A3: Rings and Modules Sheet III — HT21

III.1. Consider the commutative group \mathbb{C} as a vector space over the field \mathbb{C} with the scalar multiplications $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$; $(z, w) \mapsto zw$ and $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$; $(z, w) \mapsto \overline{z}w$; are these two vector spaces isomorphic?

Suppose that R is a commutative ring and $\pi : R \to R$ is a non-injective ring homomorphism. Show that $R \times R \to R$; $(r, x) \mapsto \pi(r)x$ is a scalar multiplication giving R the structure of an R-module. Is this module isomorphic to the R-module on R given by the scalar multiplication $R \times R \to R$; $(r, x) \mapsto rx$?

- III.2. Suppose that R is an integral domain and not a field. Give, with proof, an example of a proper submodule of R that is linearly isomorphic to R.
- III.3. Suppose that \mathbb{F} is a field. Show that the $\mathbb{F}[X]$ -modules $\mathbb{F}[X]/\langle p \rangle$ and $\mathbb{F}[X]/\langle q \rangle$ are $\mathbb{F}[X]$ -linearly isomorphic if and only if $p \sim q$. Suppose that $A \in M_n(\mathbb{F})$ has minimal polynomial $m \in \mathbb{F}[X]$. Show that $\mathbb{F}[A] \cong \mathbb{F}[X]/\langle m \rangle$ as $\mathbb{F}[X]$ -modules, and that if m is not equal to the characteristic polynomial of A then $\mathbb{F}[A]$ is not isomorphic to the endomorphism $\mathbb{F}[X]$ -module \mathbb{F}^n induced
 - by the linear map $\mathbb{F}^n \to \mathbb{F}^n; v \mapsto vA$.
- III.4. Suppose that $\phi : N \to M$ is a surjective *R*-linear map. Show that if *N* is finitely generated then so is *M*; and on the other hand if *M* and ker ϕ are finitely generated then *N* is finitely generated.
- III.5. In this question we view \mathbb{Q} as a \mathbb{Z} -module. Does \mathbb{Q} have a generating set? Does \mathbb{Q} have a finite generating set? Does \mathbb{Q} have a minimal generating set, meaning a (possibly infinite) generating set S such that no proper subset of S generates \mathbb{Q} ?
- III.6. Let $R := \{p \in \mathbb{Q}[X] : p(0) \in \mathbb{Z}\}$ and $I := \{p \in R : p(0) = 0\}$. Explain briefly why R is a ring and I is an ideal in R. Show that I is not finitely generated as an R-module.
- III.7. Suppose that $p \in \text{Int}(\mathbb{Z})$ is such that for all $z \in \mathbb{Z}$, either 2 divides p(z) or 3 divides p(z). Show that the quantifiers may be reversed *i.e.* that either for all $z \in \mathbb{Z}$ we have 2 divides p(z), or for all $z \in \mathbb{Z}$ we have 3 divides p(z).
- III.8. Let R be the ring $\mathbb{Z}[\sqrt{-5}]$ and I be the ideal $(2, 1 + \sqrt{-5})$ in R. Show that I^2 is *R*-module isomorphic to R^2 . Is there some $n \in \mathbb{N}_0$ such that I is *R*-module isomorphic to R^n ?

- III.9. [Optional] The aim of the question is to give an example of a ring which is a PID but not a Euclidean Domain. Let $A := \mathbb{R}[X][Y]/\langle Y^2 + X^2 + 1 \rangle$, which has the structure of an $\mathbb{R}[X]$ -module such that multiplication in A is $\mathbb{R}[X]$ -bilinear, and write \tilde{Y} for the image of Y under the quotient map $\mathbb{R}[X][Y] \to A$.
 - (a) Show that $\{1, \tilde{Y}\}$ is a basis for A as an $\mathbb{R}[X]$ -module and that the map

$$A \rightarrow A; f = p.1 + q.\tilde{Y} \mapsto \overline{f} \coloneqq p.1 - q.\tilde{Y}$$

is an $\mathbb{R}[X]$ -linear ring isomorphism. Hence show that A is an integral domain and $U_0 \coloneqq U(A) \cup \{0\}$ is a subring of A which is isomorphic to \mathbb{R} . Show also that there is no ring homomorphism $A \to \mathbb{R}$.

If $f = p.1 + q.\tilde{Y} \in A$ then we write $|f|^2 \coloneqq p^2 + q^2(X^2 + 1) \in \mathbb{R}[X]$ and a calculation shows that $f\overline{f} = |f|^2.1$. Furthermore, since \mathbb{R} is a subring of $\mathbb{R}[X]$, A also has the structure of an \mathbb{R} -vector space such that multiplication in A is \mathbb{R} -bilinear.

- (b) Show that if $g \in \mathbb{R}[X]^*$ has degree d then $A/\langle g.1 \rangle$ is 2d-dimensional as an \mathbb{R} -vector space. Given this, for $f \in A^*$ show by considering the map $A/\langle f\overline{f} \rangle \rightarrow A/\langle f \rangle; g + \langle f\overline{f} \rangle \mapsto g + \langle f \rangle$ or otherwise that $A/\langle f \rangle$ is deg $|f|^2$ -dimensional as an \mathbb{R} -vector space.
- (c) Show that if I is a maximal ideal in A then there are elements α, β, γ ∈ ℝ such that I = ⟨(α + βX).1 + γ.Ŷ), and hence use Exercise II.6 to show that A is a PID.
 [Hint: You may assume that any finite degree field extension of ℝ has degree at most 2 for the first part. It is in fact enough for our purposes to show that the maximal ideals in A are principal and this can be achieved without this assumption by slightly more work.]
- (d) Show that A is *not* a Euclidean domain.