-x) =Y (~a;)X, and®] (Z aN) + (Z W) = D (a+b)XN, (42)

($0) ($00) -5 (Son ) "

Note, in particular if S = R[X] and A = X, then in particular we have the rules for adding

polynomials.

The important consequence of the ‘freeness’ mentioned in Remark is the following.

Proposition 4.21. Suppose that ¢ : R — S is a ring homomorphism from a commutative

ring R and A € S commutes with all elements in the image of ¢. Then the map
R[X] — S;p(X) = ag + a1 X + -+ + agX? — p(A) := ¢(ag) + dp(an) A + - -+ + ¢(ag) \*
is a well-defined ring homomorphism.

Proof. The map is well-defined by the ‘freeness’ of the polynomial ring, that is , and
the additive algebra of the polynomials, that is ; denote it by ¢. We have gg(l) =1
since ¢(1) = 1, and ¢ is a homomorphism of the additive groups by the additive algebra of
polynomials since ¢ is a homomorphism of the additive groups, and é(pq) = é(p)(%(q) by the
multiplicative algebra of polynomials, that is , and the fact homomorphisms respect
iterated sums (and also products), and the fact that A commutes with all elements of the

image of ¢. ]

22We take the convention convention that if m < n < max{n,m} then b; = Op for m < i < n, and if

n < m < max{n,m} then a; = Og for n <i < m.
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Remark 4.22. This homomorphism is called the evaluation homomorphism and its image
is a ring by Proposition 2.9} we denote it R[\].

/N Note that the particular homomorphism ¢ : R — S does not appear in the notation
R[A]. Often the homomorphism is the inclusion map. Indeed, the inclusion map R — R[X]
is a homomorphism (this is exactly the statement that R is a subring of R[X]) and X € R[X]
commutes with all elements of (the image under inclusion of) R. With this map the two
possible meanings of R[X] (the one here and the one defined when we defined polynomial
rings) coincide. Similarly the inclusion maps Q — Q[v/2] and Z — Z[i] for the rings already
defined in Examples and give notation that is compatible with that already set in

those examples.

Integral domains produce polynomial rings where the degree function behaves nicely:
Proposition 4.23. Suppose that R is a non-trivial commutative ring. Then TFAE:
(i) R is an integral domain;
(1) R[X] is an integral domain;,
(111) for every p,q € R[X]* we have pq € R[X]* and deg pq = degp + degq.

Proof. Certainly implies |(i)| since R is a subring of R[X], and implies since R
is non-trivial and R[X] is commutative, and so the fact R[X] is an integral domain follows
by forgetting the second part of

To see implies suppose that p,q € R[X]|* have degree n and m, and lead coef-
ficients a,, and b,, respectively. Then from the multiplicative algebra of polynomials
we see that degpg < n + m, and the coefficient of X™*™ is a,b,, € R* since R is an in-
tegral domain and a,, b, € R* by definition of degree. We conclude that pg € R[X]* and
deg pqg = n + m as required. O

The constant polynomials are the degree 0 polynomials along with the zero polyno-

mial.

Example 4.24. Given an integral domain R the group of units of R[X] is the set of non-
zero constant polynomials whose (only) non-zero coefficient is a unit of R. Indeed, suppose
that p € U(R[X]). Then there is some ¢ € U(R[X]) such that pg = 1, and so by Proposition
we have 0 = degp + degq and so degp = 0 and degqg = 0 and hence p(X) = aq
and q(X) = by for some ag, by € R. Since apby = 1 and R is commutative we conclude that

ap € U(R) as required. The converse is immediate.
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Matrix rings

Given a field F we write M, ,,(F) for the set of n x m matrices with values in F and
M, (F) := M, ,(F).

Proposition 4.25. Suppose that F is a field and n € N*. Then M,(F) is a ring with
addition and multiplication satisfying

A + B = (Ai,j + Bi’j)/’?;j:l and AB = (Z Ai,kBk,j) fOT A, Be MH(F),
k=1

n
i,j=1

2€10 (OF)?J:D multiplicative identity I where I;; = 1p for 1 <i<n and I, ; = Op fori # j,

and —A = (A )=, for Ae M,(F).

Remark 4.26. It is reasonably straightforward to show that such a ring exists though it is

not especially illuminating to do so. We shall revisit this in Proposition [13.9

Example 4.27. The map F — M, (F); A\ — A is a homomorphism mapping F into the
centre of M, (IF). Proposition shows that this gives M, (IF) the structure of an F-vector
space such that multiplication on M, (FF) is bilinear, and the n? matrices £ for 1 <i,7 <n
(which have Ez(ljj) = 1y and E,Ef}j) = Op when (k,1) # (i,7)) form a basis.

Example 4.28. Given a field F and A € M, (F), by F[A] we mean the ring defined in
Remark with the homomorphism F — M, (F) from Example [4.27} and if K is a subfield
of F, then by K[A] we mean the ring defined in Remark with the homomorphism from
Example composed with the inclusion homomorphism K — F.

Remark 4.29. For n = 2 the ring M, (F) is not commutative. This is easy to check for n = 2

- )-CC0)

For n > 2 we get an example by embedding the matrices above: we place each one in the

top left of an n x n matrix and then fill the 3rd, 4th, ..., and nth row and column with Os.

Remark 4.30. The group U(M,,(F)) is often denoted GL,(FF), the set of matrices with non-

zero determinant.

23AAS it happens we can have 2 = 0 in a field e.g. g, but we cannot have 2 = 1 since then 1 = 0
contradicting non-triviality of the field. This latter impossibility is what we need for this example.
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5 Ideals and quotient rings

The rings Zy — discussed in Example — are examples of a very general construction. To
describe this we first need a suitable generalisation of ‘multiple of N’: An ideal¥]in a ring
R is a subgroup of the additive group of R closed under left and right multiplication by
elements of R. The notation I < R is used in places (e.g. [Coh00, p12]) to mean I is an
ideal of R.

Remark 5.1. /\Note the difference between ideals and subrings: an ideal is closed under
multiplication by any element of the containing ring, while a subring is only closed under
multiplication by elements of itself. On the other hand a subring contains 1, while an ideal
doe not in general contain 1. The ring R itself is the only set that is both an ideal and a

subring.
Example 5.2. Given a ring R, the sets {Og} and R are ideals.

Example 5.3. Given a commutative ring R and x € R the set R := {xr : r € R} is an
ideal. /\The requirement that R be commutative cannot be dropped: suppose that [ is a
field and consider the ring Ms(F) and the matrices

A= Lo and P := 01 )
00 10

The set AM,(F) is a set of matrices all of which have rank at most 1, and if AM,(F) were
an ideal then it would contain I = A + PAP which has rank 2.

Proposition 5.4. Suppose that R is a ring and (I;)s is collection of ideals of R (with S
non-empty). Then (\,.q I; is an ideal.

Proof. The requirement that S be non-empty ensures that the intersection is well-defined.
Since I; is an (additive) subgroup of R for all i € S, we have Og € I; and hence Og € (), g .
Now, suppose z,y € (),cgli- Then z,y € I; for all i € S, and hence = + (—y) € I; for all
ie S, and z + (—y) €[ );eg Li; we conclude that (), g I; is a subgroup by the subgroup test.

Finally, if x € (), I; and r € R then z € I; for all ¢ € S, and hence zr,rz € I for all i € [

so ar,rx € [ ),og I;- The result is proved. O
Given a ring R and elements x1,...,z, € R we define
(X1, o Ty = ﬂ{[ : I is an ideal in R and z1,...,x, € [}, (5.1)
which is an ideal by the preceding proposition and Example [5.2] which ensures that there
is at least some ideal containing xq,...,x,; we call {(z1,...,z,) the ideal generated by
x1,...,T,. An ideal generated by one element is called a principal ideal.

24When R is not commutative these are often called two-sided ideals.
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Remark 5.5. /N The ideal generated by an element depends on the ambient ring: for example
if N e N* then (N) = NZ as an ideal in Z, while (N) = Q as an ideal in Q.

Remark 5.6. If z € R is a unit then (x) = R. Conversely, if R is commutative and (x) = R
then there is y € R such that xy = 1 and hence z € U(R). &Commutativity is essential
for the converse: with the notation of Example [5.3| (A) = M(F), but A is not a unit.

Given a ring R and Aq,..., A, € R we write
Ai+- 4+ A, ={a1+ - +a,: a1 € Ay, ... a, € Ay}

Proposition 5.7. Suppose that R is a ring and I, ..., I, are ideals in R. Then I, +---+1,

1s an ideal in R.

Proof. Since O € I; for all 1 < ¢ < n we have Og € I} + --- + [,,. Suppose that r € R
and z,w € I + --- + I, so that there are elements z;,,w; € I; for all 1 < ¢ < n with
z=2z++z,and w = wy + -+ +w,. Then rz = 3" (rz) e I +---+ I, by
distributivity, and similarly for zr. By commutativity and associativity of addition we have
z—w=z+ (-Hw = 3" (z+(—w;) € I + --- + I,,. Hence by the subgroup test
I +---+ I, is a group, and so the result is proved. O]

Remark 5.8. Suppose that R is a commutative ring and z1,...,z, € R. Then
{xy,...,xpy =21 R+ -+ 2,R.

Indeed, certainly any ideal containing xq,...,x, must contain the set on the right, and by
Proposition and Example the right hand side is an ideal.

Example 5.9 (Ideals in Z). For each N € Ny, (N) = NZ is an ideal in Z — this is the set
of integer multiples of V.

In fact all ideals in Z have this form: suppose that I is a non-zero ideal in Z then [
contains a positive element (since ideals are closed under multiplication by —1); let N € I
be the minimal positive element of I. Of course I > NZ; if I\NZ # & then it contains a
positive element and so a minimal positive element, say M. By minimality of N we have
M > N and of course M — N € I. By minimality of M and positivity of M — N we have
M — N € NZ whence M € NZ, a contradiction. It follows that I = NZ and the result is

proved.

Remark 5.10. An integral domain in which every ideal is principal is called a principal
ideal domain or PID. Example [5.9| shows that Z is a PID. PIDs are the central object
of study of this course — roughly they capture the properties of Z which we are trying to

generalise.
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Example 5.11. The ideal (2, X) in Z[X] is the set of polynomials with even constant
coefficient. Certainly the polynomials with even constant coefficient form an ideal in Z[X]|
containing 2 and X, and conversely every such polynomial is in (2, X') since it can be written
in the form 2g + Xp(X) for some p € Z[ X ] and constant polynomial ¢ € Z[X].

Now the ideal (2, X') is not principal, so Z[X] is not a PID. To see this, suppose that
p € Z[X] is such that (2, X) = (p). Then there would be polynomials ¢, € Z[X]* such
that X = p(X)g(X) and 2 = p(X)r(X). Since Z is an integral domain, Proposition [4.23]
and the second of these tells us degp = 0, and then the first that degq = 1. Write
p(X) = aand ¢(X) = bX + ¢ where a,b,c € Z. Then 0 = (ab—1)X + ac, and so ab = 1. We
conclude that a is a unit. But then p is a unit in Z[X] and so (p) = Z[X]. This contradicts

the fact that all polynomials in (2, X') have even coefficients.

Kernels

Given a ring homomorphism ¢ : R — 5, the kernel of ¢ is its kernel as a homomorphism
of additive groups, that is the set of r € R such that ¢(r) = 0g.

Remark 5.12. In particular, a ring homomorphism ¢ : R — S is injective if and only if
ker ¢ = {Or}.

Proposition 5.13. Suppose that ¢ : R — S is a ring homomorphism. Then ker ¢ is an
1deal.

Proof. Since ¢ is a group homomorphism the kernel is an additive subgroup of R. Now
suppose z € ker¢ and r € R. Then ¢(zr) = ¢(x)p(r) = 0¢(r) = 0 by Lemma [1.3] and
similarly ¢(rz) = 0. It follows that xr, rz € ker ¢ so that ker ¢ is an ideal. H

Remark 5.14. Given a commutative ring R we say that A is a root of p if p(\) = 0. p(A) is
defined in Proposition applied with the identity homomorphism R — R.

Example 5.15. Suppose that R is a commutative ring and A € R. Then I := {p € R[X]:
p(A\) = 0} is an ideal (as it is the kernel of the evaluation homomorphism R[X| — R;p —

p(A)) and I = (X — X\). To see this, first note that I contains X — A, and so (X — \); and
secondly, if p € I then

d
= (X=X D) an(X" AT e (X - ),

This result is sometimes called the Factor Theorem.

The Factor Theorem already gives us a very useful result about integral domains.
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Proposition 5.16. Suppose that R is an integral domain and p € R[X|* has degree d. Then

p has at most d roots in R.

Proof. We proceed by induction on d. If d = 0 then p is a non-zero constant and so has no
roots. Now, suppose that d > 0 and X is a root of p. Then there is a polynomial ¢ such
that p(X) = (X — A\)g(X), and since R is an integral domain Proposition applies
so that degq = d — 1 and so by induction ¢ has at most d — 1 roots. Since R is an integral
domain, if A" € R is a root of p then either N — X\ = 0 or ¢(\) = 0 so that )\ is a root of g.
We conclude that p has at most 1 + (d — 1) = d roots as claimed. [

Remark 5.17. Note that if R is a non-trivial commutative ring that is not an integral domain
then there are elements a,b € R* with ab = 0. Then polynomial aX € R[X] then has degree

1 but at least two roots: 0 and b.

Quotient rings and the isomorphism theorems

Ideals can be used to produce equivalence relations that are compatible with the underlying
ring operations in the same way as Example[4.1} This extends what happens for commutative
groups.

With this we can construct quotient rings.

Theorem 5.18 (Quotient Rings). Suppose that R is a ring and I is an ideal. Then the
commutative group R/I may be endowed with a multiplication such that the quotient map q

is a surjective ring homomorphism with kernel I. If R is commutative then so is R/I.

Proof. The key is to show that q(zy) = ¢(2’y’) whenever x+1 = 2’ +1 and y+1 = y'+1. By
distributivity of multiplication and negation we have that xy — 2’y = (x —2')y + 2’ (y — ¢/').
But then x — 2’ € [ and y — ¢y € [ and so xy — 2’y € Iy + 2'I < I since I is closed
under multiplication by any element of R (in this case y on the right and 2’ on the left).
We conclude that ¢(zy) = q(2'y’) as required, and so we may define X on R/I: first, for
u,v € R/I let 2,5 € R be such that ¢(x) = u and ¢(y) = v. Then put uxv := g(xy), which
is well-defined.

For u,v,w € R/I, let xz,y,z € R be such that u = ¢(z), v = q(y) and w = ¢(z). Then
(uxv)xw = q((zy)2) = q(z(yz)) = ux(vxXw) so that X is associative. ¢(1)q(z) = ¢(z) =
q(2)q(1) so g(1) is an identity for X since ¢ is surjective. Finally, for ¢(x) € R/I, we have
9()x(ay) + a(2)) = a(z(y + 2)) = q(zy + 22) = q(ay) + q(x2) = q(z)xq(y) + q(z)xq(2)
and since ¢ is surjective it follows that left multiplication by ¢(z) is a homomorphism. So is
right multiplication by a similar argument, and hence (again since ¢ is surjective) it follows
that X distributes over addition.

Finally, we have seen that ¢(1) is the identity; ¢ is a homomorphism of the additive
by definition of the quotient group; and ¢ is multiplicative by definition. Thus ¢ is a
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homomorphism. Moreover, x is commutative if the multiplication on R is commutative.

The result is proved. [

Remark 5.19. Given an ideal I of a ring R, we have
@+ D) +ppy+1)=(x+y)+1,—(x+1)=(—z)+ 1, and Og/; = I;

and

(x4+1)xpgy(y+1)=(xy)+1and 1g;=1+1,
and if v € U(R) then x + [ € U(R/I) and (z + I)"' =27 + I. /A\Not every unit in R/I is
the image of a unit as can be seen by considering R =7 and I = (N) for N =5 or N > 6.
Remark 5.20. If R = 7Z and I = (N) = NZ then R/I is the ring Zy. In the light of this

we generalise the notation for modular arithmetic: if R is a ring and [ is an ideal in R then
we write  (mod /) in place of x + I or ¢(z) (where ¢ is as in Theorem [5.18)). The intuition
here is that quotient ring R/ is the ring R with the elements of I ‘set to zero’.

Example 5.21. Suppose that F is a field and that [ is an ideal in F. Then the map
q:F — F/I is a ring homomorphism with kernel I and so by Proposition either F/I is
trivial 7.e. I = F; or this homomorphism is injective and so I = {0}. It follows that for
fields the only two ideals are the whole field and the zero ideal c.f. Example [5.2]

/N The converse is not true, for example the ring of Exercise called the quaternions,

is a non-commutative ring (and so in particular not a field) with only two ideals.

Theorem 5.22 (First Isomorphism Theorem). Suppose that ¢ : R — S is a ring homomor-
phism. Then Im ¢ is a subring of S; ker ¢ is an ideal in R; and the map

¥ : R/ker¢ — S;x + ker ¢ — ¢(z)
is a well-defined injective ring homomorphism.

Proof. The first conclusion is Proposition 2.9 but it is perhaps clearer to say it is by the
subring test and Lemma [2.2} the second is Proposition [5.13], but it is also perhaps easier to
just say by Lemma . With this Theorem tells us R/ ker ¢ is a ring.

Now, x + ker¢p = y + ker ¢ if and only if x — y € ker ¢ which is true if and only if
0=¢(xr—y) = ¢(x) — ¢(y), which in turn is true if and only if ¢(x) = ¢(y). It follows that

¥ is a well-defined injection. v is a homomorphism of the additive group since

Y((z +ker @) + (y + ker ¢)) = ¥((x + y) + ker ¢)
= ¢z +y) = ¢(x) + ¢(y) = P(z + ker §) + Y(y + ker ¢);
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and moreover

U((z + ker ) (y + ker 9)) = ¢((zy) + ker ¢)
= ¢(zy) = ¢(x)o(y) = ¥(z + ker ¢)ih(y + ker ¢),

and (1 + ker ¢) = ¢(1) = 1. The result is proved. O

We turn to some applications.

Example 5.23. The First Isomorphism Theorem applied to the ring homomorphism R —
R;x — x gives the isomorphism R/{0} ~ R.

Example 5.24. Suppose that R is a commutative ring and A € R. Then R[X]/(X — \) is
isomorphic to R by applying the First Isomorphism Theorem to the evaluation homomor-
phism R[X]| — R;p— p(N).

Proposition 5.25. Suppose that R is an integral domain of characteristic p # 0. Then p is
prime and the additive group of R is a vector space over IF,, in such a way that multiplication

on R is bilinear.

Proof. Let ¢ : Z — R be the homomorphism of Proposition [3.7, and suppose that R has
characteristic p. If p = ab for a,b > 1 then Og = ¥(p) = ¥(a)¥(b), and since R is an integral
domain we conclude that ¢(a) = 0 or 1(b) = 0; say the former. Then by definition a > p
and so a = p and b = 1. We conclude that p is prime.

The kernel of ¢ contains p and is an ideal in Z. Since Z is a PID it has the form
(N) for some N € Ny, but then N | p, whence N = 1 or N = p. If N = 1 then
1g = (1) = ¥(0) = Og contradicting the non-triviality of R. We conclude that N = p
and the ring Z/{p) is the ring F, which is a field (Example . By the First Isomorphism
Theorem there is then an injective ring homomorphism F, — R and so R has the structure
of a vector space over [, as described by Proposition n

0

Remark 5.26. For a finite field ' the homomorphism ¢ : Z — F (from Proposition
cannot be injective and so the kernel contains a non-zero, and hence positive element so
the characteristic is non-zero and hence by the above prime. It follows from this that every
finite field has order p™ for some prime p and n € N*. In Exercise it is shown that there

is a field of order p™ for every prime p and n € N*.

Remark 5.27. Integral domains of characteristic 0 need not be vector spaces — e.g. Z. If Z
were a vector space over a field F with scalar multiplication denoted \.z for A e I, z € Z,
then we have two cases: F has characteristic 2, so 0 = (1 + 1p).1 = 1 + 1, a contradiction;
or F has characteristic greater than 2, and there is A € F such that (1p + 1p)A = 1p,
and 1 = (1 + 1p).(A.1) = 2(A.1), another contradiction since there is no integer with this

property.
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Example 5.28. In Example|3.10|we saw that Z had no proper subrings. On the other hand,
if R is a ring with no proper subrings then the image of the unique ring homomorphism
¢ : Z — R afforded by Propositionmust be R (since the image is a subring by Proposition
and so by the First Isomorphism Theorem R is isomorphic to a quotient of Z. In
Example [5.9| we saw every ideal of Z has the form () for N € Ny and so that a ring with no
proper subrings must be isomorphic to Z (recall Example or Zy for N € N*. A short
check confirms that these rings really do not have any proper subrings (and the existence
of proper subrings is a property that is preserved by isomorphisms).

One can further test our understanding of rings by asking which (commutative) rings

have exactly one or two proper subrings, and this has been investigated in [ZD16].

Given an ideal I in R we write Ideals;(R) for the set of ideals in R containing I, and

Ideals(R)(= Ideals{py(R)) for the set of ideals of R.

Theorem 5.29 (Relationship between ideals in R and R/I). Suppose that R is a ring and
I is an ideal in R. Then the map

¢ : Ideals;(R) — Ideals(R/I);I' » {x + 1 : x € I'}.
15 a well-defined inclusion-preserving bijection.

Proof. First, we show the map is well-defined. Suppose that I’ € Ideals;(R), and S,T €
¢(I"). Then there are elements z,y € I’ such that S =x+ T and T =y + I so S+ (-T) =
(x+ 1)+ ((—y)+ 1) = (x + (—y)) + T € ¢(I'). Since ¢(I') is non-empty, the subgroup
test tells us that ¢(I’) is an additive subgroup of R/I. Furthermore, if z + I € R/I and
y+ 1€ ¢(l') for some y € I then zy,yr € I’ and so (x+ 1) x (y+ 1) = (xy) + I € ¢(I') and
(y+I)x (z+1I)=(yx)+Ie¢(l'). Thus ¢(I') is genuinely an ideal in R/I.

¢ is visibly inclusion-preserving; it is an injection since I’ = | J{z + I : 2 + I € ¢(I’)} in
view of the fact that I < I'.

Finally, if J € Ideals(R/I) then put I’ := |Jyo, K. I < I' since I = Ogyre J. If z,ye I’
then x + I,y + 1 € J and so (x + (—y)) + I € J (since J is an additive group) and hence
x + (—y) € I'. Tt follows that I’ is an additive group by the subgroup test. If x € R and
yeI'then (x+ 1) x (y+1I)e Jandso (xy)+ 1€ Jand xy € I', and similarly yz € I’ so

we see that I’ is an ideal. Moreover ¢(I') = J , and ¢ is a surjection. O

This result also goes by the name of the Correspondence Theorem and sometimes the

Fourth Isomorphism Theorem for rings.

6 Proper, prime, and maximal ideals

Suppose that R is a commutative ring. We say that an ideal I in R is proper if I # R, and

have the following immediate fact.
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Lemma 6.1. Suppose that R is a commutative ring and I is an ideal in R. Then I is proper

if and only if R/I is non-trivial.

Remark 6.2. If R is a non-trivial ring then R always has a proper ideal — {Og} — while we

saw in Example that there are non-trivial rings (e.g. 7Z) with no proper subrings.

We say that an ideal I is prime if it is proper and whenever ab € I we have either a € I
orbel.

Proposition 6.3. Suppose that R is a commutative ring and I is an ideal in R. Then I is
a prime if and only if R/I is an integral domain. In particular R is an integral domain if

and only if {Or} is prime.

Proof. For ‘only if” we have (a + I)(b+ I) = Og/; = I, so ab € I and therefore a € I or
b € I by primality. Consequently a +1 = I = Ogjy or b+ 1 = I = Ogyy i.e. R/I is an
integral domain. (R/I is non-trivial since I is proper.) In the other direction, I is proper
since R/I is non-trivial, and if ab € I then (a + I)(b+ I) = Ogyy, and a + I = Ogyy = I or
b+ 1 =0g; =1 Weconclude ae I orbel asrequired. O

Example 6.4. The ideal (X) is prime in R[X ]| when R is an integral domain. To see this,
suppose that p(X)g(X) € (X). We can write p(X) = a+ Xg(X) and ¢(X) = b+ Xh(X) for
g,h € R[X], and hence ab+ X (g(X) + h(X) + Xg(X)h(X)) = Xr(X) for some r € R[X].
It follows that ab = Og and since R is an integral domain either a = O and so p € (X), or
b=0g and ¢q € (X).

We say that an ideal I is maximal if [ is proper and whenever I < J < R for some
ideal J we have J =1 or J = R.

Remark 6.5. /\Maximal here is maximal with respect to inclusion amongst proper ideals;

all ideals in R are contained in R.

Proposition 6.6. Suppose that R is a commutative ring and I is an ideal in R. Then I is

mazximal if and only if R/ is a field. In particular R is a field if and only if {0} is mazimal.

Proof. Suppose that R/I is a field. Then R/I is non-trivial and so I is proper; suppose J
is an ideal with I & J < R. Then there is x € J\I and since R/I is a field some y € R such
that xy + 1 =1+ [ whence 1l e xR+ [ < J and so J = R, whence [ is maximal as claimed.

Conversely, if I is maximal and x € R has x + [ # [ then I + xR is an ideal properly
containing / and so by maximality equals R. It follows that there is some y € R such that
1 € wy + I whence (z + I)(y + 1) = 1gj so that U(R/I) = (R/I)* and R/I is a field as
required. (R/I is non-trivial as I is proper.) O

Example 6.7. Given a prime p then (p) is maximal in Z since Z/(p) is a field (as we saw

in Example .
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Remark 6.8. Tt follows immediately from this and Proposition that every maximal ideal
is prime, but this can also be proved directly. AAlthough it will turn out that in PIDs all
non-zero prime ideals are maximal (essentially Proposition , this is not true in general
e.g. (X)in Z[X] is prime, and properly contained in the proper ideal (2, X).

It is not immediately obvious that a non-trivial commutative ring, R, should have a
maximal proper ideal. If R is finite then we might proceed iteratively: note that {0} is a
proper ideal (since R is non-trivial). Suppose we have constructed some proper ideal I. If
this is maximal then stop; if not then there is some proper ideal strictly containing I. In
the second case replace I by this new ideal. The new ideal is strictly larger, and since R is
finite this process must terminate.

If R is infinite this process might not terminate, but we still have the intuition that we
should be able to keep going until we exhaust all the element of R. This intuition can be
formalised through a transfinite induction, but the conclusion (in a slightly generalised form

which follows) is more commonly established via Zorn’s Lemma following [Zor35].

Theorem 6.9 (Krull’s Theorem). Suppose that R is a commutative ring and I is a proper

tdeal in R. Then there is a mazimal ideal J in R containing I.

We shall not prove this here, though it is not particularly involved. In fact we could

take it an an axiom — it is known to be equivalent to the Axiom of Choice or Zorn’s Lemma
[Hod79).

7 Divisibility

Suppose that R is a commutative ring. Principal ideals capture a notion of divisibility: we
say that a divides b or b is a multiple of a, and write a | b if any of the following equivalent

properties holds:
b e {ay; or {(b) c {a); or there is some z € R such that b = xa.

/N While the first two of these are equivalent even if the ring is not commutative, returning
to Example [5.3] we see that the third is not equivalent to the others: In the ring Ms(F),

(A) = {I), but for reasons of rank I is not a product of A with some other element.

Remark 7.1. The structure of ideals means that ifa | b; forall 1 <i<n,andry,...,7, € R
then a | byry + - + b7y,

We say that a and b are associates and write a ~ b if (a) = (b).
Proposition 7.2. Suppose that R is a commutative ring. Then | is reflexive and transitive,
and if x | ' and y | y then xy | 2'y'. Hence ~ is an equivalence relation, and if x ~ '

and y ~ 3y then xy ~ z'y’. Furthermore, x ~ 0 if and only if v = 0, and x ~ 1 if and only
if te U(R).
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Proof. Reflexivity and transitivity follow immediately from the corresponding facts for sub-
set inclusion. If z | 2/ and y | ¥/ then there are elements a,b € R such that 2’ = ax and
y = by so 2’y = (ab)(zy), and xy | 2’y

Furthermore, 0 ~ 0, and if x ~ 0 then there is a € R such that 2 = 0a = 0. If z € U(R)
then zz7 ' = 1sox | 1, and x = 1z so x ~ 1; and if x ~ 1 then there is a € R such that
1 = za and hence z € U(R). O

Remark 7.3. /Nldeals depend on the ambient ring and so do | and ~ e.g. 2/ 3 in Z, but
2 13in Q.
Remark 7.4. For r € R and p(X) = ag + a1 X + - -+ + agX? € R[X] we have r|p in R[X] if

and only if r | a; in R for all 0 < ¢ < d by equating coefficients.

We say that ¢ is a common divisor of a and b if ¢ | @ and ¢ | b, and d is a greatest
common divisor (gcd) if it is a common divisor, and every common divisor of a and b is
a divisor of d. It follows immediately that if d and d’ are geds of @ and b then d ~ d'.

Remark 7.5. All of this terminology coincides with its usual meaning in Z.

Proposition 7.6. Suppose that R is commutative ring in which every ideal is principal.

Then every pair a,b e R has a greatest common divisor.

Proof. Since every ideal in R is principal there is some d € R such that {(a,b) = {d), and d
is a common divisor of a and b. Now if ¢ is a common divisor of a and b, then a, b € {¢) and
so {d) ={a,b) = {c) as required. O

We say that an element z € R is prime if () is a prime ideal; in other notation if (x % 1
and) x | ab implies = | @ or x | b. In particular, if R is an integral domain then Example

tells us that X is prime in R[X].

Remark 7.7. By induction, given a prime z and a finite list of elements (y;),c; such that

x| [ Lics ¥i, there is some ¢ € I such that = | ;.

Proposition 7.8. Suppose that R is an integral domain and r € R is prime as an element

of R. Then r is also prime as an element of R[X].

Proof. Suppose that p(X) = ag + a1 X + -+ + a, X" and ¢(X) = by + 01 X + -+ + b, X™
are such that r | pg in R[X] and r f p in R[X] so that there is some minimal k£ € Ny such
that r / a; in R. Suppose that [ > 0 and that we have shown r | b; in R for all j < [. The

coefficient of X**! in pq is

k+l1 k—1 -1
Z ajbk+l_j = Z ajb;Hl_j + akbl + Z ak+l—jbj-
Jj=0 J=0 Jj=0

r divides the left hand side (in R) by hypothesis; it divides the first summand on the right

(in R) since r | a; in R for all 0 <4 < k by minimality of k; and it divides the last summand
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(in R) since r | b; in R for all 0 < j < [ by the inductive hypothesis. It follows that r | axb
in R. But r is prime in R and r f a, in R by hypothesis, so we conclude r | b; in R. Thus
by induction 7 | &; in R for all [ € Ny so that r | ¢ in R[X] as required. ]

Remark 7.9. /\Note that primality is not in general preserved on passage from a subring

to a ring: every integral domain is a subring of a field and the only prime in a field is 0.

We say that x € R is irreducible if whenever a | x we have a ~ x or a ~ 1 but not
both@. This is equivalent to saying that (x) is maximal amongst proper principal ideals.

[rreducible elements can behave in unexpected ways, for example 3 is irreducible in Zg
but 32 = 3 in that ring. The next lemma is useful for showing that irreducible elements

behave better in integral domains.

Lemma 7.10 (Cancellation). Suppose that R is an integral domain, w | z (and z non-zero),
and xz | yw. Then x | y, and in particular, if z ~ w (are both non-zero) then rz ~ yw if

and only if x ~ y.

Proof. Since w | z and zz | yw there are elements a and b such that z = aw and bzrz = yw
so braw = yw and since w is not a zero-divisor right multiplication by w is injective and so

(ba)x = bra =y and = | y. ]

Proposition 7.11. Suppose that R is an integral domain and x € R* is prime. Then x is

rreducible.

Proof. Suppose that x € R* is prime (so that z # 1) and a | x. Then there is b € R such
that * = ab. By primality either x | a and so x ~ a and we are done; or | b so that

ax | ab = x, and by cancellation a | 1 since x € R*, ensuring a ~ 1. O

Remark 7.12. Exercise 11.3 gives examples to show that even in integral domains, irreducible

elements need not be primes.

Remark 7.13. Note that O is always prime in an integral domain R, but it is irreducible if
and only if (x) = R for all x € R*, which is true if and only if R is a field.

Proposition 7.14. Suppose that R is an integral domain such that every pair of elements

has a greatest common divisor and x € R s trreducible. Then x is prime.

Proof. We show that if | ab has x } a, then x | b. If b = 0 then x | b as required, so
we may suppose b € R*. By hypothesis b and ab have a gcd, call it ¢. Since b | xb and
b | ab we have b | ¢, so that ¢ = db for some d € R. Since db = ¢ | b and db = ¢ | ab, by
cancellation we have d | x and d | a. Irreducibility of z tells us that either d ~ x or d ~ 1;

we cannot have the former since d | a, but d ~ x } a. Hence d ~ 1 and so d € U(R) and

25&1\10‘56, in particular, that units are not irreducible since if x is a unit then x ~ 1.
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d~'c = b; in particular, ¢ | b. But then z is a common factor of b and ab and so z | ¢ | b

as required. 0

Remark 7.15. Usually a positive integer is said to be prime if it is irreducible in the sense
of this section. Since Z is a PID it follows by Propositions [7.6] and that a positive
integer is prime in the usual sense if and only if it is prime in the sense of this section, and

there is no conflict in nomenclature.

Primes are particularly important because they ensure a uniqueness of factorisation.
To be precise a (possibly empty) vector (zi,...,z,) is a factorisation of an element z if

xr ~ x1---x,; the ;s are called the factors, and if all the factors are irreducible then we say

that x has a factorisation into irreducibles. We say that a factorisation (zy,...,x,) of
x into irreducibles is unique if whenever (yi,...,ys) is factorisation of z into irreducibles
there is a bijection 7 : {1,...,7} — {1,...,s} such that z; ~ y) for all 1 <i <.

Remark 7.16. /\In particular, every unit has a unique factorisation into irreducibles.

Proposition 7.17. Suppose that R is an integral domain and x € R* has a (possibly empty)
factorisation in which every factor is prime. Then x has a unique factorisation into irre-

ducibles.

Proof. Let (x1,...,z,) be a factorisation of x in which every factor is prime. Since z € R*,
we have x1,...,2, € R*, and so by Proposition we have that x has a factorisation into
irreducibles. We shall prove that if (y;);c; are irreducible elements indexed by a finite set [
such that « ~ [ [,.; v; then there is a bijection 7 : {1,...,r} — I such that x; ~ yx(; for all
1<i<r.

We proceed by induction on r. For r = 0 we have [[,_,4; ~ 1 (by definition of the
empty product) and so there is u € U(R) such that [[._.;y; = u. Hence for all j € I, we
have y; (u‘l Hiel\{j} yi> = 1 and y; € U(R). It follows that [ is empty since no unit is
irreducible, and we have the base case.

Now, suppose that » > 0. Then z, is prime and z, | [[,.;y; whence there is some
j € I such that z, | y;. But y; is irreducible and z, # 1 and so z, ~ y;. But then
Ty T ~ | e N Yi by cancellation, and by the inductive hypothesis there is a bijection
7:{1,...,r—1} = I\{j} such that z; ~ yz; for all 1 <i < r—1. Extend this to a bijection
{1,...,r} — I by setting m(r) = j and the result is proved. O

We turn now to the problem of finding factorisations into irreducibles (Proposition m
will then turn these into factorisations in which every factor is prime for use in Proposition
7.17]).

We say that a commutative ring R has the ascending chain condition on principal
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idealﬂ or ACCP if for every sequence (d,,)_, of elements of R with d,1 | d, for all
n € Ny, there is some N € Ny such that d,, ~ dy for all n = N. The idea this captures is

that we cannot ‘keep dividing indefinitely’.
Proposition 7.18. Suppose that R is a PID. Then R has the ACCP.

Proof. Suppose that (d,,);"_, has d,,4+1 | d,, for all n € Ny and let
I:={reR:d, | rfor some n e Ny}.

This is an ideal: if r,s € I then there are n,m € Ny such that d,, | » and d,, | s, but
Apin | dp | mand dpyp | dyy | SO dpyy, | T—sand r—se I;if r e I and s € R then there
is n € Ny such that d,, | r so d,, | rs and hence rs, sr € I; and finally 0 € I.

Since R is a PID there is some d € I such that I = {(d). Since d € I there is some N € Nj
such that dy | d, but then d,, € I for all n € Ny and so dy | d | d, for all n € Ny and hence
d, ~ dy for all n = N. The result is proved. ]

Proposition 7.19. Suppose that R is an integral domain with the ACCP. Then every x € R*

has a factorisation into irreducibles.

Proof. Write F for the set of elements in R* that have factorisation into irreducibles so that
all units and irreducible elements are in F. F is closed under multiplication, by design and
since R is an integral domain.

Were F not to be the whole of R* then there would be some xy € R*\F. Now create a
chain iteratively: at step i suppose we have z; € R*\F. Since x; is not irreducible and not
a unit there is y; | x; with y; % 1 and y; # x;; let z; € R* be such that z; = y;2;. If z; ~ x;,
then z; ~ y;2; and by cancellation 1 ~ y;, a contradiction. We conclude y;, z; # ;.

Since F is closed under multiplication we cannot have both y; and z; in F. Let x;,1 €
{vi, z;} such that x; .1 ¢ F; by design z;,1 | z; and x;;1 # z;. This process produces a

sequence --- | xo | 1 | ¢ in which z; # x;,1 for all i € Ny contradicting the ACCP. O

Remark 7.20. Integral domains in which every non-zero element has a factorisation into
irreducibles are called factorisation domains or atomic domains. There are factorisation
domains not having the ACCP but these are not easy to construct; the first example was

given by Grams in [GraT74].

Finally, a unique factorisation domain or UFD is an integral domain in which every

x € R* has a unique factorisation into irreducibles.

26The reason for the name is that it can also be formulated as saying if (I;)ien, is an ascending chain
(meaning I; < I;q for all € Ny) of principal ideals then there is some N € Ny such that I,, = Iy for all
n=>=N.
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Theorem 7.21. Suppose that R is a PID. Then R is a UFD.

Proof. By Propositions and we have that every x € R* has a factorisation into
irreducibles. But then every irreducible is prime by Propositions [7.6[ and |[7.14. The result
then follows by Proposition [7.17] O]

Remark 7.22. In particular, since Z is a PID the above gives the Fundamental Theorem of
Arithmetic.

Remark 7.23. Z[X] is an example of a UFD that is not a PID; see Exercise for details.

The division algorithm and Euclidean domains

A Euclidean function on R is a function f : R* — Ny such that if a,b € R* then either
b | a; or there are ¢ € R, r € R* such that a = bg + r and f(r) < f(b). We say that an

integral domain R is a Euclidean domain if R supports at least one Euclidean function.

Remark 7.24. /\There are some variations on the definition of Euclidean function. Some-
times (e.g. [Gall3l p337]) a Euclidean function f is required to have the additional property
that f(a) < f(ab) for all a,b e R*. (Exercise asks for a proof of this.)

On [Kea98, p17] Keating uses an even stronger definition of Euclidean function f re-
quiring that f(ab) = f(a)f(b) whenever a,b € R*. This is a genuinely stronger definition,
meaning there are Euclidean domains in our sense but not in the sense of Keating, though
this is a recent discovery: [CNT19, Theorem 1.3]. We do not assume this stronger property

though many of our Euclidean functions will happen to satisfy it.

Example 7.25. Suppose that F is a field and let f : F* — Ny be any function. Since every
two non-zero units divide each other in a field, f is a Euclidean function for F and so F is
a Euclidean domain. The function f : F* — Ny taking all non-zero elements of F to 1 is
a Fuclidean function in Keating’s sense from Remark and is perhaps a slightly more

natural choice.

Example 7.26 (Division algorithm for Z). If a,b € Z* and b f a then let bq be (one of) the
multiple(s) of b nearest to a. Then r := a — bq has |r| < |b|, and | - | is a Euclidean function
on Z.

/N Note that there were two choices for bq and hence for r in the case that b / a.

Example 7.27 (Division algorithm for F[X]). Suppose that F is a field and a,b € F[X]*.
Let P := {a + bg : ¢ € F[X]}, and note that if b } a then P does not include the zero
polynomial.

Ifb t a, we let r € P be a polynomial of minimal degree. If degr > degb, then we may let
A be the ratio of the lead coefficient of 7 to that of b and note that r(X) — A Xdeer—desbp(X) e
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P and has strictly smaller degree than r, a contradiction. It follows that degr < degb and
deg is a Euclidean function for F[.X].

Remark 7.28. Suppose that f is a Fuclidean function on an integral domain R such that
f(a) < f(ab) for all a,b € R*, and for all a,b € R* either b | a or there is a unique pair
(¢,7) € R x R* with a = bg+r and f(r) < f(b). Then either R is itself a field or R = F[X]
for a field F. Exercise develops a proof of this, and in particular since Z is neither a field
nor a polynomial ring over a field the choice mentioned in the warning in Example [7.26] was

in fact necessary.

Proposition 7.29. Suppose that R is a Euclidean domain. Then R is a PID.

Proof. Let f be a Euclidean function on R and suppose [ is a non-zero ideal. Let x € [
have f(r) minimal, and suppose that y € I. If y ¢ () then there is ¢ € R and r € R* with
y=gqr+rand f(r) < f(x) so that r € I, contradicting minimality of f(z). O

Remark 7.30. In particular if F is a field then the ring F[X] is a PID.

Remark 7.31. There are examples of PIDs which are not Euclidean domains, one of which

is developed in Exercise |[11.9

Remark 7.32. A Dedekind-Hasse function is a map N : R* — Ny such that whenever
a,b € R* either b | a; or there are elements p,q € R, ¢ € R* such that ap = bg + ¢ and
N(c) < N(b). The definition of Euclidean function places the additional requirement that
p = 1, so in particular any ring supporting a Euclidean function supports a Dedekind-Hasse
function.

It can be shown (see e.g. [Clal(, Theorem 49]) that an integral domain is a PID if and
only if it supports a Dedekind-Hasse function. In particular, from this point of view PIDs
and Euclidean domains may not seem to very different despite Remark[7.31] The important
feature of Fuclidean functions is that they are often in some sense easy to compute without
knowing the factorisation of an element into primes. By contrast the construction of a
Dedekind-Hasse function for an arbitrary PID is usually done by letting N (a) be the number
of prime factors of a (well-defined by Theorem [7.21)).

8 Fields and adjoining elements

A field K is a field extension of a field F if there is a ring homomorphism ¢ : F — K.
ADespite the fact we speak of K as a field extension of F without mentioning ¢, in any
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given instance we will have a particular ¢ in mindm Often this will just the inclusion map
because F will be a subfield of K. Indeed, by relabelling the elements of F we can always
assume that F is a subfield of K because ring homomorphisms between fields are injective
(Proposition [2.4)).

Proposition shows us how to use ¢ to endow K with the structure of a vector space
over [F such that multiplication is bilinear. We call the F-dimension of K w.r.t. this vector

space structure the degree of the field extension, denoted |K : F|.

Theorem 8.1. Suppose that F is a field and f € F[X] is irreducible of degree d. Then
K := F[X]|/{f) is a field extension of F by the map F — K; X\ — X\ + {f), and writing

a:=X+{, Ix,a,...,a®! is a basis for K in this F-vector space structure.

Proof. F[X] is a PID (Remark and hence the fact that {f) is maximal amongst proper
principal ideals means it is maximal amongst all proper ideals and Proposition tells us
that K = F[X]/{f) is a field. The given map is formed by composing the inclusion map
F — F[X] and the quotient map F[X] — F[X]/{f) and so is a ring homomorphism, and
hence a field extension.

The elements 1k, o, . . ., a®! are F-independent in K: indeed, suppose that ay, ..., aq_1 €
F have Og = ag.lx + aj.cc + -+ - + ag_;.a® 1. This says exactly that f | ag + a; X + --- +
ag_1 X% 1. If the right hand side is non-zero then it has degree strictly smaller than d; a
contradiction. Hence the right is Oppx] and so ao, . ..,aq—1 = Op as required.

On the other hand, if f(X) = ag + a1 X + -+ + agX? then every 3 € K has a polynomial
p(X)=by+ b0 X+ +0,X" e F[X] such that 8 = p(X) + {f). By the division algorithm
for F[X] (Example [7.27)), either p € {f) (and so 8 = Ok) or there is some ¢ € F[X] and
r € F[X]* with degr < degf = d such that p(X) = ¢(X)f(X) + r(X). Then g =
r(X) + {f), and writing r(X) = ¢ + 1 X + -+ + ¢4_1 X for ¢g,...,cq1 € F we have
B =colg +cr.ao+ -+ cq_1.a?7!, and hence 1k, o, ...,a% ! is a spanning set.

It follows that 1k, a,...,a% ! is a basis and the result is proved. O

We say that K is the field F with the element o adjoined.

Remark 8.2. In view of the above it becomes important to identify irreducible polynomials
in F[X]. Every degree 1 polynomial in F[X] is irreducible. First f » 1 since deg f # 0.
Now, if g | f then let h € F[X]* be such that f = gh and 1 = deg f = degg + degh, so
either degh = 0 so h is a unit, and g ~ f; or degh = 1 and so deg g = 0 and so ¢ is a unit

and g ~ 1 as required.

27 Appearances are a bit deceptive here because if F is a field extension of Q or F), then it is so uniquely
(this essentially follows from Proposition , so in fact we can identify the ring homomorphism just from
the fields. However, there are fields with non-trivial automorphisms (e.g. C — C;z +— Z) and so C is a

field extension of C in multiple ways. Tutors may discuss this when considering Exercise
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For some fields these are the only irreducible elements of the polynomial ring. Indeed,
in C[X] the Fundamental Theorem of Algebra tells us that every non-constant polynomial
has a root in C. We are done once we note the general fact that if f € F[X] of degree n > 2
has a root then it is not irreducible. Indeed, if f has a root A then X — X | f, but X —\ »= f
and X — X\ % 1 since deg(X — \) # deg f and deg(X — \) # deg1; we conclude f is not
irreducible.

While there are polynomials of degree 4 or more without roots that are not irreducible
(e.g. (X?+1)%in R[X]), if f € F[X] is non-constant of degree at most 3 and no root then
it 45 irreducible. First, f « 1 since f is non-constant. Now, suppose g | f has g # 1 and
g # [, and write f = gh for some h € F[X]. Since g # 1 we have that degg # 0 and since
g * f we have degh # 0. Since deg g + degh < 3 it follows that degg = 1 or degh = 1; in
the former case there is a € F* and b € F such that g(X) = aX + b and hence —ba™" is a

root of g and so a root of f; and similarly in the latter.

Example 8.3. The polynomial X? + 1 is irreducible over R since it has no root, and hence
R[X]/{X? + 1) is a field and a 2-dimensional vector space over R. The map ¢ : R[X] —
C;p — p(i) (as defined in Proposition is a ring homomorphism. It is surjective as
a basic property of C (Example [£.11)). The kernel is principal (since R[X] is a PID) and
contains X2 + 1 by definition of 7. Since C (and therefore R[X]/ker ¢) is not trivial and
X2 + 1 is irreducible we conclude that X? + 1 is a generator of the kernel and by the First
Isomorphism Theorem we have R[X]/(X? + 1) =~ C as rings. In fact this is one way of

constructing C.

Example 8.4. The polynomial X2 + X + 1 is the only irreducible polynomial of degree 2
in Fo[X]. Indeed, neither 0 nor 1 are roots so X?+ X + 1 is irreducible. On the other hand
there are only four degree 2 polynomials in Fo[ X ], and the other three are X2, X2 + X and
X? 4 1 which visibly have roots of 0, 0 (and 1), and 1 respectively. Hence these are not
irreducible.

The ring Fo[ X]/(X?+ X + 1) is then a field of order 4 which is dentoed Fy. /N\ This field
is not equal to the ring Z; — indeed the latter is not even an integral domain since 22 = 0
but 2 # 0.

Finding irreducible polynomials is somewhat like finding primes in the integers, and
there are various tests for irreducibility which can help in this endeavour.

We say that f € Z[X] is primitive if there is no prime dividing all the coefficients of f.

Remark 8.5. Note that if f is primitive and of degree 0 then f is a unit in Z[X] since Z is

a UFD (and so every non-unit has a prime factor).

Theorem 8.6 (Gauss’ Lemma). Suppose that f € Z[X]|. Then f is non-constant and
irreducible in Z[X] if and only if [ is primitive and irreducible in Q[X].
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Proof. Suppose that f is irreducible in Z[X]. This immediately tells us that f is primitive
since if p were a prime dividing all the coefficients of f then p | f in Z[X]. Since p »# 1
we conclude that p ~ f (in Z[X]) by irreducibility of f, contradicting the fact that f is
non-constant.

Now, suppose that f = gh for g,h € Q[X]. Then let A € N* be minimal such that there
is ¢ € Q* with A\¢~'g and gh both in Z[X]. Suppose that p € Z is prime with p | A\. Then p is
prime as a constant polynomial in Z[X] and since p | Af = (A\q*g)(¢h), we have p | A\¢"'g
or p | gh (both in Z[X]). The former contradicts minimality of A\ directly, and the latter
once we note that (q/p)h € Z[X] and (A\/p)(q/p)'g = M\q'g € Z[X]. We conclude that )
has no prime factors and hence (since Z is a UFD) is a unit. Thus ¢~'¢ | f in Z[X] and so
by irreducibility of f in Z[X] we conclude that either g7'g ~ 1 or ¢~'g ~ f in Z| X]. Hence
either g ~ 1 in Q[X] or g ~ f in Q[X] and finally, since f is non-constant we have f % 1
in Q[X] and so f is irreducible in Q[X].

Conversely, suppose f € Z[X] is primitive and irreducible in Q[X]. First, f # 1 in Q[X]
and so f is non-constant. Suppose ¢ | f in Z[X]. By irreducibility of f in Q[X], either
g~ 1in Q[X] so degg = 0, and since f is primitive g ~ 1 in Z[X]; or g ~ f in Q[X], then
deg g = deg f and writing f = gh for h € Z[X]| we have deg h = 0, and since f is primitive
h ~1in Z[X], whence g ~ f in Z[X]. The result is proved. O

Proposition 8.7 (Eisenstein’s Criterion). Suppose that f(X) = a, X" + -+ + a1 X + ag is
a primitive polynomial in Z[X] and p is a prime such that p | a; for all 0 < i <n; p ) an;
and p* | ag. Then f is irreducible in Z[X].

Proof. Suppose that f = gh for g, h € Z[X]. The quotient map Z — FF, and the inclusion
F, — F,[X] compose to give a homomorphism Z — F,[X], so there is an evaluation
homomorphism ¢ : Z[ X ] — F,[X] taking X to X. In particular, note that

o(f) = ¢(g)p(h) and degq = deg ¢(q) whenever ¢(q) € F,[X]*.

Since p | a; for all i <n and p } a, we have ¢(f) ~ X"

Since X € F,[X] is prime it follows that ¢(g) ~ X* and ¢(h) ~ X" (either by induction,
or because IF,[ X] is a UFD). If ¢ > 0 then ¢(g) has zero constant coefficient and so p divides
the constant coefficient of g. ag is the product of the constant coefficients of g and h and
since p? | ag we conclude that p does not divide the constant coefficient of h i.e. i = n.
But then degg > dego(g) = n, and n = deg f = degg + degh, so degh = 0. Since f
is primitive, h is then a unit and so g ~ f. The case i = 0 is handled similarly and has
g~1 O

Example 8.8. The polynomial X? — 2 is irreducible in Z[X] by Eisenstein’s Criterion with

the prime 2 since it is visibly primitive (with the lead coefficient being 1). It is non-constant
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and so by Gauss’ Lemma is irreducible in Q[X]. By Theorem 8.1 Q[X /(X3 —2) is a degree
3 field extension of Q.

The reals contain a unique positive root to X® — 2 denoted element /2 (this is from
Prelims Analysis) so we get an evaluation homomorphism Q[X] — R;p — p(¥/2). The
kernel of this map is principal (again Q[X] is a PID), and since Q[+/2] is not trivial and
X3 —2is irreducible we see that the kernel is (X3 —2). Tt follows from the First Isomorphism
Theorem that Q[+/2] is isomorphic to Q[X]/{X? — 2) as a ring and, in particular, it is a
field P

Finally, the evaluation map Q[X] — R above is Q-linear w.r.t. the two Q-vector space
structures on Q[X] and R induced by Proposition and the inclusions Q — Q[X] and
Q — R. Thus by the First Isomorphism Theorem for vector spaces the Q-vector spaces
Q[X]/{X? — 2) and Q[+/2] have the same dimension and so Q[+/2] is a degree 3 field

extension of Q (where the extension homomorphism is the inclusion map).

Theorem 8.9 (Tower Law). Suppose that ¢ : K — L and ¢ : F — K are field extensions.
Then ¢pop : F — L is a field extension and if either |L : F| < o0 or |L : K|,|K : F| < o
then |L : F| = |L : K||K : F|.

Proof. First, the composition of homomorphisms is a homomorphism so that ¢ o is a field
extension. Since all ring homomorphisms between fields are injective (Proposition , by
relabelling we may assume that I is a subfield of K and K is a subfield of .. We do this to
make the notation simpler.

Let e1,...,e, be a basis for L as a vector space over K, and let fi,..., f,, be a basis
for K as a vector space over F. Now, for x € L there are scalars Ay,...,\, € K such that
x = Mey+ -+ e, and since f1, ..., f,, is spanning, for each 1 < j < n there are scalars
fi1js -5 My € F such that \j = pujfi + - + pmjfn. Hence x = 37 37" i fiej, so
by have that (fiej)?i’ijzl is an F-spanning subset of K. Now suppose p1, ..., ttmn € I are
such that 37, D37, pijfie; = O Then 37 (307, pijfi) e; = Ou, but 337, pi; fi € K for
each 1 < j < n and since ey, ..., e, are K-linearly independent we have Y 1;;f; = Ox
for all 1 < 7 < n. But now fi,..., f,,, are F-linearly independent and so p;; = O for all
I <i<mand1<j<n. It follows that (fie;);");_, is a basis for I as an F-vector space
and the result follows. O

Example 8.10. We can use the Tower Law to show that /2 is not a Q-linear combination
of 1, </2, and \3/52. Indeed, if it were then Q[v/2] would be a subfield of Q[+/2], and the
inclusions Q «— Q[v/2] and Q[v/2] < Q[+/2] would be field extensions. By the Tower Law
we would have 3 = |Q[¥/2] : Q| = |Q[v/2] : Q[v2]||Q[v2] : Q| = |Q[¥/2] : Q[v/2]] x 2, but
3 is not even.

28¢.f. Example where the fact that Q[v/2] is a field is proved directly by producing inverse elements
rather than through the irreducibility of the polynomial X2 — 2.
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9 Modules

Modules can be viewed in a variety of ways. First, we shall think of them as vector spaces
with the field replaced by a ring. Concretely, suppose that R is a commutative ring. A
(left) R-module is a commutative group, also denoted M and called the additive group,

and a map . : R x M — M; (r,x) — r.x such that

(M1) 1.z =  for all z € M;

(M2) r.(s.x) = (rs).x for all r,s € R and x € M,

(M3) (r+s).x = (rx) + (s.x) for all ;s € R and x € M;
(M4) r.(z+y) = (rzx)+ (ry) forallr € R and 2,y € M.

The identity of M is denoted 0 (or 0, is disambiguation is called for) and is called the zero
of the module, and the map . is called the scalar multiplication of the module. If the

latter is clear we simply speak of the R-module M. /\ Sometimes the scalar multiplication
really does need to be spelled out. See Example [[II.1]

Remark 9.1. Some quick checks reveal that Og.x = 0y and (—1).x = —z for all z € M.

/\We take R to be commutative, but this is not necessary at this stage though it will

be for a number of our later results.

Example 9.2 (Vector spaces). Given a field F, a vector space V' is exactly a (left) F-module,

with the two notions of scalar multiplication coinciding.

Example 9.3 (Zero module). For any commutative ring R the trivial group — usually
denoted {0} in this context — and the scalar multiplication defined by 7.0 := 0 for all r € R

is a module called the zero (R-)module.

Groups arise naturally from considering the set of bijections from a set to itself; modules
arise naturally from considering the set of homomorphisms from a commutative group to
itself. To understand this we shall need a few facts about algebra of groups homomorphisms
of commutative groups.

By default we write + for the binary operation on a commutative group; —z for the
additive inverse of ; and 0 for the identity of the group. As with rings we may use subscripts
to disambiguate if there are multiple groups 7.e. we may write +y for the group operation

on the commutative group N.

Proposition 9.4. Suppose that M and N are commutative groups. Then Hom(M, N), the
set of group homomorphisms M — N, is itself a commutative group when endowed with the
operation F, called pointwise addition, and defined by (¢+)(x) := ¢(z) + ¥(z) for all
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x € M; identity M — N;x — Ox; and the inverse of a homomorphism ¢ being the map
M — N;z — —¢(x).

Suppose P is a further commutative group and ¢ € Hom(M,N) and ¢ € Hom(N, P),
then 1 o ¢ € Hom(M, P); and if 7 € Hom(M, N) then 1 o (¢pF7) = (¢ 0 ¢)F (¢ o 7); and if
7 € Hom(N, P) then (Y ¥7m)o¢ = (o) F(mog).

Proof. The commutativity (and associativity) of N here is crucial for ensuring that + is

well-defined: In particular, suppose that ¢, 1 € Hom(M, N) then for all x,y € M we have

¢ and v are
homomorphisms

(p+9)(@ +ary) = 6z +ar y) +n (@ +ar y) >
(0(x) +n 0(y)) +n (¥(2) +~5 P(y)) )
= (¢(z) +n ¢ (@) +n (¢(y) +n D(Y)) >

() (2) +n (d+0)(y)-

associativity and

commutativity of +

definition of +

It follows that ¢+ € Hom(M, N). Since the operation + v is associative and commutative,
so is the operation +. The map M — N;z — Oy is a homomorphism because Oy 40y = Oy,
and it is an identity for T because Oy is an identity for +y. Finally, if ¢ € Hom(M, N) then
the map M — N;x — —¢(x) is a homomorphism because —¢(z+3y) = —(d(z) +n O (y)) =
(—o(y)) +n (—9o(x)) = (—¢p(x)) +n (—¢(y)) for all z,y € M since +y is associative and
commutative, and it is an additive inverse for ¢ w.r.t. & since —¢(x) is an additive inverse
for ¢(x) w.r.t. +5. The first part follows.

For the second the composition of homomorphisms is a homomorphism@ says exactly
that if ¢ € Hom(M, N) and ¢ € Hom(N, P), then ¢ o ¢ € Hom(M, P). Now, if ¢, 7 €
Hom (M, N) and 1) € Hom(V, P), then

Yo (¢Fm)(x) = P(d(2) + m(w)) = P((x)) + P(m(2)) = (0 )+ (¥ o m))(2)

by definition and the fact that ¢ is a homomorphism, and we have that v o (¢4A—7r) =
(¢ 0 $)+(¢p o ) as claimed. On the other hand, if ¢ € Hom(M, N) and v, m € Hom(N, P),
then

(¥7) 0 g(x) = ¥(g(x)) + m(¢(x)) = (0 §)F(m 0 §))(2)
by deﬁnition.lﬂ O

Remark 9.5. We use the notation + for clarity in the proof above, and from now on we

29We have used this fact before — and the proof is barely a line — we have written it out again here to
show that the binary operation + can take arguments like 1 o ¢.

30/N\For the identity 1 o (¢F7) = (¥ 0 $)+ (1 o w) we used the homomorphism property of 1, while the
identity (Y F7m)o0¢ = (o d)F(mo ) followed simply from the definition. It may be instructive to recall the
first part of Exercise
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extend the convention of writing + for the group operation on a commutative group to the
group Hom(M, N).
Remark 9.6. The addition of commutative groups extends to iterated sums in the same way

as addition in a ring as discussed in §3| and we shall not revisit that here.

The second part of Proposition is a pair of identities which look a great deal like the

distributivity axiom for a ring, and indeed there is an important ring lurking here.

Theorem 9.7. Suppose that M is a commutative group. Then Hom(M, M) equipped with
pointwise addition as its addition and functional composition as its multiplication is a ring
whose multiplicative identity is the map M — M;x — x and where U(Hom (M, M)) is the set
of bijective homomorphisms M — M, with the multiplicative inverse of ¢ € U(Hom(M, M))

being the inverse function.

Proof. Most of this follows from Proposition In particular, Hom(M, M) is a commuta-
tive group under this addition by the first part of that proposition, and the proposed multi-
plication distributes by the second part. It remains to recall that composition of functions
is associative so the proposed multiplication is associative, and the map M — M;x — x is
certainly a homomorphism and an identity for composition.

Suppose that ¢ € U(Hom (M, M)). Then there is ¢» € Hom(M, M) such that ¢(¢(x)) =
x =1(¢(x)) for all z € M, and it follows that ¢ is a bijection. Conversely, if ¢ € Hom(M, M)
is a bijection then the map taking each element of M to its unique preimage under ¢, is
a homomorphism since ¢ is a homomorphism. Moreover it is an inverse for ¢ w.r.t. the
given multiplication because it is an inverse for ¢ under functional composition, and given

multiplication is just functional composition restricted to Hom (M, M). O

Remark 9.8. Note that if ¢ € U(Hom(M, M)) then the two possible meanings of ¢! — one
as the functional inverse, and the other as the inverse with respect to the multiplication on
the ring Hom(M, M) — coincide.

Specifying the scalar multiplication of an R-module on a commutative group M turns
out to be equivalent to specifying a ring homomorphism R — Hom(M, M) by a process

called currying:

Proposition 9.9 (Currying). Suppose that R is a commutative ring and M is a com-

mutative group. Let Scalarg(M) denote the set of functions . : R x M — M satisfy-
ing the axioms |(M1)H(M4); and RingHom(R, Hom(M, M)) the set of ring homomorphisms
R — Hom(M, M). Then the currying map

Scalarg(M) — RingHom (R, Hom(M, M))

R — Hom(M, M)
r — (M—Mx—rx)

G RxM— M—
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and uncurrying map

RingHom (R, Hom(M, M)) — Scalarg(M)

RxM — M
o= Hom(AD = 2 ) e

are well-defined and inverses of each other.

Proof. If . : R x M — M is a scalar multiplication then R — Hom(M, M);r — (M —
M; x — r.z) is well-defined since scalar multiplication distributes over addition , and a
ring homomorphism because of Hence the first map in the proposition is well-
defined. In the other direction, if ¢ : R — Hom(M, M) is a ring homomorphism then the
map R x M — M;(r,x) — ¢(r)(x) enjoys since ¢(r) is a homomorphism of M, and
(M3)[since ¢ is a ring homomorphism. It follows that the second map is well-defined.

Finally a short check reveals that these maps are inverses of each other. O]

Remark 9.10. In the light of this proposition we shall often specify an R-module structure

on a commutative group M simply by defining a ring homomorphism R — Hom(M, M).

Example 9.11 (Abelian groups as modules). Suppose that M is a Commutativdﬂ group
with identity 0,;. Then by Proposition M there is a (unique) homomorphism Z —
Hom (M, M) which by uncurrying endows M with the structure of a Z-module.

Example 9.12 (Vector spaces with an endomorphism as modules). Suppose that V' is an
F-vector space and T : V' — V is F-linear (this is the eponymous endomorphism). Then
by currying the vector space structure gives a homomorphism ¢ : F — Hom(V, V). Since
T is a group homomorphism of the additive group of V' we have T' € Hom(V, V'), and since
T(Av) = AT (v) for all A € F and v € V' we have that T commutes with the image of ¢ and
so by Proposition there is an evaluation homomorphism F[X] — Hom(V, V) taking X
to T. By uncurrying this gives V' the structure of an F[X]-module. Concretely the scalar
multiplication has p.v = p(T)v for p e F[X] and v e V.

Remark 9.13. In the above example we write Endg(V') for the set of F-linear maps V' — V.
All linear maps are, in particular, homomorphisms of the additive group, so this is a subset
of Hom(V, V') where V' is just considered as the additive group of the vector space. The
sum and composition of two linear maps is linear; if 7" is linear then —T' is linear; and the
identity map is linear. Hence by the subring test Endp(V) is a ring.

/\Note that End¢(C) does not include complex conjugation, but Hom(C, C) does.

31Tn these notes we use the word commutative in place of Abelian.
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10 Linear maps, isomorphisms, and submodules

As with rings we shall be interested in the structure-preserving maps for modules: An R-
linear map between two R-modules M and N is a group homomorphism ¢ : M — N
with

o(r.x) = r.¢(x) for all z € M,r e R.

/NThe . on the left is the scalar multiplication on M and the . is the scalar multiplication
on N.

Remark 10.1. If F is a field this has the same meaning as F-linear for vector spaces.

The linear maps between modules are themselves structured.
Proposition 10.2. Suppose that R is a commutative ring and M and N are R-modules.
Then L(M,N), the set of R-linear maps M — N, is a commutative group under pointwise

addition, and the map~ : R x L(M,N) — L(M,N) defined by (r~1)(x) = rap(z) for all
x € M is well-defined and gives the group L(M, N) the structure of an R-module.

Proof. The zero map, M — N;z +— Oy is linear and so L(M,N) is a non-empty subset
of Hom(M, N). If ¢,¢ € L(M, N) then ¢ — 1 is a homomorphism (since Hom(M, N) is a

commutative group under pointwise addition) and

(0 =) (ra) = ¢(rx) —(re) = r.o(x) —r(z) = r.(o(x) —y(z) = r-((¢ = ¢)(2))

for all r € R and x € M. We conclude that ¢ — 1 is linear and hence by the subgroup test
L(M,N) is a commutative group.
To see that 7 is well-defined, first note that

(rY)(z +y) = r.(@(z +y)) = r.(@@) + () = rd(@) + r.y) = (FY) () + (rY)(y)

forre R, ¢ e L(M,N) and z,y € M, since 1 is a homomorphism and |(M4)| holds for ., so

that 771 is a homomorphism. Secondly,

(r ) (s.x) = rap(s.x) = r(s(x)) = (rs).(x) = (sr).p(z) = s.(rap(x)) = s.(r ) (z)

for all r,s € R, ¢ € L(M,N) and x € M, by linearity of ¢, [((M2)| for ., and commutativity

of R. It follows that r7% is linear. It remains to check for 7. |(M1)] follow
from the corresponding axioms for ., and [(M4)| follows from for . and the definition of

pointwise addition. O

Remark 10.3. Conventionally we drop the circumflex from 7; we used it above to make the

argument clearer.
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Example 10.4. Suppose that M and N are commutative groups. By Example M and
N are uniquely equipped with the structure of a Z-module, and an induction shows that
any ¢ € Hom(M, N) is Z-linear with respect to this module structure so that L(M, N) =
Hom(M, N) in this case. This is not typical: the example at the end of Remark shows
that in general L(M, N) may be strictly contained in Hom(M, N).

Lemma 10.5. Suppose that M, N, and P are R-modules and ¢ : M — N and ¢ : N — P
are R-linear. Then v o ¢ : M — P s R-linear.

Proof. The composition of group homomorphisms is a group homomorphism, and (1 o

o)(r.x) = Y(o(r.x)) = (r.o(x)) = ra(op(x)) = r.(o@)(x) for all r € R and z € M. The

result is proved. O

Remark 10.6. Given an R-module M we extend the notation of Remark [9.13] and write
Endg (M) for the set of R-linear maps M — M. (Note that Endg(M) = L(M, M).) Again
by the subring test (the identity map is R-linear, Proposition m gives sums and additive
inverses, and Lemma m gives products) this is a ring.

Lemma 10.7. Suppose that ¢ : M — N is an R-linear map between R-modules. Then
®(0p) = On and ¢(—x) = —p(x) for all x € M.

Proof. This already follows from the fact that ¢ is a group homomorphism. O

An R-module N is a submodule of an R-module M if the map j: N -> M;x — xis a
well-defined R-linear map. We write N < M when N is a submodule of M.

Lemma 10.8 (Submodule test). Suppose that M is an R-module and & # N < M has
xr+ye N forall v,y € N, and r.x € N whenever x € N and r € R. Then addition on M
and scalar multiplication of R on M restrict to well-defined operations on N giving it the

structure of a submodule of M.

Proof. First, —1 € R and (—1).z = z for all x € M so that by the hypotheses, N is
non-empty and x —y € N whenever x,y € N. It follows that N with binary operation the
addition on M restricted to IV, is a subgroup of M by the subgroup test. The last hypothesis
ensures that scalar multiplication of R on M restricts to a well-defined function R x N — N
which a fortior: satisfies . Finally, the inclusion map is R-linear and the result
is proved. O

Remark 10.9. As with rings (see the comment immediately after Lemma, given a subset
satisfying the hypotheses of the above lemma, we make the common abuse of calling it a

submodule on the understanding that we are referring to the induced operations.
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Example 10.10. Given an R-module M, the zero R-module {0y} and M itself are sub-
modules of M. In this way modules are more like ideals (Example than subrings (see
Example [3.10). This foreshadows the fact in Example [10.14] that ideals can be viewed as

submodules.

Given an R-linear map ¢ : M — N, its kernel is its kernel as a homomorphism of

groups.

Proposition 10.11. Suppose that ¢ : M — N is R-linear. Then ker ¢ is a submodule of
M and Im ¢ is a submodule of N.

Proof. Both are subgroups of the relevant groups by the corresponding result for groups, so
by the submodule test it is enough to note that if z € ker ¢ then Oy = .0y = r.¢(x) = ¢(r.2)
and so r.x € ker¢, and if € Im¢ then there is y € M such that z = ¢(y) and so

r.ax=r.g(y) = o(ry) e Imae. O

Remark 10.12. /\N'While kernels of ring homomorphisms need not be subrings, kernels of

module linear maps are submodules.

Proposition [2.11| showed how ring homomorphisms from fields give rise to vector space
structure. This is a special case of the fact that ring homomorphisms from commutative

rings give rise to module structure.

Proposition 10.13. Suppose that ¢ : R — S is a ring homomorphism from a commutative
ring R. Then the map R x S — S;(r,v) — r.v := ¢(r)v gives the additive group of S the
structure of an R-module such that right multiplication on S is R-linear and if ¢ maps into

the centre of S then left multiplication is R-linear too.

Proof. [(M1)|follows since ¢(1x) = 1s; since ¢(r1") = ¢(r)p(r’) and multiplication in S
is associative; since both ¢ and multiplication on the right in S are additive homomor-
phisms; andsinee multiplication on the left in S is an additive homomorphism. Linear-
ity of right multiplication follows since multiplication on the right in S is an additive homo-
morphism, and multiplication in S is associative (so (r.z)y = (¢(r)z)y = ¢(r)(xy) = r.(zy)).
Finally, left multiplication in S is an additive homomorphism, and if ¢ maps into the cen-
tre of S then z(r.y) = z(o(r)y) = (zo(r))y = (p(r)x)y = ¢(r)(xy) = r.(xy) so that left
multiplication is R-linear. O

We say that the ring multiplication in S above is bilinear if multiplication on the left

and right is linear.

Example 10.14. Suppose that R is a commutative ring. Then R is an R-module by the
above proposition applied to the identity map. Furthermore, every submodule of this R-

module is an ideal in R, and conversely by the submodule test every ideal is a submodule.
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AMany of the familiar rings (.e.g Z, F,, Q, and R) only have one ring homomorphism
from the ring to itself, so that there is a unique way that Proposition [10.13| can be used to
give R the structure of an R-module in these cases. However, caution is warranted because
more generally there may be many. (See Exercise [[IL1])

Example 10.15. Suppose that R is a commutative ring and ¢ : R — S is a ring homo-
morphism with A € S commuting with all elements of the image of ¢. Then (by Proposition
there is an evaluation homomorphism R[X] — R[A], and the above proposition gives
the ring R[A] the structure of an R[X]-module such that multiplication is bilinear. When
¢ is clear we shall speak of the R[X]-module R[A].

A\ Given a field F and a matrix A e M, (F) there are two F[X]-modules naturally
associated with A: the first is the F[X]-module arising by the construction in Example
applied to the linear map F" — F"; v — vA. The second, recalling the conventional meaning
of F[A] from Example [£.28] is the F[X]-module F[A] defined in the present example.

That being said, F[A] is itself an F-vector space and the map A : F[A] — F[A]; p(A) —
Ap(A) is a well-defined F-linear map. The F[X]-module F[A] defined in this example is the
same as the vector-space-with-endomorphism module defined by A on the F-vector space
F[A] by Example [4.28|

Isomorphisms of modules
We say that ¢ : M — N is an R-linear isomorphism if it is an R-linear bijection.

Lemma 10.16. Suppose that ¢ : M — N is an R-linear isomorphism. Then ¢~ is R-

linear, and hence an R-linear isomorphism.

Proof. ¢~ is a group homomorphism since ¢ is a bijective group homomorphism. Hence it

is enough to show that: ¢! (r.z) = ¢~ (r.o(¢~(z))) = ¢~ P(r.9o () = r.¢o~!(x) for all
x € M and r € R by the R-linearity of ¢ and the fact that ¢! is a left and right inverse for

P. O
We write M =~ N if there is an R-linear isomorphism M — N.
Proposition 10.17. = s an equivalence relation.

Proof. The identity map on an R-module is an R-linear isomorphism so = is reflexive. =~
is symmetric in view of Lemma [10.16, Finally, =~ is transitive since the composition of

bijections is a bijection, and composition of R-linear maps is R-linear — this is Lemma
10,0l ]

Remark 10.18. /\Note that there are rings which also have a module structure that are

isomorphic as modules but not as rings (see Exercises and and vice-versa (see

Exercises [I11.3| and .
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Quotient modules and the First Isomorphism Theorem

Proposition 10.19 (Quotient modules). Suppose that M is an R-module and N is a sub-
module of M. Then the commutative group M/N may be endowed with the structure of an
R-module such that g : M — M/N;x — x + N is an R-linear surjection.

Proof. Since N is a commutative subgroup of M we have that M /N is a commutative
group and the map ¢ is a homomorphism by definition of the quotient group construction.
Write . for the scalar multiplication on M and define a map = : R x M/N — M/N by
r~q(x) := q(r.x) for all r € R and z € M. This is well-defined, first since ¢ is surjective
so that for every W € M/N has W = ¢(z) for some x; and since if ¢(x) = ¢(y) so that
x4+ N =y+ N, then x —y € N and hence r.(x —y) € N and so r.x + N = ry + N i.e.
a(rz) = q(ry).

follows since 17 ¢(x) = ¢(1l.x) = g(x) for all x € M by for .. follows

~

since 7 (s7q(x)) = r7q(s.x) = q(r.(s.x)) = q((rs).x) = (rs)~q(x) for all r,s € R and x € M

by [(M2)| for .. [(M3)| follows since ¢ is a homomorphism so (r + s) = q(z) = q((r + s).x) =
q(rx+s.x) =q(ro)+q(s.x) =r7q(x)+s-q(x) for all r, s € R and « € M by |[(M3)| Finally,
follows since ¢ is a homomorphism so 7~ (¢(x) + q(y)) =~ q(z + y) = q(r.(z + y)) =

q(r.x +ry) =q(ro) +q(ry) =r-qlx) +r-q(y) for all r € R and x,y € M by |(M4)
Finally, it remains to note that ¢ is R-linear by definition and the result is proved. [

Example 10.20 (Example , continued). Suppose that R is a commutative ring and
I is an ideal in R. Then I is a submodule of R (as noted in Example and hence
R/I is an R-module. Of course R/I is also a ring and Proposition applied to the
quotient map endows R/I with the same module structure as the aforementioned one and
additionally gives that the multiplication on the ring R/I is bilinear. Put another way, the

ring structure and module structure on R/ are ‘compatible’.

Theorem 10.21 (First Isomorphism Theorem). Suppose that ¢ : M — N is an R-linear
map between R-modules M and N. Then ker ¢ is a submodule of M; Im ¢ is a submodule
of N; and the map

& M/ker ¢ — N;x + ker ¢ — ¢(x)

s an injective R-linear map with image Im ¢.

Proof. The first two conclusions are in Proposition [10.11] By Proposition [10.19] M / ker ¢ is
an R-module. The map is injective and well-defined since x+ker ¢ = y+ker ¢ iff t—y € ker ¢
iff o(z —y) = 01iff ¢(z) = ¢(y). It is a homomorphism by the First Isomorphism Theorem

for groups and so it remains to check that

~ ~

o(r.(z + ker ¢)) = ((r.z) + ker ¢) = ¢(r.z) = r.¢(z) = r.d(z + ker ¢).

The result is proved. O
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Example 10.22. The First Isomorphism Theorem applied to the R-linear map M —
M; x — x gives the isomorphism M /{0} =~ M; c.f. Example [5.23

11 Direct sums of modules

One may of generating new modules from old is through direct sums.

Proposition 11.1. Suppose that R is a commutative ring and (M;)c; is a family of R
modules. Then the direct sum is the set (. ; M;, of families (;)ie; with x; € M; for all

i€ I, and x; = 0y, for all but finitely many i € I, endowed with the structure of an R-module

iel
with addition and scalar multiplication defined by
r+y = (i + Yi)ier and r.x = (r.x;)ies for all x,y € @ M, and r € R.
iel
The zero of this module is (O, )ier, the additive inverse of (z;)ier i (—x;)icr. The embeddings
L+ My — P M; where 1j(z); = E fi=3

iel Oa,  otherwise
are R-linear.

Proof. The direct sum of commutative groups is a commutative group with the given identity
and additive inverse. Moreover, follow for the scalar multiplication on @), ; M;,
from the corresponding axioms coordinate-wise on the M;s. The linearity of the embeddings

follows since 7.057, = Oy, for all € R and 0y, + 0py, = Opy, for all 2 e 1. ]

Remark 11.2. If I = & then @,_; M, is the zero module. If M, ..., M, are modules then
we write M, @®- - - @ M,, for (—Die{l n} M;, and finally M™ for the direct sum of M with itself

.....

n-times.
AAlthough the direct sum M; @ --- @ M,, appears to have an order, its definition only
depends on the set {1,...,n}, not on an order of the elements of that set.

Remark 11.3. Given a commutative ring R we write @,; R for the R-module that is the
direct sum of I copies of the R-module R (an R-module as in Example [10.14)).

Example 11.4 (Baer-Specker group). The set ZMo — that is the set of functions f : Ny — Z
— has the structure of a ring (it is the direct product of Ny copies of the integers Z as
described in Proposition . By Proposition there is a unique homomorphism Z —
ZNo and this gives ZYo the structure of a Z-module by Proposition . Concretely we
have (f + g)(z) = f(z) + g(x) and (X.f)(x) = Af(z) for all x € Ny.

/N The module ZMo is uncountable, but @ieNO 7, — the direct sum of Ny copies of Z — is

countable so these modules are not isomorphic.
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Remark 11.5. There are a few expected relationships between direct sums: If (Af;);ey, is a

family of R-modules for each ¢ € I then the map

D M->D (@ Mj)§x = ((z))jer, )ier

JEl lier Ji el \JjeJ;

is a well-defined R-linear isomorphism. w here denotes disjoint union; we assume the J;s
are disjoint for distinct is.

Furthermore, if (M;);e; and (N;); are families of R-modules with R-linear maps ¢; :
M; — N;. Then the map

¢ C_DMZ - @Ni§x g (Cbz(l"z))zel (11-1)
el el
is R-linear; if ¢; is an injection for all ¢ € I then ¢ is an injection; if ¢; is a surjection for all
1 € I then ¢ is a surjection.

Given elements (z;);c; of an R-module M we write
<xi:iel>::ﬂ{N:N<MandxieNforallie]}

which is a submodule of M by the submodule test c.f. (5.1)). We call {x; : i € I) the module
generated by (z;)e;.

Remark 11.6. /\Note that if M is also a ring then {x; : 1 € I') is ambiguous: it could mean
the ideal or module generated by these elements. Although in some important cases these
are the same (for example when M is the R-module R of Example|10.14]), on other occasions

the meaning has to be determined from context.

Example 11.7. Suppose that V' is an F-vector space and (x;);c; are elements in V. Then

{x; : 1 € I is the span of the vectors in the family (z;);.

Remark 11.8. Suppose M is an R-module and x1,...,x, € M. Then

Xy, ooy xpyi={x;ie{l,...,n})= {Zri.xi:rl,...,rneR”}
i=1

since by the submodule test the right hand side is a module and so the middle is contained
in it. On the other hand since (z; : i € {1,...,n}) contains x1,...,x, it contains all sums
in the set on the right. It may be helpful to compare with Remark in view of Example
1014

An R-module M is said to be finitely generated if it is generated by (z;);c; for some
finite set I.

There are many examples of finitely generated modules.
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Example 11.9. A finite dimensional vector space has a finite spanning set and so is finitely

generated as a module over its field.

Example 11.10. Suppose that V is a vector space over F and T : V — V is F-linear with
V having the endomorphism module structure as Example [0.12] If V' is finite dimensional
as a vector space over F, then V is finitely generated as an F[X]-module: F is a subring of
F[X] in such a way that if A € F and v € V then A\.v in the scalar multiplication of the vector
space V' is the same as A.v in the scalar multiplication in the F[X]-module. It follows that
any generating set for V' as an F-space is also a generating set for V' as an F[X]-module.
/N\The converse does not hold: if V = F[X] as a vector space and T : V — V; f(X) —
X f(X) then T is F-linear and V is generated by 1 as an F[X]-module but it is infinite

dimensional.

An R-module M is said to be cyclic if M is generated by one element.

Example 11.11 (Examples [10.14] & [10.20} continued). Suppose that R is a commutative

ring and [ is an ideal in R, and R (resp. I) as an R-module (resp. submodule) in the same
way as in Examples [10.14| & [10.20f Then R/I is cyclic, generated by 1 + 1.

Suppose that M is an R-module and x € M and r € R. Then we put
Anng(x):={re R:ra =0y} and r.M :={r.z: z e M}.
We call Anng(z) the annihilator of z.
Proposition 11.12. Suppose that R is a commutative ring and M is an R-module. Then

(i) for x € M, Anng(z) is an ideal in R, and if M is generated by x then there is an
R-linear isomorphism R/ Anng(z) — M taking 1 + Anng(z) to x;

(ii) for r € R, r.M is a submodule of M, and if ¢ : M — N 1is an isomorphism then

é:r.M — r.N;ra— r.¢(x) is a well-defined isomorphism.

Proof. That Anng(z) is an ideal of R is a short check from the axioms (using that R is
commutative). Moreover, by the First Isomorphism Theorem for modules (Theorem [10.21))

applied to the R-linear map R — M;r — r.x (where we treat R as an R-module as in

Example [10.14)), the map
R/ Anng(z) — {z);r + Anng(x) — r.x

is a well-defined R-linear isomorphism.
The map M — M;z — r.z is R-linear (using that R is commutative), and so by
Proposition |10.11]its image, .M, is an R-module. Moreover, the given map ¢ is well-defined
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since if .z = r.2’ then r.¢(z) = ¢(r.z) = ¢(r.2") = r.¢(2'); conversely if r.¢(z) = r.¢(z’) then
r.z = r.z' since ¢ is an injection, so & is an injection. The map is a surjection since ¢ is a

surjection, and it is linear since

dlrz+rz)=o(r(z+2) =ro(z+2") =rd(z) + r.o(2) = o(r.z) + ¢(r.2")

and (again using commutativity of R)

d(y.(rz)) = d((yr).2) = d((zy).2) = o(r.(y.2))
=rp(y.2) = r.(y.6(2)) = (zy).6(2) = (y2).0(2) = y.(r.6(2)) = y.6(r.2).

The result is proved. [

Remark 11.13. The above result is one of the places where we use commutativity of our
rings of interest. If they are not then the map M — M;x — r.x need not be R-linear,
and Anng(x) will only be a ‘one-sided’ ideal, meaning that it will only be closed under
multiplication by elements of the ring on one side c.f. footnote[24 Many results still follow,
but more care is needed, and for some questions attention is restricted to duo rings, that

is not-necessarily-commutative rings in which every one-sided ideal is two-sided.

In view of Proposition and the fact that fields only have two ideals (as shown in
Example , we see that the only cyclic modules over a field are the zero module and
the field itself. It follows that for vector spaces the only direct sums of cyclic modules are
direct sums of copies of of the field. Moreover, two direct sums of copies of the field are
isomorphic if and only if their indexing sets are the same cardinality.@ In modules there are
some less obvious isomorphisms between direct sums of cyclic modules which are captured

by the following result.

Theorem 11.14 (Chinese Remainder Theorem). Suppose that R is a commutative ring and
I, ..., Iy are ideals in R such that I; + I, = R for all i # j. Then the map

¢3R—> (R/[1><—D(—B(R/Ik>,7"—>(7“+[1,,7"+[k)
15 a surjective R-linear map with kernel Iy n -+ N 1.

Proof. The quotient maps ¢; : R — R/I; are R-linear and so are the embeddings ¢, : R/I; —
(R/I))®---®(R/I}) and hence ¢ = 110q; +- - - +150qy is R-linear. The kernel is Iy n--- " I;

proving the map is surjective is the rub.

32This is the so called Dimension Theorem for vector spaces which has been seen for finite direct sums
in Prelims. The finite case is sufficient for our understanding but a general proof may be found, for example,
in [Lan02, Theorem 5.2,Chapter III].
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Fix j and note that since I; + I; = R for all ¢ # j there are elements z; € I; and w; € I;

with z; + w; = 1. It follows that

1= (1— I1 (1—21-)) + (H wi> = > (D e+ (]_[ wz-) 7

iitg iitj G~Sc{iits} seS

and so if we set y; = Hi:#j w; then y; € I, for all 7 # j and 1 —y; € I;. Thus for
uwe (R/I)®- - @ (R/I)) we have

¢(u1y1+"'+ukyk) = (u1y1+ll,...,ukyk+]k) = (u1+]1,...,uk+fk)

and the map is surjective as required. O]

Remark 11.15. The history of this theorem is involved [She88], but the starting point is
work of Sun Zi (f4F) from around 400AD who gave an application of a method for solving

given simultaneous congruences.

This has the following immediate and more familiar corollary.

Corollary 11.16. Suppose that my,...,my are pairwise coprime natural numbers and

aiy,...,ar are integers. Then there is x € Z such that x = a; (mod m;) for all 1 <i < k.

Proof. Take R = 7Z and I; := (m;). By Bezout’s Lemma (Theorem (miy +{m;y = Z
for @ # j since m; and m; are coprime, and so by Theorem there is some z € Z such
that z = a; (mod m;) for all 1 <i < k. O

Example 11.17. Since 2 and 3 are coprime in Z and {(2) n{3) = (6), the First Isomorphism
Theorem for modules (Theorem [10.21]) applied to the homomorphism from the Chinese
Remainder Theorem (Theorem [11.14)) gives a Z-module isomorphism Zg = Zy @ Zs.

The above example seems to call into question the possibility of an analogue of the Di-
mension Theorem for direct sums of cyclic modules, as it produces an isomorphism between
different numbers of non-zero cyclic modules. Despite this there is a way to recover a result

as follows.

Theorem 11.18 (Uniqueness Theorem). Suppose that R is a commutative ring, M is an
R-module, and I, c --- < I, and J; < --- < J,, are proper ideals such that M =~ (R/I;) ®
@ (R/L,) and M = (R/J1)® - ® (R/Jn). Thenn =m and Ji, = I}, for all 1 <k < n.

Remark 11.19. /\Note that we need the ideals to be proper: if I = R then R/I is the zero

module as an R-module, and if Z is a zero module then Z" =~ Z™ for all n,m € N,.

We begin with a result which essentially bootstraps the Dimension Theorem for finite

dimensional vector spaces.
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Lemma 11.20. Suppose that R is a commutative ring, and I, < --- < I,, are proper ideals.
Then (R/I,) ®---@® (R/1,) is generated by a set of size n and by no smaller set.

Proof. Surjective R-linear maps take generating sets to generating sets. The R-module R"

has a generating set of size n and so the R-linear surjection
R'— (R/L) @@ (R/In);r = (ri+ Loy + 1)

ensures the first part of the lemma. For the second, by Theorem there is a maximal

ideal J o I,, and hence J D [ for all 1 < k < n. The R-linear surjection
(R/I)®---®(R/L,) — (R/J)";(x1 + In,...,xp+ L) > (x1+ J, .oz + J)

is therefore well-defined, and ensures that if (R/I;) @ --- @ (R/I,) has a generating set of
size t then so does (R/J)" as an R-module. Let (M. .. x® be a generating set for (R/J)"

as an R-module, and note that for every x € (R/J)" there are elements 7,...,7, € R such
that
( +7“ta:§),.. ) + 4 rea®)
:((Tl—i_‘])xl : +(7”t+=])x1 e (Tl‘i‘(])x;(@l (Tt+<]) )
= (ry + J)a® + 4 (ry+ )@

where the scalar multiplication in the last line is that arising from uncurrying the natural
map R/J — Hom((R/J)",(R/J)"), which is a homomorphism by the First Isomorphism
Theorem for rings (Theorem applied to the curried scalar multiplication of R on
(R/J)™ — the latter is a ring homomorphism R — Hom((R/J)", (R/J)") with kernel J.
Proposition ensures that R/J is a field and so (R/J)™ is a vector space over R/J
and the above calculation shows that (. ... z(® is a spanning set for (R/J)" as an (R/.J)-
module i.e. as a vector space over R/J. Since (R/J)" is an n-dimensional vector space

over R/J any spanning set has size at least n i.e. t = n. O]

Proof of Theorem[11.18 By Lemma [11.20| we have n = m. For z € R (using Proposition
11.12 so that .M is a module) we shall show that for 1 <k <n

I, = {x € R: x.M has a generating set with strictly fewer than k elements},

from which the result follows without loss of generality. Write K} for the set on the right.
Suppose that z € R. R/} is an R-module and z.(R/I}) = {(x+ I}), and so by Proposition
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Now Anng(z + I) = {re R:r(x+ I;) = I} = {r : rz € I}, so x ¢ I if and only if
Anng(x+1}) is proper@; and Anng(x+1,) € --- < Anng(z+1,) since the I < --- < ;.. Let
0 < j(x) < n be maximal such that = ¢ I;,) (with j(z) = 0 if z € ;) then by Proposition
e M=z.(R/L)® - ®(R/I,))
~ . (R/L)®---@x.(R/I,) Dbym
(R/Anng(x + 1))@ @ (R/Anng(z + I,,)) Anng (o + Ix) not proper

~ (R/Amng(z + 1)) @ - - ® (R/ Anng(x + I;())) D

with the convention that this is the zero module if j(x) = 0 since then the sum is empty.
By Lemma [11.20] we conclude that if x ¢ I, then j(z) > k and so .M is not generated
by strictly fewer than j(z) (and hence k) elements and so x ¢ Kj. On the other hand if

D by definition

lle

= R/Anng(z + I)) =~ {0}

x € Ij, then j(x) < k and so z.M is generated by at most j(x) (i.e. strictly fewer than k)

elements and so x € K. The result is proved. O]

Remark 11.21. There remains the question of whether or not a module has a decomposition
of the type described in Theorem [T1.18] We shall show that if R is a PID then every finitely
generated R-module can be decomposed into cyclic modules in this way. Commutative rings
with this property are called FGCF-rings and are characterised in [SW74]. However, there
remain open questions in this area, if we do not require the nesting of the ideals or if we
allow non-commutative rings like duo rings from Remark e.g. [=000, Problem 2.45].

Theorem 11.22. Suppose that R is a PID and M 1is a finitely generated R-module. Then

there is n € Ny and proper ideals I; < --- < I,, such that
M= (R/L)® - -®(R/I,)
with the convention that this is the zero module if the sum is empty i.e. if n = 0.

To prove this we need the following lemma to let us change variables.

Lemma 11.23. Suppose that R is a PID with elements ay, . ..,a,,h € R, and{ay, ... ,a,) =
(hy, and M is an R-module with elements xi,...,x, € M. Then there are elements

Yty -y Yn € M with {y1, ..., Yny = &1, ..., Tpy such that h.y, = a;.x1 + -+ + ap.Ty.

Proof. 1If h = 0 then aq,...,a, = 0 and the result is trivial with y; = z; for 1 <7 < n, so
we may assume h € R*.
We proceed by induction on n; n = 1 is immediate since a; ~ h in that case, so there

is a u € U(R) such that a; = hu and we can take y; := w.z;. For n > 1 let i/ be a

33If x € Ij, then ra € Iy, for all r € R since I}, is an ideal, and hence Anng(z + I,) = R. Conversely, if
Anng(x + I) = R then 1(z + I};) = I, and so z € I}.
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generator of {ay,...,a,_1). By the inductive hypothesis we may take y,...,y,_2,y* ; such
that (y1, ..o Yn—o, i) =<{21,...,xp_1yand K.y* | = ay.xy + - + Qp1.Tp1.

Let a, f € R be such that b’ = ah and a,, = fh. Since (h) = (I a, ) there are elements
v,0 € R such that h = 0h' + ~ya, and so ad + 5y = 1 by cancellation (since h € R*).
Now put y,—1 := v.y:_, — 0.2, and y,, := a.y* | + f.x,. Then z, = —a.y,—1 + 7.y, and
Yr_ 1 = BYn—1 + 0.y, and so

<y15 s 7yn> = <y17 ceey Yn—2, y;:—la l‘n> = <'T17 e axn>'
Finally, h.y, = 'y | + ay.x, = a;.x1 + - -+ + a,.7, and the result is proved. O

Proof of Theorem |11.22. We proceed inductively to show that there are elements z1, ..., z,
generating M such that

M = (R/Anng(z)) @ - - @ (R/ Anng(z,)) and Anng(z;) < --- < Anng(z,).

Since R is a PID, it is a UFD by Theorem and in particular this means for every
x € R* there iﬁ a unique N(z) € Ny such that & ~ x1---xy(, for irreducible elements
T1,...,TN()- We declare N(0g) = o0 and note if = | y then N(x) < N(y) with equality if
and only if z ~ y.

Since M is finitely generated there is a minimal n € Ny such that M is generated by a
set of size n. Let xy,...,x, be a set of generators in which Anng(x,,) is generated by an
element r,, (possibly Og) with N(r,) minimal out of all possible sets of generators of size n.
Note that Anng(x,) is proper since otherwise z, ..., z,_; would generate M contradicting
the minimality of n.

Let M' :={x1,...,2,_1) and consider the map
U M@,y — M;(z,y) — z+y.
This is an R-linear surjection; the key fact, however, is the following.

Claim. V¥ is an injection i.e. ker ¥ = {0}.

Proof. Suppose that z+y = 0 for some x € M" and y € {(x,,) so that z = a1.x1+- - -+a,_1.2,_1
and y = a,.z, for some a,...,a, € R. Let a} be such that {a}) = {a,,r.); o, € R be

such that a} = «aa, + pr,; and h be such that {aa,...,aa, 1,a’) = (h). Apply Lemma
11.23[to get y1,...,yn € M with (y1, ...,y ={x1,...,2,) = M and
hy, = (aay).xy + - + (Q@p_1).Tp_1 + a).Tp
=a.(a.xy + + anxy) + (Br). 20 = a(x + y) + B.(rp.2,) = .0+ 5.0 = 0.

Now h | a¥ | r, and so by minimality of r, we have h ~ r,, and hence a} ~ r,. But then

r, | a, and a,.z, = 0 as required. ]

34Tt may be of interest to (re-)visit Remark [7.32

Page 55



Finally, by the inductive hypothesis there are elements z1, ..., z,_1 generating M’ such
that M’ =~ (R/Anng(z)) @ --- @ (R/Anng(z,-1)) with Anng(z1) < -+ < Anng(z,-1).
Set z, := =z, and since {(x,) =~ R/Anng(z,) the result is proved if we can show that
Anng(z,-1) € Anng(z,).

To see this last claim, suppose that r € Anng(z,_1) and let h be such that (h) = {r,r,).
Apply Lemma to get y1,...,yn with (y1,...,yn) = {(z1,...,2,) = M and h.y, =
rZpn—1+ rn.2zpn = 0. But A | 7, and so by minimality of the number of irreducible factors of

r, we have h ~ r, and hence r,, | 7 i.e. 1€ {r,) = Anng(z,). O

12 The structure theorem for finitely generated mod-

ules over PIDs and applications

With the work of the last section we can now formulate the structure theorem.

Theorem 12.1 (Structure Theorem, Invariant Factor Form). Suppose that R is a PID and
M s a finitely generated R-module. Then there is a (possibly empty) sequence a, | --- | a;
of elementd™ of R with a, * 1 such that

M = (Rf(a)) @ -~ @ (R/{ar))
and the sequence (a;)_, is unique up to associates.

Proof. The existence of this isomorphism follows from Theorem and the fact that
ideals in a PID are generated by a single element. The divisibility relation between the
elements is exactly the nesting of the ideals; the fact that a, # 1 is the fact that all the
ideals are proper.

The uniqueness now follows from Theorem and the definition of association. [

Theorem 12.2 (Structure Theorem, Primary Form). Suppose that R is a PID and M is a
finitely generated R-module. Then there are some s,t € Ny, irreducible elements py,...,ps €
R, and eq,...,e; € N*, such that

M =R ®(R/pS))® - @ (R/Ip)).

Proof. We being with some preliminaries about gathering associates in UFDs [ Since R is
a PID, it is a UFD (by Theorem [7.21)) and if a € R* there is some r € Ny and irreducible

elements x4, ..., x, such that a ~ x1---x,. By Proposition ~ is an equivalence relation;

35As usual 0 | 0 and so this sequence may end in a series of 0s.
36The idea here is just to group prime factors together, for example in Z instead of writing things like

540 = 2 x 3 x 5 x 2 x 3 x 3 we will write 540 = 22 x 33 x 5.
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let P be the partition of the (multi-)set {z1,...,z,} induced by ~. Let qi,...,q be one
element from each equivalence class and let cy, ..., ¢, € N* be the size of the corresponding
class. Then for every 1 < ¢ < r there is a unique j such that x; ~ ¢;, and Hi:quj T~ q]?j
since (again part of Proposition ~ respects multiplication (meaning zy ~ 2’y if © ~ 2
and y ~ y'). It follows that a ~ ¢i* - - - ¢;*, and ¢; # g; for ¢ # j.

The ideal {q;") + <qjc-j> is generated by some h € R (since R is a PID) and h | ¢;* and
h | qjc.j. If p is a prime factor of h then p ~ ¢; and p ~ ¢; since R is a UFD, and by
transitivity of ~ we have ¢; ~ ¢; meaning ¢ = j. Thus, if ¢ # j then h has no prime factors

and hence b ~ 1 i.e. (¢") + (q;’) = (1). It follows from the Chinese Remainder Theorem
(Theorem that
Rfa) = (Rf(1")) @ @ (R/{q")) (12.1)
as R-modules for irreducibles ¢, ..., ¢ and naturals ¢q,...,¢ € N*.
Finally, apply Theorem to M to get ay,...,a, € R such that M = (R/{a;)) ®
@ (R/{a,)). If a; = Og then R/{a;) = R as an R-module (Example [10.22); if a; # Op
then we have an isomorphism of the form (12.1). Combining these isomorphisms using

commutativity of the direct sum (see Remark [11.2) and ([11.1) we have the result. O

Remark 12.3. There is a uniqueness statement for the primary form of the structure theorem
but we do not pursue that here. What is important about the Primary Form as compare
with the Invariant Factor Form is that the building blocks in the former cannot be further

decomposed.

We have a couple of important corollaries.

Theorem 12.4 (Structure Theorem for finitely generated commutative groups). Suppose
that G is a finitely generated commutative group. Then there are unique (non-zero) natural
numbers 1 # d, | d._1 | --- | di and s € Ny such that

G =~ ZS@Zdl @@Zdr
Proof. G is a Z-module, so we may apply the Invariant Factor Form of Theorem to get

the desired structure, writing Z* for the s copies of Z/{0) in the given decomposition. Then
uniqueness follows from the fact that U(Z) = {—1, 1} since we have restricted the d;s to be

naturals. u

Theorem 12.5 (Jordan Normal Form). Suppose that V' is a finite-dimensional vector space
over C and T : V — V is linear. Then there is a basis for V such that the matriz for T in

this basis s

J()\lﬁ nl) OTL1 Xno e Onl XNt
0n2 X1y ' ' :
‘ : Ont—l XMt
Ont X 1M1 T Ontxnt,l J<>\t7 nt)
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where Oy 1S the all zeros matriz in M, ,(C), and J(\,n) is the n x n matriz, called a

Jordan block,

A0 0

1 A

0

: . A0

0o --- 0 1
The scalars A1, ..., X\ are all the eigenvalues of T'.

Proof. We regard V as a C[X]-module in the way described in Example[9.12] Since C is a
subring of C[X] and V is finite dimensional as a C-vector space, the module V is finitely
generated by Example [11.10

Since C[X] is a PID we may apply the Structure Theorem (Primary Form, Theorem
to V. We get s,t € Ny, irreducible polynomials py, . .., p; € C[X], and natural numbers

ni,...,n; € N* such that

¢V — (CIX])" @ (C[X]/p)) @ - -- @ (CIX]/p))

is a C[X]-linear bijection. In particular, ¢ is a C-linear bijection but V' is finite-dimensional
and C[X] is infinite dimensional so s = 0. The irreducible polynomials in C[X] are all
degree 1 (see Remark [8.2) thus there are Ay, ..., \; € C such that (p}*) = {(X — \;)™); write
M; := C[X]/{(X — \)™). For each 1 <i <t let (e;;)j; be such that

QZS(GZ‘J') = (OM17~ .. 70Mi—17 (X — /\i)j_l +<(X — )\i>ni>70Mi+1a A 70Mt)-

Then ¢(e11), ..., ¢(€1n,), 0(e21), ... d(€i—1m, 1) Pler1),- .-, d(ern,) is a basis for the C-
vector space M7 @ --- @ M,; and since ¢ is a C-linear isomorphism, the sequence of vectors
€11y s Cliys €215+ Ctlms 15Ctly---,Etn (Ordered in this way) is a basis for V' as a vector
space over C.

The map ¢ is C[X]-linear so

o(Tews) = o(Xoer) = Xoblers) — Pleijra) + Nidle;) ifj<my

B §Z5(€Z‘7j+1 + Ai-ei,j) lf] < n;
P(Ai-ei5) if j=ni

Since ¢ is a C-linear bijection we conclude that T has the required form.
For the last part, certainly the \;s are eigenvalues of T since J(\,n)(0,...,0,1)" =
A(0,...,0,1)". On the other hand (J(A,n) — AI)™ = 0 and so the minimal polynomial for T

divides (X — Ay)™ -+ (X — A\)™ and hence all the roots of the minimal polynomial are in
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the set {\1,...,\;}. Finally, every eigenvalue of T is a root of the minimal polynomial and

so the claim is proved. O

Remark 12.6. /NThe ;s in the theorem need not be distinct.

The fact that C is algebraically closed i.e. every polynomial with coefficients in C has
a root in C is vital to the Jordan normal form (and we used this fact when we appealed to

Remark , but there is another simple form available more generally.

Theorem 12.7 (Rational Canonical Form). Suppose that V is a finite-dimensional vector
space over F and T : V' — V is linear and not identically 0. Then there are monic polyno-
maals f1 | -+ | fr of degree ny, ..., n, respectively and with fi non-constant, and a basis for
V' such that the matriz for T in this basis is

C(fl) On1><7L2 o Om X Ty
0n2><n1 - ' :

OTL,,«,l XNy

Omnxnl T Onrxnrq C(fT)

where Oy is the all zeros matriz in M, ,,(F), and C(f) if¥"| the n x n matriz, called the

companion matriz, for the monic f(X) = X" +a, 1 X" '+ + a1 X + ay,

0 -« - 0 —ag
1 . S
0

0 —an_9
O -~ 0 1 —ap,_1

The minimal polynomaial for T is f. and the characteristic polynomial is fy--- f,.

Proof. The argument is really the same as that for producing the Jordan Normal Form
except we apply the Invariant Factor Form of the Structure Theorem rather than the Primary
Form.

As before, we regard V' as an F[X]-module in the way described in Example . Since
F is a subring of F[X] and V is finite dimensional as an F-vector space, the module V' is
finitely generated by Example

Since F[X] is a PID we may apply the Structure Theorem (Invariant Factor Form,
Theorem . Then we get polynomials f; | --- | f. with f; # 1 and

¢V — (FIX]/[(f)) @ @ (F[X]/{f))

3TIf n = 1 then C(f) = (—ap).
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an F[ X ]-linear bijection. In particular, ¢ is an F-linear bijection but V' is finite-dimensional
and F[X]/(0) is infinite dimensional so f; € F[X]* for all 1 < ¢ < r. Thus we may put
n; := deg f; and may suppose that each f; is monic (since multiplying by a unit does not
change the ideal).

For 1 <7 <1 we write M; := F[X]/(f;) and let (e;;)j, be such that

gzﬁ(ei,j) = (OMU - ,OMi_l,inl + <fi>70M¢+17-~~7OMT)‘

Then ¢(e11),...,P(€1n,),0(€21)s---s0(€r—1m, 1), P(€r1)s ..., d(€rn,) is a basis for the F-
vector space M1 @ ---@® M, and since ¢ is an F-linear isomorphism, the sequence of vectors
€115+ €1n1s €21y -3 €rlmn 15Erls- -, Ern, (Ordered in this way) is a basis for V' as a vector
space over [F.

Write fi(X) = X™ + &E;)_lX”i_l + o+ agi)X + a(()i) for 1 <4 < r. Then since ¢ is

F[X]-linear we have

¢(€i,'+1) lfj <n;

—ay . p(ein) = —a, _.Pein,) ifj=mn;
_Joleigi) if j < n;

qﬁ(—a(()i).ei’l — = a,(fi)_l.ei,ni) if j=n;

Since ¢ is an F-linear bijection we conclude that T has the required form.
For the last part we first show that for a monic polynomial f the minimal polynomial of
C(f) is f where f € F[X]* has degree n: First, the characteristic polynomial of C(f) can

be computed using the Laplace expansion so

t o --- 0 ao
-1 T ay
det(tI —C(f))=det| o . . 0
: . .t A2
O -+ 0 -1 t4+a,_

= (=1)"Mapt’ (=)t 4+ (=) gt (D)
+ (=) apot" (=) + (=)t + an_ )" (1) = f(2).

By Cayley-Hamilton, C(f) satisfies f. Moreover, for 0 < r < n — 1 the first column of
C(f)" is (0,...,0,1,0,...,0)" where the 1 is in the (r + 1)st position, thus the matrices
I,C(f),...,C(f)™ ! are linearly independent over F and hence the degree of the minimal
polynomial is at least n; we conclude the minimal polynomial is f.

Since f; | f, for all 1 < i < r we see that f.(T") = 0. On the other hand T is conjugate
to a matrix containing C(f,) which we have seen has minimal polynomial f,. and hence f,

is the minimal polynomial of T
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The characteristic polynomial is invariant under change of basis, and hence the charac-
teristic polynomial of 7" is the product of the characteristic polynomials of the companion

matrices in the rational canonical form. It follows that it is [ [;_, f; as claimed. n

Remark 12.8. The Rational Canonical Form is also sometimes called the Frobenius Nor-

mal Form.

13 Bases and matrices; computing with modules

As with vector spaces, generation in modules has an allied concept of linear independence:
Suppose that M is an R-module and (z;);es is a family of elements of M. We say that (z;);cs

is linearly independent if whenever S < [ is finite and

Z Xe.Zs = Opy with s € R for all s € S,
seS

then Ay = Og for all s € S. We say that (z;),s is a basis for M if it is both linearly

independent and generating. An R-module M with a basis is said to be free.
Remark 13.1. In vector spaces this terminology coincides with existing terminology.

Remark 13.2. /\ Unlike vector space not every module is free: for example Zy does not
even have a non-empty independent set as a Z-module, despite being a finitely generated
module over a PID, though it does have a basis as a Zy-module.

In particular, while the Structure Theorem (say Theorem does afford us a nice
‘basis-like’ set of generators. In particular the module (R/{a1))®---@®(R/{a,)) is generated
by

(La/¢ars ORfcazys -+ ORscan)s - (Orjcarys -+ Orfca, 1y 1RjGar))

but in general this is not a basis.

Lemma 13.3. Suppose that M is an R-module and (z;)ir is a family of elements of M.
R — M such that V(e;) = x; for alli e I
R has 1g in the position indexed by i and Og elsewhereﬂ

Then there is a unique R-linear map ¥ : P
where e; € @

Moreover, (x;)ier is linearly independent if and only if W is injective; it is generating if

el

el

and only if U is surjective; so it is a basis if and only if VU is bijective.

38 Assuming the Axiom of Choice, every vector space has a basis [Lan02, Theorem 5.1, Chapter I11]. (There
are different types of basis in different areas of mathematics, for example a Schauder basis is a type of basis
suitable for Banach spaces but Schauder bases are not in general bases in the sense we use here. When
necessary, the type of basis we are interested in here is disambiguated by calling it a Hammel basis.) It
turns out that the use of the Axiom of Choice is unavoidable in the strong sense that if every vector space

is assumed to have a basis then (in ZF) the Axiom of Choice follows [Bla84, Theorem 1].
39We are allowing infinite and unordered indexing sets I, but in the special case I = {1,...,n} then

e; = (Og,...,0Rr,1R,0g,...,0r) where the 1g is in the ith position.
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Proof. The map
v (—DR—> M:r — Z Ti.T;
iel i #0R
is well-defined since the sum on the right is finite by definition of the direct sum, and it
satisfies W(e;) = z; in view of [[M1)] To see that ¥ is a homomorphism note that that for

u,v € @, ; R we have

\Ij(u + U> = Zi:uﬂrvﬁéOR (ul + vz)xz

Ji={i:u; +v; #Or}
c K:={t:u; # 0g orv; # Or}

= Zi:ui;ﬁOR or v;#0R ('U/l + ,Ul)xl and ¥ e\ g (ui +v5).x; = O
- Zifuﬁ‘éoR or v;#0p Yi-Li T Ziiui#OR or v;#0g Vi-Ti \> Licu;=0p and v; 0 “i-2i = OM

= Zi:ui;&OR UL + Zi:’viioR Uiy = \II(U’) + \Ij<v)
Similarly for u e @,_; R and r € R we have

and 3.0, 20 and v;=0pg Vi-Ti = OM

iel

U(r.u) = Z (ru;).x; = Z (ru;).x; = Z . (u;.x;) =T.( Z u2x1> =7r.V(u)

iru; Z0R iu; Z0R iu; Z0R iu; Z0R

as required.

Finally, for uniqueness, given two such maps ¥ and ® the map I1 := U—® has II(e;) = 0y,
for all i € I. But if u € @,
M(u) = Zi:u#OR u;.11(e;) = 0y and so ¥ = & as required.

The ‘moreover’ part follows by unpacking the definitions. O

R then u = Zwl 40, Wi-€; and hence by linearity we have

Remark 13.4. In view of the above an R-module M is free if and only if M =~ @,_; R for

some indexing set .

Proposition 13.5. Suppose that R is a non-trivial commutative ring and M is an R-module

with a basis of size n. Then any generating set has size at least n.

Proof. In view of Remark M =~ R™. Now apply Lemma [11.20| with all the ideals equal

to {0} (which are proper since R is non-trivial). O

Remark 13.6. This proposition implies that if R is a non-trivial commutative ring then any
two bases of the R-module M have the same size. Thus, in this case if M has a finite basis

of size n we say M has rank n and this is well-defined.

Remark 13.7. /N An independent subset of a rank n module having size n need not be a
basis: {2} is an independent subset of the rank one module Z having size 1 but it is not
a basis for Z. On the other hand, it is true (in our setting of commutative rings) that a
generating subset of a rank n module having size n is a basis, though this takes some work
(see e.g. [Lam99, §1B]). Moreover, it is also true (again, in our setting of commutative rings)
that a free submodule of a rank n module must have rank at most n (see e.g. [Lam99,
§1D]).
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Matrices and Smith Normal Form

Finite bases are particularly important because they let us write linear maps as matrices.
Given a commutative ring R we write M, ,,(R) for the set of n x m matrices with values in
R, and M,(R) := M, ,(R). This notation generalises the matrix rings of Proposition [4.25]
Given R-modules M and N with bases X = (z;)7*, and Y = (y;)_, respectively there
is a bijection ® : L(M,N) — M, ,,(R) such that
Tx; = Z O(T);,.y; for all 1 <i < m. (13.1)
j=1
We call ®(T) the matrix of 7" with respect to the bases X and ). The inverse of this
map takes A € M, ,,(R) to the R-linear map

i=1 J=1 \i=1

which is well-defined since X is a basis for M.

Remark 13.8. The free module R" come with the so called standard bases &,, that is the
set of elements e; = (Og,...,0g, 1g,0g,...0g) with 1 in the ith position. We can give
M, m(R) the structure of an R-module by taking the R-module structure on L(R™, R")
(afforded by Proposition and using the bijection to above to bring it over to M, ,,,(R).
We shall not do this here, but the next proposition will do this for the ring structure on
Endg(R") = L(R", R").

Proposition 13.9. Suppose that R is a commutative ring. Then M, (R) is a ring with

A + B = (Ai,j + Bi,j)2j=1 and AB = <Z Ai,kBk,j> fO’f‘ A, B e Mn<R),
k=1

n
3,j=1

zero (Og)7;_1, multiplicative identity I where I;; = 1 for 1 <i<n and I;; = Og fori # j,
and —A = (=A; ;)= for Ae M,(R).

Proof. Let ® : Endgr(R™) — M,(R) be the bijection taking an R-linear map R" — R"
to its matrix w.r.t. to the standard basis &, on both the domain and the codomain, as in
(13.1). In Remark we saw that Endg(R") is a ring and the bijection ® then makes
M, (R) into a ring by putting A + B := ®(®~1(A) + 7(B)), AB := &(®d"1(A4) o d~(B)),
—A = d(—D71(A)), O,y = @ (Opndp(rn)) and Ly, (r) = P(lendnan)-

The remainder of the proposition is computing what these definitions yield. First, the

zero map of Endg(R"™) maps to the zero matrix and the multiplicative identity maps to the
matrix I described in the proposition just by considering (13.1)). Secondly, if A, B € M,,(R)
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then

and since (e;)}_, is a basis, matrix addition has the form described. Since additive inverses
are unique and we have seen that the zero of M, (R) is the all zeros matrix, this also gives
that —A has the described form. Finally for A and B again,

Y (AB)y.e, = ® 71 (AB)e; = (7' (A) 0 ©7(B))(es)

and the result is proved. O

Remark 13.10. It is perfectly reasonable to define matrix rings M, (R) when R is not com-
mutative using the identities in the above proposition. However, even for n = 1 they do not
necessarily arise as R-linear maps R — R because (as in Remark [11.13]) multiplication by

scalars need not be linear.

Remark 13.11. In particular the above provides a proof of Proposition [4.25]

Remark 13.12. The group of units of M,,(R) is denoted GL,,(R). In fact the usual formulae
for inverting matrices work with matrices over commutative rings with the modification that
rather than having the determinant non-zero we need it to be a unit. The determinant can

be defined in all the usual ways it was when considering the case when R is a field, and

We say that A, B € M, ,(R) are equivalent if there are matrices S € GL,(R) and
T € GL,,(R) such that A = SBT, and that an n x m matrix A is in Smith Normal Form
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if there are elements a; | az | -+ | Gmin{n,my such that A;; = a; for 1 <1 < min{n, m} and

A; j = O otherwise. Note the divisibility condition so that, for example,

5 0 0
1 0 0 25 0
0 —2 0 0 | and 0 0 100
0 0 O 0 0 0

0 0 0

are both in Smith Normal Form over Z, however neither of the matrices

1 00 300
0 20 |and | O 3 O
00 3 0 01

is in Smith Normal Form over Z, although they are both in Smith Normal Form over Q.

Theorem 13.13 (Smith Normal Form). Suppose that R is a PID and A € M, ,,(R). Then
A is equivalent to a matriz in Smith Normal Form. Moreover, the entries of this matrix are

unique up to association.

Remark 13.14. We shall not prove this, but rather we shall give an algorithm for how to find
the equivalent Smith Normal Form of a matrix (and the invertible matrices corresponding

to the equivalence).

There are particular types of elements of GL,(R) whose left and right multiplication
correspond to row and column operations respectively. For A an n x m matrix we write

C1,y ..., Cm € R" for the columns of Aso A= (c},...,c ), and ry,...,r, € R™ for the rows of

r m

A so that A = (rq,...,r,)". Write E, (i, ) for the n x n matrix with Os everywhere except

for row ¢ and column j where the entry is 1.

(i) (Transvections) Given 1 < 4,5 < m with @ # j and A € R put P,(i,j;\) = L, +
AE,, (i, 7). We write

cj—ci+Ac
—_—

A AP, (i, j; V).

to mean that the matrix A after the column operation replacing c; by ¢; + A¢; is the

matrix A post-multiplied by P, (i, 7; A). This can be checked by direct calculation.

Similarly
A T T+ AT Pn(z,])\)A

means that the matrix A after the row operation replacing r; by r; + Ar; is the matrix

A pre-multiplied by P, (7, j; A). Again this can be checked by direct calculation.
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(ii) (Dilations) Given 1 <i < m and u € U(R) let Dy, (i;u) := L, + (u—1)Ep,(7,1) so that
D, (i;u) is the matrix with 1s on the diagonal except for the ith element which is u,

and Os elsewhere. As above we write
A Z25 AD,, (i u) and A 2 D, (i u) A
to mean the matrix A with column ¢; replaced by uc; etc.

(iii) (Interchanges) Given 1 <i,j < mlet S,,(4,7) = Iy + En(i,J) + En(d, i) — En(i, i) —

En(j,7)- By
AZZ9, A8, (i, 7) and A 225 8, (i,5) A

we mean the matrix A with ¢; and ¢; swapped etc.

Remark 13.15. These three types of operations are the elementary column and row
operations respectively. The matrices are all invertible, since their pre- and post- multi-
plication corresponds to row and column operations respectively, and these operations are
easily seen to be invertible. This invertibility is the reason for restricting dilates to elements
of the group of units.

In view of the invertibility of these matrices we see that applying these elementary row

and column operations to a matrix preserves equivalence of matrices.

Remark 13.16. The subgroup of GL,(R) generated by the elementary row operations is
denoted GE,,(R). Of course GE, (R) < GL,(R), and for some rings it is a proper subgroup
(in fact the ring A in Exercise is such an example [Gel77], and it is an open problem
[SZ14] (3), §7] whether every PID with GE2(R) = GLy(R) is Euclidean; certainly if R is
Euclidean then it is a PID and it happens that GEs(R) = GLa(R).

Putting a matrix into Smith Normal Form using elementary oper-

ations

Suppose that R is a Euclidean Domain with Euclidean function f, and A € M, ,,(R).
We shall proceed iteratively either decreasing the quantity p(A) := min; j.a, 20, f(Ai;) or
leaving it the same and increasing the number of Oy entries.

Suppose that A; ; = u(A). For 5/ # j the Euclidean function tells us that either

(i) there is ¢ € R and r € R* such that A; ; = ¢qA;; + r where f(r) < A;; and so
AP, 5" =q)) < p(A);

(ii) or there is ¢ € R such that A, ; = ¢A;; and so AP,,(j,j'; —¢) has an extra zero in it

unless A; j = Og.
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This process eventually terminates with A; j; = Og for all j* # j. All the operations were
column operations adding to every column except the jth, and thus we can proceed similarly
to eliminate all the non-zero entries (apart from the ith) in the jth column. The matrix
looks like:

® * OR # *
* * OR * *
Or Or A;; Ogr Or
® # Og # *
* ® OR # *

After this process, if A;; does not divide every entry of the matrix, then take a row (or
column) with an entry it does not divide and add it to the ith row, or jth column. Then
an application of above reduces p(A). We can repeat this whole process and it must
eventually terminate since either p(A) decreases, or it stays the same and the number of
zeros in the ith row or jth column increases.

A final column and row switch moves the A, ; to the top left of the matrix, and we now
repeat the process with the bottom right matrix in M,,_; ,,—1(R). Any common factor of all
the matrix entries remains under the application of the elementary operations, and so when

the process terminates we have a matrix in Smith Normal Form as required.

Remark 13.17. /NWhile the above process is sure to work, any sequence of operations is

allowed so in practice there can be better ways to proceed.

A finite presentation of an R-module M is a linear map T : R — R™ and isomorphism

R™/ImT — M. A module M is said to be finitely presented if it has a finite presentation.

Remark 13.18. For comparison, Lemma [13.3 shows that for every finitely generated module

M there is an R-linear surjection 7' : R* — M and hence by the First Isomorphism Theorem

M = R"/kerT.

Remark 13.19. /\There are finitely generated modules that are not finitely presented (see
e.g. Exercise [E.16)), but the next result shows that this cannot be so for PIDs.

Proposition 13.20. Suppose that R is a PID and M 1is a finitely generated R-module.
Then M is finitely presented.

Proof. Theorem tells us that there are elements a; | --- | a, such that M = (R/{ay))®
-+ (R/<ar)) so

T:R"— R%x— (a121,...,a0,T,)
is an R-linear map such that M =~ R"/Im T, as required. O
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As in Remark [13.8] linear maps 7' : R — R™ are in one-to-one correspondence with ma-
trices A € M, ,,(R) and so we often simply speak of the finitely presented module R™/AR".

Lemma 13.21. Suppose that A, B € M, ,,(R) are equivalent matrices. Then R™/AR" =~
R™/BR".

Proof. Let PA = BQ for P € GL,,(R) and @ € GL,(R). Then the map
R"™/AR" — R™/BR";x + AR" — Px + BR"

is a well-defined R-linear isomorphism. First, z—2' € AR™ if and only if P(x—2') € PAR™ =
BQR"™ since P is invertible. But since () is invertible QR™ = R™ and so x — 2’ € AR" if and
only if Px — Px’ € BR" so that the map is well-defined and injective. Since P is invertible

the map is surjective and it is easily seen to be linear. O]

Remark 13.22. /NThe converse of this lemma is not true: if R™/AR" =~ R™/BR" it need

not be the case that A and B are equivalent. See Exercise [E.15]

Remark 13.23. In view of this lemma we see that putting a matrix in SNF can be used to

produce a particularly simple representation of a finitely presented module.

Describing the structure of a commutative group using the SNF

Suppose that G is a commutative group with generators gy, g2, g3, 94, g5 and relations

2.g1 + 6g2 — 8g3 = 0,91 + go+ 94 = 0, and 591 + 594 + 2595 = 0.
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This group is isomorphic to Ziy @ Z?, and to show this we use the Smith Normal Form.

First we put the relation matrix, R, into Smith Normal Form:

-8 0 0

2 6 11 10\ Lo
R=[11 90 10 |26 80 0 |/
50 0 5 25 50 0 5 25
10 0 0 0\, (1 0 0 0 0
2 —8 —2 0 |ZEnTLfgo4 g -2 0 |2
5 -5 0 0 25 0 -5 0 0 25
1 0 0 0 0 10 0 0 0 covca—8es
r3—>1r3—572 cs—c5+25c2
0 —1 —8 —2 25 |Dl=m=®2 | g 1 _g —2 25 |zt
0 -5 0 0 25 0 0 40 10 —100
1 0 0 0 0 1 0 0 0 0 s o
0 -1 0 0 0 |[==%l0o-10 0 o [
0 0 40 10 —100 0 0 10 40 —100
1 0 000
0 -1 0 0 0
0 0 10 0 0

Thus we have P € GL3(Z) and @ € GL;5(Z) such that

26 =80 0 1 0 0 0O
Pl11 0 1 0 |Q=]0-1 0 00
5 0 0 5 25 0 0 10 0 0
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We can compute the matrix ) by applying the column operations to the identity matrix:

10000 1 -1 0 -1 0
01000 |, 0o |0 1 0 0 0fazss
00100 [2=9= ]9 0 1 0 0 |o=ere
00010 0 0 0 1 0
00001 0 0 0 0 1
1 -1 8 1 -25 1 -1 1 8 -2
0 1 -8 —2 25 0 1 -2 -8 25 | .. .
00 1 0 wea g g o0 10 0 0 | Emerls
00 0 1 00 1 0 0
00 0 0 00 0 0 1
1 -1 1 4 -15
01 -2 0 5
00 0 1 0
00 1 -4 10
00 0 0 1

Similarly we can compute P:

100 010\ o, (0 1 0
010””1”’"2(100%120
00 1 00 1 0 -5 1
0 1 0 0 1 0
wl?l)m 1 -7 1
0 -5 1 —5 30 -4

This gives us a well-defined isomorphism

¢:G — Lyy®Z?
2101 + -+ 25.95 — (21 — 229 + 24,421 + 23 — 424, — 1521 + 5zg + 1024 + 25).
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For a matrix A we write RowSpan(A) for the Z-module generated by the rows of A. To see

that ¢ is a well-defined injection note:

21.01 + -+ 205 = 2 gy + -0 + 2L,
1-91 5-05 1-91 5-95 >Deﬁmtion of G

<(z1—2},...,25 — zL) € RowSpan(R
( ! 5) pan(F) 2 Since P € GL3(Z)
(21— 21, . — zL) € RowSpan(PR)
2 Since Q € GL5(Z)
(21— 21,..., 25 — 2£)Q € RowSpan(PRQ)
2 Design of PRQ
(2 — 2,0,z — 25)Q € {(u, —v, 10w, 0,0) : u,v,w € Z}

)
Definition o
<o((21 - zl).gl Hoo+ (25— 2L).g5) =0 > fi f ¢
) =

<o(z1.01+ - + 25.95 o(21.91+ -+ + 2.95).

The map ¢ is also certainly Z-linear (in fact we have already used this to some extent above).
Moreover, since ¢ is well-defined and ¢(gs) = (0,0, 1), ¢(g3) = (0,1,0), and ¢(g1 — 4.95 +
15.95) = (1,0,0) we see that the image of ¢ contains a generating set for the codomain and

hence ¢ is a surjection. The claim that ¢ is an isomorphism is complete.

Computing the rational canonical form using the SNF

Suppose we wish to compute the rational canonical form of the matrix

1 -1 1
A= 0 1
1 0

We begin by putting the matrix X7 — A in Smith Normal Form over the Euclidean domain
QX]:

X—-1 1 -1 I X—=1 -1\ e (x-1)ey
0 X _1 c1eco X O _1 c3—c3+cy

0 -1 X — 0

1 0 0 rorory— X1 0
X X-—X?2 X1 |-B=mfm,l o X-— X2 x o1 | 2o,
-1 X-1 X-1 0 X-1 X-1

1 0 0 1
0 X -1 xXx—x2 |ezetXe 6 x 1
0 X-1 X-—1 0 X—-1 X2-1
1 0 0
SRR 0 X -1 0

0 0 XZ-1



As above we can identify the matrices P, Q € GL3(Q[X]) such that

1 0 0 X-1 1 -1 0 0 1 1 0 0
-X 1 0 0 X -1 11 1 |=]0 X-1 0
X+1 -1 1 0 -1 X 01 X 0 0 X%2-1

This form can be used to identify the rational canonical form of A: the invariant polynomials

are read off the diagonal as X — 1 and X2 — 1 and A is similar to

1 00
001
010
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