A3: RINGS AND MODULES, 2019-2020

TOM SANDERS

We begin with the course overview as described on https://courses.maths.ox.ac.
uk/node/44027.

Course Overview: The first abstract algebraic objects which are normally studied are
groups, which arise naturally from the study of symmetries. The focus of this course is
on rings, which generalise the kind of algebraic structure possessed by the integers: a ring
has two operations, addition and multiplication, which interact in the usual way. The
course begins by studying the fundamental concepts of rings (already met briefly in core
Algebra): what are maps between them, when are two rings isomorphic etc. much as
was done for groups. As an application, we get a general procedure for building fields,
generalising the way one constructs the complex numbers from the reals. We then begin
to study the question of factorization in rings, and find a class of rings, known as Unique
Factorization Domains, where any element can be written uniquely as a product of prime
elements generalising the case of the integers. Finally, we study modules, which roughly
means we study linear algebra over certain rings rather than fields. This turns out to have
powerful applications to ordinary linear algebra and to abelian groups.

Learning Outcomes: Students should become familiar with rings and fields, and under-
stand the structure theory of modules over a Euclidean domain along with its implications.
The material underpins many later courses in algebra and number theory, and thus should
give students a good background for studying these more advanced topics.

Course Synopsis: Recap on rings (not necessarily commutative or with an identity) and
examples: Z, fields, polynomial rings (in more than one variable), matrix rings. Zero-
divisors, integral domains. Units. The characteristic of a ring. Discussion of fields of
fractions and their characterization (proofs non-examinable) [2]

Homomorphisms of rings. Quotient rings, ideals and the first isomorphism theorem and
consequences, e.g. Chinese remainder theorem. Relation between ideals in R and R/I.
Prime ideals and maximal ideals, relation to fields and integral domains. Examples of
ideals. Application of quotients to constructing fields by adjunction of elements; examples
to include C = R[X]/(X?+ 1) and some finite fields. Degree of a field extension, the tower
law. [4]
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Euclidean Domains. Examples. Principal Ideal Domains. EDs are PIDs. Unique factori-
sation for PIDs. Gauss’s Lemma and Eisenstein’s Criterion for irreducibility. [3]

Modules: Definition and examples: vector spaces, abelian groups, vector spaces with an
endomorphism. Submodules and quotient modules and direct sums. The first isomorphism
theorem. [2]

Row and column operations on matrices over a ring. Equivalence of matrices. Smith Nor-
mal form of matrices over a Euclidean Domain. [1.5]

Free modules and presentations of finitely generated modules. Structure of finitely gener-
ated modules of a Euclidean domain. [2]

Application to rational canonical form and Jordan normal form for matrices, and structure
of finitely generated Abelian groups. [1.5]

References. There is an alternative approach to the course given in Earl’s notes [Earl9)
which is an excellent source for further examples.

Blue text indicates non-examinable material.
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1. RINGS: A RECAP AND MOTIVATING EXAMPLES

We begin by fixing some terminology for some concepts which have been introduced in
previous courses. A ring R is a set (also denoted R and called the carrier set) equipped
with two binary operations +, called addition, and x, called multiplication, such that

(i) the set R equipped with + is a commutative group, called the additive group;
(ii) x is an associative operation on R;
(iii) x distributes over +, meaning that

rx(y+z)=xxy+axzxzand (xr+y) xz=(rx2)+ (yx z) forall z,y,2 € R.

The additive group of a ring has a unique identity called the zero of the ring and denoted
0. We write —z for the additive inverse of © € R; the map R — R;x — —x is called
negation.

We say R is a commutative ring if multiplication is commutative.

We shall often write xy in place of x x y in a ring.[] We respect the usual precedence of
multiplication over addition so by z + yz we mean x + (y x z), and not (x + y) x z.

We write R* for the set of non-zero elements of the ring R.

Lemma 1.1. Suppose that R is a ring.

(1) (Zero annihilates) 0z = 20 = 0 for all x € R;
(i1) (Negation distributes) —(xy) = (—z)y = x(—y) for all z,y € R.

Proof. First 0 = 0z + (—(0z)) = (0 + 0)z + (—(0z)) = (0z + 0z) + (—(0x)) = 0z + 0 = Oz
for all x € R and similarly for 0. Secondly, (zy) + ((—2)y) = (x + (—z))y = Oy = 0 and
so by uniqueness of additive inverses —(zy) = (—z)y, and similarly —(zy) = z(—y). O

It may happen that multiplication has an identity. If it does then this identity is unique
and we denote it 1 and call it the multiplicative identity. A ring with a multiplicative
identity is called unital.

/N Take care here as some authors define a ring to be what we call unital ring; see e.g.
[Pool19] for some motivation for this point of view.

If R is a unital ring, then we say that x € R is a unit if it has an inverse with respect
to multiplication, and we write U(R) for the set of units of R. If x does have an inverse
with respect to multiplication then it is unique; we call it the multiplicative inverse of
x and denote it 271

Some authors write R* for U(R) — we reserve R* for the non-zero elements of the
ring — and some write R* for U(R).

Proposition 1.2 (Unit group). Suppose that R is a unital ring. Then multiplication on
R restricts to a group operation on U(R) with identity 1 and the inverse of x under this

restricted operation is also x~!.

ISince z —y, which is shorthand for 2+ (—y), and z—y, which is shorthand for 2 x (—y), look remarkably
similar, we shall avoid the latter.
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Proof. Certainly 1 € U(R) since 1 x 1 = 1. If z,y € U(R) then there are elements u,v € R
such that zu = ur = 1 and yv = vy = 1, whence (zy)(vu) = z((yv)u) = z(lu) = zu = 1
and similarly (vu)(zy) = 1 so xzy € U(R), which means multiplication on R restricts to a
binary operation on U(R).

Associativity of this restricted operation is inherited from multiplication on R, as is the
fact that 1 is an identity. It remains to note that if x € U(R) then zz™! = 1 = 27 'z and
so z7' € U(R) and z™! is an inverse for z under this multiplication map. O

A key example of a commutative unital ring, and the source of the terminology above, is
the integers Z. For them we have U(Z) = {—1,1}. On the other hand 2Z, the set of even
integers, with operations inherited from 7Z is an example of a ring that is not a unital ring.

Given a ring R we say that S is a subring of R if it is a subset of R, and a ring when the
addition and multiplication on R are restricted to S. We say that S is a unital subring
of R if S is a subring of R, R is unital and S contains the multiplicative identity of R.

A\ {0} is a subring of Z and both are unital rings, but the former is not a unital subring
of the latter.

Lemma 1.3. Suppose that R is a ring and S is a non-empty set of (unital) subrings of R.
Then (\ges S is a (unital) subring of R.

Proof. Note that 0 € S for all S € S so 0 € [g.gS. Similarly, if 2,y € (g5 S then
z,y € S forall SeS, and hence x + (—y) € Sforall Se€ S and so x + (—y) € (g S- It
follows that the intersection is an additive subgroup. Similarly it is multiplicatively closed
and associativity of multiplication and distributivity of multiplication over addition are
inherited from the operations on R. Finally if all the rings in § are unital, they all contain
1 and so the intersection does too. O

Given a subring S of R, and elements Aj,..., A\, € R we write S[\{,...,\,] for the
intersection of all subrings containing S and Aq,...,\,, which is a subring since R is
certainly a subring of R containing S and Ay,..., A\,. S[A1,...,\,] is a unital subring of
R if S is a unital subring of R.

A ring homomorphism is a map ¢ : R — S between two rings such that

P(zy) = ¢(x)9(y) and ¢(z +y) = ¢(x) + #(y) for all v,y € R;

a unital ring homomorphism is a ring homomorphism ¢ : R — S between two unital
rings with the additional property that ¢(1) = 1.
If S'is a (unital) subring of R then the inclusion map S — R is a (unital) homomorphism.
/NIf R and S are rings and there is an obvious injective (unital) homomorphism j :
S — R we shall frequently identify S with j(5), speak of S as a (unital) subring of R ,and
write S[Ay, ..., A,] for what would properly be written j(S)[A1, ..., As].

Lemma 1.4. Suppose that ¢ : R — S is a ring homomorphism. Then ¢(0) = 0 and
o(—x) = —¢p(x) for all x € R. If ¢ is a unital ring homomorphism and x € U(R) then

¢(x) e U(S) and ¢(z7") = p(x)~".
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Proof. For x € R we have

¢(=x) = (=) + 0 = ¢(—z) + (¢(x) + (=0(2)))
= (¢(=2) + ¢(z)) + (=¢(2)) = o((=2) + 2) + (=¢(x)) = $(0) + (=0(x)).

Setting x = 0 above gives ¢(0) = 0, which then gives the second fact. A similar argumentﬂ
shows that if ¢ is a unital homomorphism and x € U(R) then ¢(z) € U(S) and ¢(z ') =
[l

¢la)~".

In particular, if ¢ : R — S is a unital ring homomorphism then ¢(U(R)) < U(SS).

/\The inclusion j : Z — Q is a unital homomorphism and HZ)NUQ) =Z + {—-1,1} =
P(U(Z)).

Any commutative group can be given a ring structure by setting all products to be 0; we
call this a trivial multiplicative structure. We call a ring trivial if it has one element
— it is the one element additive group with the aforementioned multiplicative structure. A
trivial ring is unital with 0 = 1, and a unital ring is trivial if 0 = 1E|

It follows from Lemma (1.1 that unless a unital ring is trivial we must have U(R) < R*.
A field is a (non-trivial) commutative unital ring in which U(R) = R*, and this gives us
some more examples of commutative unital rings: Q, R, C, and F,, (the integers modulo p
for p a prime).

The above examples are all commutative but they can be used to produce non-commutative
rings. Given a unital ring R and n € N we write M,,(R) for the set of n x n matrices with
entries in R. We define addition and multiplication of two elements A, B € M, (R) by

n

A + B = (AU + Bij)ijl and AB := (Z Aszk:g> R
k=1

1,j=1

and these operations make M, (R) into a unital ring, where 0y, (g) is the matrix with Og
in every entry and 1y, (g is the matrix with 1z on the main diagonal and Og elsewhere.
These rings are called matrix rings and they are not commutative (provided either R
is not commutative or n > 1).
For Ay, ..., Ay € M,(R) we write R[A, ..., Ag] for the unital subring of M,(R) gen-
erated by the scalar multiples of the identity — that is the matrices with r on the main
diagonal for some r € R and Og elsewhere — and the matrices Ay, ..., Ag.

2. INTEGRAL DOMAINS AND POLYNOMIAL RINGS

Suppose that R is a ring. We say that z € R is a (left) zero divisor if there is some
y € R* such that zy = 0, and similarly for right zero divisors.

2Note that we require ¢(1) = 1 so that we know ¢(1)~! exists; we know that —¢(0) exists in the first
argument because S under addition is a group.

3Lemma shows that if 0 = 1 then 0 = Oz = 1z = « for all x € R and hence that R has only one
element.
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Given a field F the ring Ms(F) has non-zero zero divisors e.g.

(01)(00)=(01)

and the ring of integers mod N has non-zero zero-divisors if (and only if) N is composite:
if N =pqfor1<p,q<N then p,q#0 (mod N) but pg =N =0 (mod N).

We say that a ring R is an integral domain if it is a non-trivial commutative unital
ring with no non-zero zero divisors.

Lemma 2.1 (Cancellation lemma). Suppose that R is an integral domain, and x € R* and
Y,z € R have xy = xz. Then y = z.

Proof. By distributivity we have 0 = (zy) — (z2z) = 2(y — z). Since z € R* and R is an
integral domain it follows that y — z = 0 as required. Il

This immediately gives the following cute proposition.
Proposition 2.2. Suppose that R is a finite integral domain. Then R is a field.

Proof. Since R is non-trivial R* is non-empty. For a € R* consider the map R — R;x — ax.
This is an injection by the cancellation lemma, and since R is finite it is a surjection. It
follows that there is some x € R such that ax = 1. Since R is commutative, we conclude
that za = ax = 1 so a € U(R) and hence R is a field. O

Integral domains and polynomial rings are closely related. Suppose that R is a commu-
tative unital ring (but not necessarily an integral domain). We write R[X] for the set of
R-polynomials in the variable X with coefficients in R, that is the set of expressions of
the form

(2. p(X) = Y’

where a; € R for all 7, and a; € R* for finitely many i € Ny. We call the a;s the coefficients
of the polynomial; two polynomials are equal if and only if their coefficients are equal. Given
polynomials p and ¢ with coefficients (a;)2, and (b;);2, we have

(p+q)(X) = > (a; + b)) X" and (pg)(X) := ) ( > ajbk) X'

i=0 i=0 \j+k=i

With these operations R[X] is a commutative unital ring.

The map j : R — R[X] taking elements of R to the corresponding constant polynomial
is an injective unital homomorphism, and we shall write  both for an element of R and
the constant polynomial 7.

/N\This is a very important map: if F is a field then the map j : F — F[X] above gives
F[X] the structure of an F-vector space.

Note that the sum in is just a notation and should be thought of as a way of
recording the coefficients of the polynomial. It is written this way to give a suggestion for
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how to evaluate the polynomial: if A € R and p € R[X] then the map

R[X] = Rip—p(A) i= D a\,

i:a;7#0

with the usual convention that the empty sum is 0, is a well-defined (since the sum is finite)
unital ring homomorphism.

/N The maps F, — F,; A — A and F, — F,; A\ — X\ are the same by Fermat’s Little
Theorem, but the polynomials ¢(X) = X? and ¢(X) = X are distinct.

If p e R[X]* then we define its degreeﬂ, denoted degp, to be the largest d € Ny such
that the coefficient of X% in p is non-zero, and we say that A € R is a root of p if p(\) = 0.

Proposition 2.3. Suppose that R is a non-trivial commutative unital ring. Then the
following are equivalent:

(i) R is an integral domain,

(11) R[X] is an integral domain,
(1ii) for every p,q € R[X]* we have degpq = degp + degq;
(iv) every p e R[X]* of degree at most d has at most d roots.

Proof. Certainly implies (i) by looking at the constant polynomials, and implies
since the latter is just the former with the second part forgotten.
To see ({ij) implies suppose that p,q € R[X]* so we can write

p(X) =a, X"+ - +agand ¢(X) =b, X"+ + by

where a,,,...,a9,bm,...,bo € R, a,,b,, € R* and n = degp and m = degq. Then

n+m

(pg)(X) = p(X)a(X) = >} D, aib; X,

Thus the coefficient of X™*™ is a,b,,, and it is non-zero since R is an integral domain. We
conclude that pg € R[X]* and degpg = n + m = degp + degq.

If R is not an integral domain then there are a,b € R* such that ab = 0, but then the
polynomial a X has degree 1 but at least two roots since ab = 0 and a0 = 0 by Lemma |l.1
This shows implies .

In the other direction, we proceed by induction on the degree d assuming, as we may,
(i) and . If d = 0 then the polynomial is a non-zero constant and so has no roots as

4Qccasionally it is useful to define the degree of the zero polynomial to be —co and adopt the arithmetic
convention that —oo +n = —oo for all n € Ny so that the degree identity in Proposition continues
to hold.
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required. Now suppose that d > 0 and p has a root A € R. Then
d
p(X) =p(X) =p(A) = Y, an(X" = A")
n=0

an(anl 4o +)\n71>

M&

— (X =)

i
—_

= (X =) (dmlaumml) X" = (X = N)q(X).

m=0 =0

Since R[X] is an integral domain, ¢ € R[X]*, and from its definition we see that degq <
d—1. If N # X then p(X\') = 0 if and only if ¢(\") = 0 since R is an integral domain. The
result follows. O

In view of above, when R is an integral domain, the units of U(R[X]) have to
be polynomials of degree 0, and the map U(R) — U(R[X]) taking r to the degree zero
polynomial with constant coefficient r is an isomorphism.

Note that (1+2X)? = 1in (Z/4Z)[X], so that 142X € U((Z/4Z)[X]). More generally,
if R is a commutative unital ring then U(R[X]) is exactly the set of polynomials ag+a; X +
-+ agX? where ag € U(R) and there is some n € N such that a? = 0 for all 1 < i < d.
(z € R is called nilpotent if 2% = 0 for some d € N.)

We write R[X1,...,X,] for the ring of polynomials in the variables X, ..., X, with
coefficients in R. Already for n = 2 this gives two ways of viewing the resulting ring. If R
is an integral domain then Proposition [2.3] tells us that R[X] and R[Y] are both integral
domains and so elements of R[X, Y] have both an X-degree, when considered as elements
of R[Y][X], and a Y-degree when considered as elements of R[X]|[Y].

The degree bound on the number of roots in Proposition is important so we give
an application. The first part of the proof below has a lot in common with the method
we shall use later to establish the existence of Smith Normal Form, and is an adaptation
of Schenkman’s proof of the basis theorem for finitely generated commutative groups in

[Sch60].
Proposition 2.4. Suppose that F is a finite field. Then U(F) is cyclic.

Proof. Suppose that {z1,...,2,} is a smallest set of generators for U(F). If n > 1 let
G be the group generated by x,_; and x,, and (z,y) be a pair of generators for G (not
necessarily from X) with the order of # minimal out of all such pairs.

Let au be the order of z and bu be the order of y with hef(a,b) = 1. By Bezout’s Theorem
there are o, B € Z such that aa + b5 = 1. Put z := 2%~ and w := 2%y®, so z = 2w’ and
y = 2z Pw® and the pair (z,w) generates G. Moreover, 2% = %y = 1.1 = 1 and so
u = au by minimality of the order of z.

Since y has order bu, the elements y°, y?°, ..., y*® are u distinct elements, and they are all
roots of X* — 1 e F[X]*. Hence by Proposition they are the only roots of X* — 1,
but then z is also a root of X — 1 and so = y” for some 1 < i < u. We conclude G is
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generated by the one element y, and hence {z1,...,x, 2,y} is a generating set for U(F),
contradicting the minimality of n. Hence n = 1 and U(F) is cyclic. U

Conrad collects together many different proofs of the above result in |[Con).

The construction of Q from Z only uses the fact that Z is an integral domain. Given
an integral domain R let Frac(R) be the pairs (a,b) € R x R* subject to the equivalence
relation

(a,b) ~ (a',b") if and only if ab’ = a'b.
Addition and multiplication are defined by
(a,b) + (a',b") := (ab' + a’b,bV') and (a,b)(a’,b") := (ad’, bb')

for all a,a’ € R and b, € R* which are well-defined by the cancellation lemma. The
relevant features are summarised in the following theorem whose proof is just a check.

Theorem 2.5 (Field of fractions). Suppose that R is an integral domain. Then there is
a field Frac(R) and an injective unital ring homomorphism v : R — Frac(R) such that for
any field F and injective unital ring homomorphism ¢ : R — F there is a unique injective
unital ring homomorphism 1 : Frac(R) — F such that ¢ o1 = ¢ ie. so the following
diagram commutes

R—%TFracR
\ ld)
F

The field of fractions may be quite large: the field of fractions of R[X] is denoted R(X).

It is the set of rational functions, that is ratios % where p € R[X| and ¢ € R[X]*.

Viewing R[X] as a vector space over R, the set {1, X, X? ...} is a basis. R(X) is also
a vector space over R but in this case it is much larger.

Lemma 2.6. The set {(X — \)7! : X\ € R} is (uncountable and) linearly independent in

R(X).
Proof. To check linear independence suppose that there were distinct reals Aq,..., A\ and
Qq,...,qr such that

(X —A) 7+ (X =) =0,

Rearranging we get

a | [X=x)++a][(X=X) =0

i#1 1#k

and then evaluating successively at Aj,..., A\ we get o l_[#j (Aj—X)=0for1 <j<k
which in turn implies o; = 0 for 1 < j < k. The lemma is proved. O
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3. HOMOMORPHISMS AND IDEALS

A ring homomorphism between rings R and S is called an isomorphism if it has an
inverse map that is also a homomorphism; if such a function exists we say that R and S
are isomorphic.

Lemma 3.1. Suppose that ¢ : R — S is a bijective ring homomorphism. Then the inverse
s also a homomorphism. Moreover, if R or S is unital then they are both unital and ¢
and its inverse are both unital homomorphisms.

Proof. Suppose that x,y € S. Since ¢ is bijective there are elements u,v € R such that
x = ¢(u) and y = ¢(v). Hence

¢~ (@ +y) =97 (d(u) + d(v)) = 67 (P(u+v)) =u+v=0""(2) + ¢ ().

Similarly ¢~ (zy) = ¢~ ()¢~ (y).

Now suppose that one of R and S is unital; we may assume R is unital by switching
R and S and replacing ¢ by ¢! if necessary. Bijectivity of ¢ means for all s € S there
is some r € R such that ¢(r) = s, and hence ¢(1g)s = ¢(1g)p(r) = ¢(r) = s = ¢(r) =
o(r)p(1g) = sp(1g). It follows that ¢(1g) is a multiplicative identity in S, so S is unital
with 15 = ¢(1g), and ¢ and ¢! are unital homomorphisms. O

/N This bootstrapping of bijections occurs for groups, vector spaces, and many other
algebraic structures. On the other hand f : [0,1) U {2} — [0,1] with f(z) =z ifx < 1
and f(2) =1 is a continuous bijection, but the inverse function is not continuous.

Lemma 3.2. Suppose that ¢ : S — R is a (unital) ring homomorphism. Then ¢(S) is a
(unital) subring of R.

Proof. Since S is nonempty, ¢(.S) is non-empty. Moreover if x,y € ¢(S) then there are
elements u,v € S such that x = ¢(u) and y = ¢(v). Then zy = ¢(u)p(v) = d(uv) € ¢(S)
since S is multiplicatively closed. Additionally, by Lemmal[l.4] z+(—y) = ¢(u)+(—¢(v)) =
o(u) + ¢(—v) = ¢(u + (—v)) € ¢(S) since S is an additive group. Since associativity and
distributivity are inherited from R we conclude that ¢(S) is a subring of R. If ¢ is a unital
homomorphism then 1 = ¢(1) € ¢(S) and so ¢(S) is a unital subring of R. O

Suppose that R is a ring. We say that [ is an idea]ﬂ if it is an additive subgroup of R
with ar,rz € I for all r € R and x € I. The notation I < R is used in places (e.g. [Coh00,
pl2]) to mean [ is an ideal of R.

The sets {0} and R are always ideals in any ring, and so the only ring with fewer than
two ideals is a trivial ring, where R = {0}.

Given a ring homomorphism ¢ : R — S, the kernel of ¢ is the set ker¢ := {x € R :

¢(z) = 0}.
Lemma 3.3. Suppose that ¢ : R — S is a homomorphism. Then ker ¢ is an ideal in R.

®0One might also call these two-sided ideals by way of contrast with left and right ideals but this will
not be of concern to us here.
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Proof. By Lemma we have ¢(0) = 0 so 0 € ker¢ and ¢(—z) = —¢(z) for all x € R.
Hence if 2,y € ker ¢ we have ¢(z + (—y)) = ¢(x) + (—¢(y)) =0—0=0 and so z + (—y) €
ker ¢ and it is an additive subgroup by the subgroup test.

Now suppose x € ker ¢ and r € R. Then ¢(zr) = ¢(x)p(r) = 0¢(r) = 0 by Lemma

and similarly ¢(rz) = 0. It follows that xr, rx € ker ¢. The lemma is proved. [l
There are two important operations on ideals: intersection and summation. If Iy, ..., I}
are ideals in R then we write I; + --- + I, for the sum of these sets, that is the set

{x1 4+ -+, s x; € I; for 1 < i < k}. There is an infinite version of thiﬁ which is
notationally more complicated but not otherwise more problematic.

Lemma 3.4. Suppose that R is a ring. If I, ..., I are ideals of R then so is Iy + -+ -+ I.
If T is a non-empty family of ideals of R, then (\;.7 I is an ideal of R.

Proof. This is essentially just unpacking notation. Doing this for the intersection is easiest
since x € ();o; I if and only if z € I for all I € Z. For the sum, it follows since addition is
commutative. O

The above may be used to define the ideal generated by a set: if R is a ring and V' is a
subset of R then the ideal generated by V' isﬂ

(Vy:=(){I:V < I and I is an ideal in R}.

Note that this intersection is well-defined since V' < R and R is an ideal in R, and (V) is
an ideal by Lemma (3.4}
We give a few examples:

(i) If n € Z then (n) is the set of multiples of n in Z. We shall see later that every

ideal in Z is of this form. /NTf n # 0 then (ny=Q in Q.

(ii) For A € R, the ideal (X — X\) in R[X] is the set of polynomials p with p(A) = 0.
We proved that the polynomials with \ as a root are in this ideal in the course of
the proof of Proposition 2.3} the other direction follows from Lemma [T.1]

(iii) For I a field and A\, X" € T distinct, the ideal (X — X\, X — X)) = F[X] in F[X]. This
follows since any ideal containing X — A and X — ) must contain their difference
A — X which is a unit in F.

(iv) The ideal (2, X) in Z[X] is the set of polynomials with even constant term. Cer-
tainly the polynomials with even constant term are an ideal in Z[X], and every
such polynomial has the from 2g + Xp(X) for some p € Z[X] and constant poly-
nomial ¢ € Z[X], and hence all such polynomials are in this ideal.

Lemma 3.5. Suppose that R is a non-trivial commutative unital ring. Then R is a field
if and only if the only ideals in R are {0} and R.

SFor 7 a set of ideals in R we put 3, ;I := Uscr.s)<o0 2a1es -
"We also write U1y ee oy U, Voo, Vi) o= gy .o cyon VU - U V) where v, ... ,0, € R and
Vi,...,Vin C R.
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Proof. Suppose that R is a field, and [ is an ideal with = € I non-zero. Then x € U(R) by
definition and so there is some y € R such that yx = 1. Hence if z € R then z = (zy)x € [
since rx € I for all r € R. We conclude that I = R as required.

In the other direction, suppose that {0} and R are the only ideals. For z € R the set
xR := {xr : r € R} is an ideal in R since R is commutative. If z € R* then xR # {0}
and so xR = R and hence there is some y € R such that xy = 1, and since zy = yx we
conclude x € U(R). On the other hand since R is non-trivial we have U(R) < R*, and
hence U(R) = R and commutativity seals the deal: R is a field. O

Corollary 3.6. Suppose that F is a field, R is a ring, and ¢ : F — R is a ring homomor-
phism. Then either ¢ s identically 0 or ¢ is injective.

Proof. By Lemma the kernel of ¢ is an ideal in F, and hence by Lemma we have
ker ¢ = {0} or ker ¢ = F. If ¢ is not identically 0 then there is some = € F with z ¢ ker ¢,
so that ker ¢ = {0} and ¢ is injective as claimed. O

It is worth checking that some of the classical examples of commutative unital rings are
not secretly the same i.e. are not isomorphic. In fact something rather stronger is true:
while the inclusion maps

7Z—>Q—>R—C

are injective unital ring homomorphisms, in the other direction there are only zero homo-
morphisms, and so no unital homomorphisms (since none of these rings is trivial).
(i) If ¢ : C — R is a ring homomorphism then ¢(i)* + ¢(1)? = ¢(0) = 0 and so
®(1) = ¢(i) = 0 and hence ¢(z) = 0 for all z € C by Lemma [1.1]
(i) If ¢ : R — Q is a ring homomorphism then it is certainly not injective since R is
uncountable, so by Corollary we have ¢(z) =0 for all x € R.
(iii) If ¢ : Q — Z is a ring homomorphism then ¢(1)(2¢(1/2) — 1) = ¢(1)(o(1/2 )
»(1/2)) — ¢(1) = 0, but 2¢(1/2) — 1 is odd and so non-zero. Thus ¢(1) = 0 an
hence ¢(q) = 0 for all ¢ € Q by Lemma

4. QUOTIENT RINGS AND THE ISOMORPHISM THEOREMS

Kernels of homomorphisms are a key source of ideals and, as the next proposition shows,
all ideals arise in this way.

Proposition 4.1 (Quotient rings). Suppose that R is a unital ring, and I is an ideal in
R. Then the set R/I := {a + I : a € R} may be given the structure of a unital ring such
that g : R — R/I;a — a + I is a unital ring homomorphism.

Proof. We should like to define addition and multiplication on R/I by
(4.1) (a+DF0b+1):=(a+b)+1and (a+ DX(b+I):=(ab) + I
8 Alternatively, by Corollary [3.6]if ¢ is not identically 0 then ¢ is injective. Now, ¢(1)(p(1) —1)

since Z is an integral domain ¢(1) = 1 and so ¢ is unital and by Lemma [1.4| we have ¢(U(Q)) < U(Z
{—1,1}, which is a contradiction since ¢ is injective and U(Q) = Q* is infinite.
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for a,b € R. To see that this is well-defined suppose that a + I =a’'+ T and b+ 1 =+ 1.
Then
(a+b)—(d+b)=(a—ad)+(b=b)el+1=1
since [ is a group, and hence (a +b) + I = (¢’ + ') + I. Similarly
(ab) — (a'b) = (a(b+ (=V)) + ((a+ (=d'DV)eal + IV =T+ 1 =1,

by Lemma [I.1] then that I is a group, then the second property of ideals, and finally that
I is a group again. It follows that (ab) + I = (a’d') + I.

We have shown that there are well-defined binary operations + and X on R/I, and this
is the substance of the argument. We complete the demonstration that R/I is a unital ring
by saying that the remaining ring axioms are inherited from the corresponding axioms in
R.

For clarity we record some details though these were unlectured and the blue text here
will not be examined. If we define a unary operation — : R/I — R/I;x + I — (—x) + I
and two constants 0 := I and 1 := 1 + I then R/I is a unital ring with addition 7,
multiplication X, negation =, zero 0, and multiplicative identity 1 if (and only if)

1) UT(VIW) = (UFV)TW for all U, V,W e R/I;

(R

(R2) 0fU =UT0=U for all U € R/I;

(R3) UF(ZU) = (FU)FU =0 for all U € R/I;

(R4) UTV =V3U for all U,V € R/I;

(R5) UX(VXW) = (UxV)XW for all U, V,W e R/I;

(R6) UX(VIW) = (UXV)F(UXW) for all U,V,W € R/I;

(R7) (UFV)XW = (UXW)F(VXW) for all U, V,W € R/I;
8) 1

(R XU =UX1=U forall U e R/I.

These can be verified from the corresponding identities for R since for any U, V,W € R/I
there are elements z,y,z € Rwith U =2+ 1,V =y + 1 and W = 2z + I. Then, for
example, associativity of + (that is (R1)) follows from associativity of + by noting that

UFVIW) = (z+DF(y+ DF(z+ 1))
r+DF((y+2)+1)
r+(y+2)+1

_( Q Definition of F
= (
(x+y)+2)+1
(
(

QDeﬁnition of +
QAssociatiVity of +

2 Definition of +
Q Definition of F

(z+y)+DF(z+1)
(z+DFy+1D)F(z+1)
= (UFV)FW

and all the others in the same way as they have the same form.
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Finally, ¢ is a unital homomorphism since it is a homomorphism by the design of (4.1)),
and unital since ¢(1) = 1 = 1 + [ is the multiplicative identity of R/I. 0

Note that the kernel of the projection map ¢ is exactly the ideal I.

/N A similar result is true for rings that are not necessarily unital, and also groups,
vector spaces, and modules which we shall encounter later in the course. This is because
of the fact that all these structures can be defined in terms of some data — that is some
operations and some constants — and some axioms which take the form of some equations
in these operations and constants which hold for all values of the variables. Fields and
integral domains do not (in general) have quotients that are fields or integral domains
because their axiomatisation requires equations quantified over R* as well as R (and in a
sense this is unavoidable). Concretely, if F is a field and I = FF then F/I is the trivial ring
and so not a field.

One may think of the quotient of a ring by an ideal as the ring in which the elements of
the ideal are set to 0. We consider some examples:

(i)

(i)

(4.2)

(i)

The quotient Z/{n) where n € N is just the ring integers modulo n, often written
as Z/nZ when discussing groups. (For n composite this serves an an example of a
quotient of an integral domain by an ideal which is not an integral domain.)

The elements of the ring R[X]/{X?) are the polynomials in R[X] with all quadratic
and higher terms ‘set to zero’. For f e R[X] we write f’(0) for the coefficient of
X in f. We know from the definition of multiplication of polynomials how to
work out (fg)'(0) from f and g. It is also possible to do this by considering the
equivalence class of polynomials where we set X? equal to 0. Specifically, since
multiplication in R[X]/(X?) is well-defined we have

(f9)(0) + (f9)'(0)X +(X?)

= (f9)(X) +(X?)

= (f(0) + f(0)X)(9(0) + ¢'(0)X) +(X?)

= f(0)g(0) + (£(0)g'(0) + f'(0)g(0))X + f'(0)g'(0)X* + (X*)

= f(0)g(0) + (£(0)g'(0) + f'(0)g(0))X +(X?),
where the passage between the last lines is because (X? + 1) is a group and
17(0)g'(0)X? € (X?). We conclude that

(f9)(0) = £(0)9(0) + ((f9)'(0) — (f(0)g'(0) + f'(0)g(0))) X & (X?).

If the left hand side is not identically 0 then it has a degree which is at most 1. On
the other hand, any element of (X?) has the form X?q(X) for some ¢ € R[X]. If
the left hand side of is not zero then ¢ is not identically 0 by Lemma and
so 1 > deg X? + degq > 2, a contradiction. We conclude that (fg)(0) = f(0)g(0)
(as expected) and we also recover Leibniz’s identity that (fg¢)'(0) = (f¢' + f'9)(0)
(at least for polynomials).

The ring R[X]/(X? + 1) can be thought of as R with an additional element X +
(X? 4+ 1) — more commonly denoted i — such that (X +(X?2+1))2+1=0. It is a
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‘realisation’ of C; indeed, the map
Y :C - R[X]{X? 4+ 1)a+bi—a+bX +(X*+1)
is an isomorphism. First, suppose z,w € C and write z = a + bt and w = ¢ + di
for a,b,c,d € R so that
Y(z+w) =Y((a+c)+ (b+d)i)
=(a+c)+(b+dX +(X*+1)
=(a+cX)+{(X?+ 1)+ (b+dX) +{(X*+ 1) =9(2) + ¥(w).
Since zw = (ac — bd) + (bc + ad)i we have
Y(zw) = Y(ac — bd + (be + ad)i)
= (ac — bd) + (bc + ad) X +{(X? + 1)
= ac + (bc + ad)X +bdX* — (X* + 1)bd +(X* + 1)
= (a+bX)(c+dX) +{(X*+ 1) = p(2)p(w).
Thus v is a ring homomorphism.
1 is surjective: any element of R[X]/(X? + 1) - recall an element in this case is
a coset — contains a polynomial of minimal degree, say ¢(X) with lead coefficient
a, and if degq > 2 then ¢(X) — aX€972(X? + 1) has smaller degree and is in the
same coset, so we know that this element of minimal degree has degree at most 1
i.e. is of the form a + bX. However, ¢(a + bi) = a + bX + (X? + 1) and so every
coset on the codomain has a preimage.
Finally, 1) is injective: since it is surjective it is not identically 0 and so by
Corollary it is injective since C is a field] We conclude that ¢ is a bijective

ring homomorphism and so by Lemma [3.1] it is an isomorphism.
The First Isomorphism Theorem is a more general result by which we can access such
isomorphisms.

Theorem 4.2 (First Isomorphism Theorem). Suppose that ¢ : R — S is a unital homo-
morphism. Then ¢(R) is a unital subring of S; ker ¢ is an ideal in R; and the map

Y R/ker ¢ — S;x + ker ¢ — ¢(x)
is a well-defined injective unital homomorophism with image ¢(R) i.e. 1 is an injective
unital homomorphism such that the following diagram commutes
R—= R/ker ¢
\ lw
S

9n lectures we proceeded by examining degree: if a + bX € (X2 + 1) then a + bX = (X2 + 1)p(X) for
some p € R[X], and if (a,b) # (0,0) then p(X) € R[X]* and so 1 > deg(a+bX) = deg(X2+1)+degp > 2,
a contradiction. Hence ker ¢ = {0}, and ¢ is injective as claimed.
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FIGURE 1. Lattice of ideals in Z/{60)

Proof. The first two conclusions are Lemma [3.2) and Lemma [3.3] respectively. By Proposi-
tion 4.1| R/ ker ¢ is a unital ring.

Now, x + ker ¢ = y + ker ¢ if and only if x + (—y) € ker ¢ which is true if and only if
o(z) + (—o(y)) = ¢(z + (—y)) = 0 by Lemma which in turn is true if and only if
o(r) = ¢(y). Tt follows that 1 is a well-defined injection; its image is clearly ¢(R). ¢ is a
ring homomorphism since

U((z + ker ¢)(y + ker ¢)) = ¢((zy) + ker ¢)
= o(zy) = o(x)o(y) = ¥(x + ker @)Y (y + ker §)

and

Y((z + ker @) + (y + ker ¢)) = ¢((x + y) + ker ¢)
= ¢(x +y) = ¢(x) + ¢(y) = Y(z +ker ¢) + Y (y + ker ¢).

Finally, ¥(1 + ker¢) = ¢(1) = 1 and so ¢ a unital ring homomorphism. The result is
proved. ]

The ideals of a ring form a lattice as do the ideal in a ring containing a particular lattice.
The figure shows the lattice of ideals in Z containing the ideal (60). These ideals are in
one to one correspondence with the ideals in Z/{60). The next theorem establishes this in
general.

Theorem 4.3 (Relationship between ideals in R and R/I). Suppose that R is a ring and
I is an ideal in R. Write I for the set of ideals in R containing I, and J for the set of
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ideals in R/I. Then the map

6:L—>T;I'—>{x+1:xel}.
15 a well-defined inclusion-preserving bijection.

Proof. First, we show the map is well-defined. Suppose that I’ € Z, and S, T € ¢(I’). Then
there are elements z,y € I’ such that S =x+ [ and T' =y + I so

S+ () =+ D+ ((=y) +1) = (x+ (=y)) + [ € o(I').

Since ¢(I’) is non-empty, the subgroup test ¢(I’) is an additive subgroup of R/I. Further-
more, if v+ [ € R/I and y € I’ then

(x+D)x(y+1)=(zy)+Ted(l')and (y+ 1) x (x+ 1) = (yx)+ 1€ o)

since zy, yx € I'. Thus ¢(I’) is genuinely an ideal in R/I.

¢ is visibly inclusion-preserving; it is an injection since I’ = | J, . (z + I) in view of the
fact that I < I'.

Finally, if J is an ideal in R/I then put I’ := (Jpo; K. I < I"since [ € J. If x,y e I
then x + I,y + 1 € J and so (z + (—y)) + I € J (since J is an additive group) and hence
x + (—y) € I'. Tt follows that I” is an additive group by the subgroup test. If x € R and
ye ' then (x+I) x (y+ 1) e Jand so (zy) + I € J and xy € I’, and we see that I’ is an
ideal. Moreover ¢(I') = J so we see that ¢ is a surjection and the result is proved. Il

This result also goes by the name of the Correspondence Theorem and sometimes the
Fourth Isomorphism Theorem for rings.

In lectures we discussed the case R = Z and I = (p) for a prime p. Let Z and J as
defined in Theorem (4.3

(i) If I’ e T and I' # {p) then let x € I"\(p). Since x is not a multiple of p — recall that
{p) is exactly the multiples of p — then hef(x,p) = 1 and so by Bezout’s Theorem
there are «, 8 € Z such that ax + Bp = 1. But then

l=ax+ppeal +ppycal +pI'=1T.

However, 1 € I’ means I’ = Z. Hence Z = {{p), Z}
(ii) On the other hand F, = Z/(p) is a field and so by Lemma [3.5] the only ideals are
the zero ideal and the whole field so J = {{0r,}, F,}.

Since I, = Z/{p) we have Op, = (p). The correspondence in Theorem takes (p) to
{{p)} and Z to {x + {p) : x € Z} = F,,

The appearance of Bezout’s Theorem in (fij) should not be too much of a surprise: it
is hiding in the fact that F, is a field in the second part. The main component of proving
this is showing that every = € I} has a multiplicative inverse. If € F} then x = zo + (p)
for some g ¢ (p). Thus hef(xg, p) = 1 and hence by Bezout’s Theorem there are «, 3 € Z
such that axg + fp = 1, whence (a + {(p))x = 1 + (p) and « has an inverse as required.
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5. THE CHINESE REMAINDER THEOREM

Given a family (R;);er of unital rings we write [ [..; R; (or Ry x---x Ry if I = {1,...,k})
for the direct product of these rings, that is the seﬂ [ [,c; Ri endowed with pointwise
operations:

a+b:= (Cli + bi)ie[ and ab := (aibi)ie] for all a, be HRl
iel

This is a unital ring with Ofy, r, = (Og,)ier, 111, = (1R, )ics, and

(5.1) U (]_[ Ri> =] u(r).

el el
The projection maps
(P HRZ- — Rj;x— x;
i€l
are all unital homomorphism; their existence is what really captures the product structure.
/N The maps tj: Rj — [ ],e; Ri (which are defined so that 7;(¢;(z)) = = and m;(¢(x)) =
Og, if @ # j) are ring homomorphisms, but they are not in general unital ring homomor-
phisms.
/N Direct products do not preserve the property of being an integral domain: in the ring
R x R we have (a,0) x (0,b) = 0 for all a,b e R.
We say that ideals I and J in a ring R are coprime if [ + J = R. To explain the
terminology recall that Bezout’s Theorem can be phrased as saying that if R = Z then
1 e{x) + {y) if (and only if) z and y are coprime.

Theorem 5.1 (Chinese Remainder Theorem). Suppose that R is a commutative unital
ring and Iy, ..., Iy are pairwise coprime ideals in R. Then the map

R/(Iin--nIy)— (R/I}) x - x (R/Ix);r+ L ly—(r+1,...,r+I)
18 an isomorphism.

Proof. 1t is enough to show that the map
¢:R— (R/I) x - x (R/I});r— (r+1I1,...,7 + I)

is a surjective unital homomorphism with kernel I; n --- n I;. The result then follows by
the First Isomorphism Theorem. Quotient maps are all unital homomorphisms and so is
this map. The kernel is exactly the set of r € R such that r + I; = [; for all 1 < i < k
which is to say ker¢p = I} n--- n I, as required.

10T his is the Cartesian product. We take it to be the set of functions f : I — | J,.; Ri such that f(i) € R;
for all ¢ € I. Such functions are sometimes called choice functions in the literature, the idea being that for
each i € I we choose some f(i) € R;. If I is an initial segment of the natural numbers we often write f;
instead of f(i).
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Proving that the map is surjective is the rub and is perhaps most easily done in the
k = 2 case first. In general, note thaﬂ

R=(U;+ 1) =1L+
i#j i#]

so we can take x; € I; and y; € (., I; with z; + y; = 1. For ue (R/I;) x --- x (R/I};) we

i#j
have
¢ (s + - +upyr) = (wayr + Ins oo ugye + 1)
and the map is surjective as required. Il

This result immediately gives the usual formulation where we are trying to solve simul-
taneous congruences: if mq, ..., m; are pairwise coprime naturals and aq, ..., a; € Z then
there is some a € Z such that a = a; (mod m;) for 1 <i < k.

Similarly, Euler’s totient function is ¢(n) := |U(Z/{n))| and the above coupled with
shows that this function is multiplicative, meaning ¢(mn) = ¢(m)p(n) whenever
hef(m,n) = 1.

&qﬁ is not totally multiplicative, for example ¢(4) = 2 # 1 = ¢(2)2.

Corollary 5.2 (Polynomial interpolation). Suppose that F is a field, A\1,..., \x € F are
pairwise distinct and ay, .. .,ax € F. Then there is a polynomial p € F[X] of degree at most
k —1 such that p(\;) = a; for all 1 <1 < k.

Proof. Since \; # \; and F is a field we see that (A\;— ;) "HX = X)— (A= \) " HX =)\) =1
and hence the ideals ((X — \))_, are pairwise coprime. Write I := ()©_, (X — \;) and
apply the Chinese Remainder Theorem to F[X] to see that there is a polynomial ¢ € F[X]/I
such that ¢(X) e a; + (X — X)) forall 1 <i < k.

Let p(X) € ¢(X) + I have minimal degree so that p(X) € ¢(X) + I < a; + (X — \;) for
all 1 < < k. If d:=degp has d > k then write a4 for the lead coefficient of p and note
that p(X) — agX4* Hle (X — \) € ¢(X) + I and has strictly smaller degree. The result
is proved. O

/N Note that the obvious extension of Theorem to infinitely many rings fails: if R = Z
and I; := (p;) where p; is the ith prime then the product [ [, (Z/{p;)) is uncountable, but
any quotient of Z is countable so there cannot be a surjection from a quotient of Z to this
product.

11AThe second equality here, while true, is misleading as it makes use of the coprimality condition
and is not true for general ideals. Specifically, since I; is coprime to I; for all i # j, there are elements
zi € I; and w; € I; with z; + w; = 1. Thus 1 = (1 — H#j (1-— zz)) + (H#j wl) el + ﬂi;&j I;. Thanks
to Terry Song for asking for more explanation here. These details are not needed in the k = 2 case and 1
do not regard the details for k£ > 2 in this footnote as bookwork for the exam.

For a specific example of ideals I, J, and K with (I +J)n (I + K) # I + J n K consider R = Z[X],
I={2),J=(X+1)yand K =(X —1). Here X + 1€ [ +J = I + K whereas J n K = (X? — 1) and so if
X+1el+JnK then X +1=p(X)(X%—-1)+2q(X) for p,q € Z[X]. Degree considerations show that
p =0 and then 2 | X + 1 which is a contradiction.
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/\Take care with the meaning of coprime for ideals: there is no non-unit q(X) in Z[X]
such that X — 1 and X + 1 are multiples of ¢(X), but the ideals (X — 1) and (X + 1) are
not coprime. This is reflected in the failure of Corollary [5.2]if F is replaced by Z where,
for any p(X) € Z[X] we must have 2 | p(1) —p(—1) so we cannot specify the value of these
two points arbitrarily.

6. THE INTEGERS AND CHARACTERISTIC

The ideal structure of the integers is well-behaved. We say that an ideal in a ring R is
principal if it is generated by one element.

Proposition 6.1. Every ideal in Z is principal.

Proof. Suppose that I is a non-zero ideal and let ;1 > 0 be its smallest positive element.
If I # {u) then there is a minimal positive v € I\{x). By minimality of u we have v > p.
By the ideal property of I we have v — p € I, and by minimality of v we have v — p € (i)
and hence v € (i), a contradiction. The result is proved. O

The integers play a uniquely important role amongst unital rings:

Proposition 6.2. Suppose that R is a unital ring. Then there is a unique unital ring
homomorphism ¢ : Z — R.

Proof. For existence we define ¢ recursively on Ny by ¢(0) = 0 and ¢(n + 1) := ¢(n) + 1
for n € Ny, and then put ¢(—n) := —¢(n) for n € N. Certainly ¢(1) = 1, and we can use
induction to show that ¢ is a ring homomorphism.

In the other direction if ¢ and 1 are unital ring homomorphisms we can show ¢(z) = ¥ (z)
for all z € Ny by induction (since ¢(1) = 1 = 1(1)), which extends to the whole of Z since

¢(—x) = —¢(x) and 9)(—) = —¢(z) by Lemmal[l.4] O

/N A function f is said to be right cancellable if whenever go f = ho f we have g = h. It
can be shown that a function is right cancellable if and only if it is surjective. This remains
true if we restrict f, g, and h to be linear maps between vector spaces; or homomorphisms
between groups; or continuous maps between compact Hausdorff spaces; amongst many
other things.

By contrast, let f : Z — @Q be the inclusion map (which is an injective unital homomor-
phism), and suppose ¢, h : Q — R are unital ring homomorphisms with go f = ho f. Then
for all @ € Z and b € Z* we have g(ab™') = g(a)g(b)™' = h(a)h(b)™" = h(ab™') so g = h
despite the fact that f is not surjective.

Proposition [6.2] tells us that for any unital ring R there is a unique unital homomorphism
¢ : Z — R. This map has a kernel which is an ideal by Lemma and principal by
Proposition [6.1] say ker¢ = (x). If {y) = ker¢ then we have z | y and y | = and so
x = +y, thus there is a unique element of n € Ny such that ker ¢ = (n). This is called the
characterstic of the ring R.

The inclusion map from Z into Z, Q, R and C is a unital ring homomorphism in each
case, and hence the unital ring homomorphism and we see that the characteristic at these
rings is 0.



A3: RINGS AND MODULES, 2019-2020 21

Proposition 6.3. Suppose that R is an integral domain of non-zero characteristic. Then
R has prime characteristic p and is a vector space over F,.

Proof. Let ¢ : Z — R be the unital homomorphism of Proposition and suppose that
the characteristic is p. If p = ab for a,b = 1 then 0 = ¢(p) = ¢(a)p(b) and since R is
an integral domain we conclude that ¢(a) = 0 or ¢(b) = 0; say the former. Then a € {(p)
whence a = 0 or a = p. It must be the latter and hence p is prime.

The First Isomorphism Theorem gives an injective unital homomorphism Z/{p) — R,
and so R is a vector space over [, = Z/{p) as required. d

In view of Theorem this means that any integral domain R is of prime characteristic
p and sits between two fields of characteristic p.

While integral domains of characteristic 0 need not be vector spaces, a field of charac-
teristic 0 is a vector space over Q by Theorem [2.5]

7. PRIME AND MAXIMAL IDEALS

Suppose that R is a commutative unital ring. We say that an ideal I in R is proper if
I # R, and have the following immediate consequence.

Lemma 7.1. Suppose that R is a commutative unital ring. Then I is proper if and only
if R/I is non-trivial.

We say that an ideal I is prime if it is proper and whenever ab € I we have either a €
orbel.

For example, if R is an integral domain then (X) is prime in R[X]. To see this note
that p € (X)) if and only if p(0) = 0, whence the primality of (X) follows from the fact
that R is an integral domain. This is a close connection which manifests more generally:

Proposition 7.2. Suppose that R is a commutative unital ring and I is a proper ideal.
Then I is a prime ideal if and only if R/I is an integral domain.

Proof. Note that a + I,b+ [ € R/I has (a+ I)(b+I) = (ab) + [ = I if and only if abe I.
=: (a+ I)(b+ 1) = Og/r = I implies ab € I implies, and a € I or b € I by primality.
Consequently a + I =1 = Og/y or b+ 1 =1 = 0gjy i.c. R/I is an integral domain. (Note
R/I is non-trivial since [ is proper.)
<: Ifabe I then (a+1)(b+1) =1 = Op/r and hence a+1 = Ogyy = L or b+1 = Op/y = I
soaelorbel e Iisprime. U

/\Note that R is an integral domain if and only if {0} is prime.

We say that an ideal [ is maximal if [ is proper and whenever I < J < R for some
ideal J we have J =1 or J = R.

/N Maximal here is maximal with respect to inclusion amongst proper ideals; all ideals
in R are contained in R.

Proposition 7.3. Suppose that R is a commutative unital ring and I is a proper ideal in

R. Then I is mazimal ideal if and only if R/I is a field.
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Proof. By Theorem there is an ideal I < J < R if and only if there is an ideal
{0} < J < R/I. The result follows from Lemma [3.5since R/I is non-trivial. O

It follows immediately from this and Proposition that every maximal ideal is prime,
but this can also be proved directly.

It is not immediately obvious that a non-trivial commutative unital ring, R, should have
a maximal proper ideal. If R is finite then we might proceed iteratively: note that {0} is
a proper ideal (since R is non-trivial). Suppose we have constructed some proper ideal I.
If this it is maximal then stop; if not then there is some proper ideal strictly containing 1.
In the second case replace I by this new ideal. The new ideal is strictly larger, and since
R is finite this process must terminate.

If R is infinite this process might not terminate, but we still have the intuition that we
should be able to keep going until we exhaust all the element of R. This intuition can
be formalised through a transfinite induction, but the conclusion (in a slightly generalised
form which follows) is more commonly established via Zorn’s Lemma following [Zor35].

Theorem 7.4. Suppose that R is a commutative unital ring and I is a proper ideal in R.
Then there is a maximal ideal J in R containing I.

We shall not prove this here, though it is not particularly involved. In fact we could
take it an an axiom — it is known to be equivalent to the axiom of choice or Zorn’s Lemma
[Hod79].

We say that an element x € R is prime if (x) is a prime ideal. On the face of it this
seems different to the ‘usual’ notion of prime in the naturals when they are considered
as elements of the ring of integers. To explain the connection we shall need a little more
notation.

In a commutative unital ring, we have (x) = {xr : r € R}, which we sometimes write as
xR (or Rzx).

In the commutative (but not unital) ring 27Z, all the elements of {2r : r € 2Z} are
divisible by 4 and so, in particular, this set does not contain 2, and we have (2) # {2r :
r e 27}.

Principal ideals in commutative unital rings capture a notion of divisibility: we say that
a divides b or b is a multiple of a, and write a | b if any of the following equivalent
properties holds:

b e {ay; or {(by = {a); or there is some = € R such that b = xa.

Note that for all x € R we have x | 0 (including 0 | 0) and u | z for all u € U(R). We say
that a and b are associates and write a ~ b if {a) = (b), which is trivially an equivalence
relation.

We say that a € R* is irreducible if either of the following equivalent properties holds:

(i) {a) is maximal amongst proper principal ideals;
(ii) whenever x | a we have z ~ a xor x ~ 1.

/N Note that units are not irreducible since the ideal generated by a unit is not proper.

Lemma 7.5. Suppose that R is an integral domain. Then
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(i) a ~ b if and only if there is some x € U(R) such that a = xb;

(i1) a € R* is irreducible if and only if whenever a = xy we have x ~ 1 ory ~ 1;
(i1i) a € R* is irreducible if and only if whenever a = xy we have x ~ a ory ~ a;
() if a € R* is prime then it is irreducible.

Proof. < from : If # € U(R) then by closure R < R, and if z € R implies (z27!)x € Rz,
whence R = Rx and hence Ra = Rb.

= from : If Ra = Rb then there are x,y € R such that a = xb and b = ya, whence
a = zya and by the Cancellation Lemma zy = 1 so x € U(R).

« from ({): Suppose that {a)y < {z) then a = zy for some y € R and either z ~ 1, or
y~1wheneex~aby.

= from ({): Suppose a is irreducible and a = zy. Then {a) = (y) and either y ~ 1 (and
we are done) or y ~ a. In the latter case by (i) we have a = zy for some z € U(R) and
hence zy = xy so by the Cancellation Lemma z = x and hence z ~ 1 by .

The proof of is similar to the proof of .

For 7 suppose that a is prime and a = yz for y,2 € R. Then a | yz and so by
primality, either a | y meaning {y) < {a) < (y) and y ~ a, or a | = and the same
argument gives x ~ a. The result follows from . O

/N\The right to left implication in part H of the Lemma is true in any commutative unital
ring, but the left to right implication may fail if R is not an integral domain: Consider the
ideal I =<{(Z — XY Z) in the ring F[X, Y, Z]| viewed as polynomials in Z with coefficients
in F[X,Y]. Then we may think of the (commutative unital) ring R := F[X,Y, Z]/I as
the polynomials in Z with constant coefficient from F[ X, Y] and all other coefficients from
FIX,Y]/{1 = XY). In R we have (Z) = (Y Z). But if u € U(R) then u = a + Zb where
be Randa e U(F[X,Y]) =F* soif Z =uYZ (mod I) then equating coefficients of Z we
have 1 — XY | 1 —aY in F[X, Y] which is a contradiction when we look at the X-degree.
We conclude that there is no unit v € U(R) such that Z = uY Z (mod I).

/N Even in integral domains, irreducible elements need not be primes: The ring F[ X2, X?],
which is the unital subring of F[X] consisting of polynomials whose coefficient of X is 0,
is an integral domain. In this ring X? is irreducible, but (X?)? € (X?) while X3 ¢ (X?).

An integral domain is said to be a principal ideal domain or PID if every ideal is
principal. Every field is a PID, and we saw in Proposition that Z is also a PID. In
PIDs we have the following complement to Lemma part .

Proposition 7.6. Suppose that R is a PID and x € R*. Then x is iwrreducible if and only
if R/{x) is a field. In particular, any non-zero prime ideal is mazimal.

Proof. {x)is maximal amongst proper principal ideals if and only if (z) is maximal amongst
all proper ideals in R (since R is a PID) which is true if and only if R/(x) is a field by
Proposition [7.3]

For the last part if I is a non-zero prime ideal then since R is a PID, I = (z) for some
x € R*. Hence z is irreducible by Lemma , and so (x) is maximal amongst proper
principal ideals, but these are the only proper ideals in R so I is maximal amongst all
proper ideals. O
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Since Proposition [6.1] established that Z is a PID, we have from Proposition and
Proposition that n € N is prime in the old sense if and only if it is prime in the new
sense.

Proposition immediately explains our existing supply of finite fields: the fields F, of
the integers mod p are all quotients of the principal ideal of integers by an irreducible. To
get more we need some more PIDs; the proof that Z is a PID in Proposition [6.1] adapts to
give the following.

Proposition 7.7. Suppose that F is a field. Then F|X] is a PID.

Proof. Suppose that I is an ideal in F[ X|. We may assume that it is non-zero and since the
units of F[X| are the elements of F* we may take p € I a monic polynomial of minimum
degree. If I is not principal then there is an element ¢ € I\(p), also monic, and of minimal
degree (in this complement). By minimality of the degree of p we have degp < degq. Since
I is an ideal ¢(X) — p(X)Xd€47deP ¢ [ and since p and ¢ are monic this difference has
degree less than g. By minimality of ¢ it follows that q(X) — p(X)Xdeed=deer ¢ (p5 but
then g € (py — a contradiction. O

8. FIELDS AND ADJUNCTION OF ELEMENTS

We say that a field I is a subfield of a field K or K is a field extension of F if F is a
unital subring of K[ In this situation K has the structure of a vector space over F and
we call its F-dimension the degree of the field extension, also denoted |K : F|.

Theorem 8.1. Suppose that F is a field and f € F[X] is irreducible of degree d. Then
K := F[X]/{f) is a degree d field extension of F, there is a € K such that K = Fla] and
the set of F-polynomials with o as a root is the ideal generated by f.

Proof. Proposition tells us F[X] is a PID and hence Proposition tells us that
F[X]/{f) is a field. The map F — F[X] — F[X]/{f) is a composition of the embedding
of F as the constant functions of a polynomial ring, and then the quotient map. This is
a unital homomorphism which is injective since f is non-constant (being maximal), so K
is an F-vector space. Let a := X + {f). The set of F-polynomials with « as a root is an
ideal and since F[X] is a PID it is generated by some g. Since f(a) = f(X) + {f) =0 we
see that f € (g), but f is irreducible so {(f) = {g).

The elements 1, «,...,a% ! are F-independent in K; if they were not then there would
be a polynomial g € F[X]* of degree at most d — 1 such that g(«) = 0, but all non-zero
polynomials with this property are in the ideal generated by f and so have degree at least
d.

By induction a” € Span(1,a,...,a4™ 1) for all n > d, so K is a degree d extension and
K = Fla]. O

We think of K as the field F with the element o adjoined.

2Note that not all unital subrings of fields are subfields e.g. Z is a unital subring of C, but Z is not a
field.



A3: RINGS AND MODULES, 2019-2020 25

Suppose that K is a field extension of F and « € K. The set {f € F[X]: f(a) = 0} is an
ideal in F[X]. If it is non-trivial we say that « is F-algebraic, and since F[X] is a PID
there is a unique monic generator, which we call the minimal polynomial of a. Note
that if |[K : F| = d then 1,q,...,a? must be linearly dependent for any a € K, so every
such « is F-algebraic.

All degree one polynomials in F[X] are irreducible, but in view of Theorem [8.1| they do
not give us any new fields. A quadratic is irreducible if and only if it does not have a root
in IF which leads to a couple of examples:

(i) X2 + 1 is irreducible over R. Hence R[X]/{X? + 1) is a field, as we saw directly
in example after Proposition .

(ii) Suppose that p is an odd prime. The maplﬂ U(F,) — U(F,); x — 2 is not injective
since (—1)? = 1% (and —1 # 1 in for odd p), but the domain and codomain are
finite and of the same size, so the map is not surjective. Thus there is some a, € F,,
such that ¢(X) := X? — a, has no roots over F,, and hence F,[X|/(X? — a,) is a
field of order p?.

(iii) Any quadratic q € Fo[ X]| must have the form ¢(X) = X? +aX +b. ¢ is irreducible
if and only if ¢(0) = ¢(1) = 1, whence X2+ X + 1 is the only quadratic irreducible
in Fy[ X]. Fo[X]/{(X? + X + 1) is then a field of order 4.

/N'The field in this last example is the unique (up to isomorphism) field with 4 elements
and is denoted Fy. Tt is not equal to the ring Z/4Z — 2 x 2 = 0 in the latter.

Corollary 8.2. Suppose that F is a finite field extension of R. Then F has degree at most
2.

Proof. Suppose that a € F\R. Since F is a finite extension of R, « is R-algebraic and it
has a minimal polynomial m € R[X]. By the Fundamental Theorem of Algebra m is either
linear or quadratic; since « ¢ R it is quadratic. In particular there is some element 3 € F
such that 5%+ 1 = 0 and hence C is (isomorphic) to a subfield of F. F is a finite extension
of C (since it is a finite extension of R). However, if a € F\C then it is C-algebraic and so
has a minimal polynomial m’ € C[X]. Again, by the Fundamental Theorem of Algebra m’
is linear, contradicting the fact that a ¢ C. The result is proved. U

/N Note that the finiteness here is critical: R(X) is a field extension of R that is certainly
not finite.

Theorem 8.3 (Tower Law). Suppose that L is a field extension of K and K is a field
extension of F. Then |L:F| = |L: K||K: F|.

Proof. Let eq,...e, be a basis for K as a vector space over F and f1, ..., f,, be a basis for
IL as a vector space over K. We shall show that (e;f; : 1 <7< n,1 <j<m)is a basis for
L as a vector space over F. There are two things to check:

B3In fact it is a homomorphism.
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Independence: Suppose that Z” Aijeif; = 0 for some A; ; € F. Then

i (Zn: )\i,jei> fi =0,

j=1 \i=1
but each coefficient of f; is an element of K, and so by linear independence of (fi, ..., f)
we see that " A\ ;e; = 0 for all 1 < j < m. But then by linear independence of
(€1,...,€,) wesee that \;; =0foralll <i<nand1<j<m.

Spanning: If x € L then since (fi,..., fi,) is a basis for . over K we have elements
Wiy -y o € Kosuch that x = py fi + -+ - + pn frn. Since (eq,. .., e,) is a basis for K over F,
for each 1 <@ < m we have \;1,...,\;,, such that p; = A\ 1€ +--- + A ,e, and hence

T = Zﬂz’fz‘ = 2 Aijeif;
i=1 ij
as required. O

/N The polynomial X3 + X + 1 is irreducibl so L :=Fy[X] /(X3 + X + 1) is a field
of order 8. However, I does not have a subfield of order 4: suppose it did, and call it K.
Since 1 € K, we have that Fy is a subfield of K. However, |K: Fy| = 2 and |L : Fy| = 3 and
the Tower Law then gives us |L : K| x 2 = 3, a contradiction.

9. IRREDUCIBILITY TESTS FOR POLYNOMIALS

Suppose that ¢ : R — S is a unital homomorphism between two integral domains. Then
(9.1)  ¢:R[X] — S[X];aaX?+ - + a1 X + apX — ¢(ag) X+ - + ¢d(a1) X + p(ao)

is also a unital homomorphism between integral domains. We can use this homomorphism
to examine irreducibility in S[X] and R[X] through each other. We begin with the case
when ¢ is the embedding map from Theorem of an integral domain into its field of
fractions.

/A 2X is reducible in Z[ X] but irreducible in Q[X]. We say that f € Z[X] is primitive
if there is no prime p dividing all of the coefficients of f.

Theorem 9.1 (Gauss’ Lemma). A non-constant polynomial f € Z[X] is irreducible in
Z|X] if and only if it is primitive, and irreducible in Q[X].

Proof. <: Suppose that f is primitive and irreducible in Q[X]. Write f = gh for g, h €
Z|X]. Since f is irreducible in Q[X] we see that either degg = 0 or deg h = 0, and since
f is primitive we then conclude that either g or A is +1.

=: Suppose that f is irreducible in Z[X], and f = gh for some g,h € Q[X]. Let
A € N be minimal such that there is some ¢ € Q* with A\¢™'g € Z[X] and ¢h € Z[X]. Let
q € Q* be such that ¢ :== \¢~'g € Z[X] and I := ¢gh € Z[X]. Suppose that p is a prime
dividing A. Then p | ¢’k and applying the modulo p reduction map to g'h’ we get (¢’

M There are only two irreducible cubics in Fo[X], with the other being X2 + X2 + 1. To see this note
that any reducible cubic p has a linear factor i.e. p(0) = 0 or p(1) = 0.
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(mod p))(A (mod p)) = 0 in the integral domain F,[X]. Hence ¢’ = 0 (mod p) or A’ =0
(mod D), but thenp | A\g *g or p | qh (in Z[X]) contradicting minimality of A since either
(ApYg'g € Z[X] and qh € Z[X], or (A\p~')(gp~")' € Z[X] and (¢gp~')h € Z|X]. We
conclude that A = 1 and so g or h is a unit in Z[X] and hence in Q[X] as required. =~ O

In the proof above we used the reduction (mod p) map which itself gives rise to a useful
test.

Theorem 9.2 (Reduction test). Suppose that f € Z[X] is monic, and p is a prime such
that f (mod p) is irreducible. Then f is irreducible.

Proof. Write ~ for the homomorphism Z|X] — F,[X];9 — ¢ (mod p). Suppose that
f = gh for g,h € Z[X], so that f = gh Since f is irreducible we see that either g or h is
a unit in F,[X] which means that exactly one of them has degree 0. Since f is monic we
have - ~

deg g + degh = deg f = deg f = degg + degh.
However degg < degg and degiNL < degh, hence degg = deg g and deg% = degh and so
exactly one of the polynomials g and h has degree 0; say g. Since the lead coefficient of f
is 1 we conclude that ¢ | 1 and hence ¢ is a unit as required. U

For example, the polynomial p(X) = X3 — 34X? + 17X + 289 is irreducible in Z[X]
because p(X) (mod 2) = X3 + X + 1 is irreducible in Fo[ X].
We need some condition like f being monic: for example, if f(X) = (2X +1)2X then
f (mod 2) = X which is irreducible but f is not.
Sometimes the reduction test is not enough to establish irreducibility, and the following
proposition gives another useful approach.

Proposition 9.3 (Eisenstein’s Criterion). Suppose that f(X) = a, X" + -+ -+ a1 X + ap s
a primitive polynomial in Z|X] and p is a prime such that p | a; for all0 < i <n; p ) a,;
and p* | ag. Then f is irreducible in Z[X] and, hence, in Q[X].

Proof. Write ~ for the homomorphism Z[X]| — F,[X];g — ¢ (mod p). The first two
hypotheses mean that f ~ X", and if f = gh then §h ~ X™. Since X is prime in F o[ X
we conclude that § ~ X* and h~ X" for some 0 < i <n. If 0 <i < n then this means
that the constant term of g and the constant term of h are both divisible by p and hence
the constant term of f is divisible by p?, a contradiction. Since degg + degh = deg f =
degg + degh and degg < degg and degh deg h we conclude that degg = degg and
degh = degh. Since f is primitive it has no non-unit constant divisors and the result is
proved. [l

For example, f(X) = 2X* + 3X + 3 is irreducible in Z[X| by Eisenstein’s Criterion.
The polynomial ¢(X) = X% + 1 is irreducible in Z[X]. There are various ways this can
be shown and various ways it cannot.
(i) (Equating coefficients) q has no degree 1 factors in Z[ X | since it has no roots. Thus
if it were reducible then there would be two quadratic factors f(X) = ax X% +a; X +
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ap and g(X) = by X? + b1 X + by in Z[X] such that ¢ = fg. Equating coefficients
gives

a2b2 = 1, agbl + CleQ = 0, a2b0 + a1b1 + a062 = O, Cleo + (lobl = 0, and aob() = 1,

which gives a contradiction.

(ii) (Eisenstein’s Criterion) This does not apply directly, however ¢(X + 1) = (X +
D +1=X*+4X3+6X?+4X + 2 is irreducible by the Criterion at p = 2, and
hence q is irreducible.

(iii) (Prime values) q(0) = 1, q(£1) = 2, q(£2) = 17, q(+4) = 257, ¢(£6) = 1297
are all primes or units. As before, the critical case is when ¢ is a product of
two quadratic factors in Z[X]. Then one of the factors has to take a value from
{—1,1} at every element of Z := {—6,—4,—2,—1,0,1,2,4,6}, hence at least one
factor takes a value from {—1,1} at at least five values in Z, and this quadratic
either takes the value 1 at least 3 times or —1 at least 3 times. But a quadratic
that is the same value at three points is constant. Hence ¢ is irreducible.

/\By contrast, the polynomial X*+ X +2 is irreducible in Z| X] (since it has no
integer roots) but is also even on the integers and so prime at only finitely many
values.

(iv) (Reduction modulo a prime) This test does not work for any prime. Suppose that
p is a prime and write § for ¢ (mod p). Then for p = 2, §(X) = (X + 1)* and
so ¢ is reducible (mod 2). Now suppose that p is odd. We saw in example
after Theorem that for every odd prime p there is a field extension F of [F,, of
degree 2. Now U(IF) has order p? — 1 in this case which, since p is odd, is divisible
by 8. Since U(F) is cyclic (Proposition it follows that it has an element « of
multiplicative order exactly 8. Since 0 = a® — 1 = (a® — 1)(a* + 1) we see it must
be the second factor that is 0 (otherwise o would have order dividing 4). But then
¢(ar) = 0 and so ¢ is in the ideal generated by the minimal polynomial (in F,[X])
of o which has degree 2. It follows that ¢ is not irreducible in F,[X].

10. UNIQUE FACTORISATION DOMAINS

The aim of this section is to establish an analogue of the Fundamental Theorem of
Arithmetic for PIDs. It is instructive to keep the case R = Z in mind for understanding
the arguments.

We say that a commutative unital ring R has the ascending chain condition on
principal ideals or ACCP if whenever ([;);cy, is an ascending chain (meaning I; < ;41
for all ¢ € Ny) of principal ideals then there is some N € Ny such that I,, = Iy for all
n = N.

Lemma 10.1. Suppose that R is a PID. Then R has the ACCP.

Proof. Suppose that (1;);en, is an ascending chain of principal ideals. Then [ := UieNO I;
is an ideal, and so principal say I = {(x). But then there is some N € Ny such that z € Iy
and hence for n = n we have (x) ¢ Iy < I, € I = (x), and hence I,, = (x) = Iy for all
n = N. The result is proved. Il
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A ring is said to be Noetherian if it satisfies the ascending chain condition on all ideals,
meaning that whenever (I;);ey, is an ascending chain (meaning I; < ;4 for all i € Ny) of
ideals then there is some N € Ny such that I,, = Iy for all n > N. This is a much more
important concept but will not be a focus of this course.

/NThe fact that the chain of ideals is ascending rather than descending makes a sig-
nificant difference. We say that R has the descending chain condition on principal
ideals or DCCP if whenever (/;);en, is a descending chain (meaning I; > [;;; for all
i € Nyp) of principal ideals then there is some N € Ny such that I,, = Iy for all n > N.

While any PID has the ACCP, it turns out that an integral domain has the DCCP if
and only if it is a field. The if direction is immediate since there are only two ideals in a
field. In the other direction, suppose x € R*. Then we have a chain of ideals (x) > {(z*) o

-5 {x'y > ---. By the DCCP there is some i € N such that {z*) = (1), and so there
is some 7 € R such that z° = rz**! and hence by the Cancellation Lemma rz = zr = 1
and so x € U(R) as required.

For us the important feature of the ACCP is that it will let us factorise elements of a
ring. To formulate this precisely we say an integral domain R is factorisation domain
or atomic domain if for every x € R* there is a possibly-empty vector (zi,...,z,) of
irreducible elements of R such that  ~ z---z, with the convention that the empty
product is 1.

Lemma 10.2. Suppose that R is an integral domain with the ACCP. Then R is a factori-
sation domain.

Proof. Write F for the set of elements of R that can be written as a product of irreducible
elements so that 1 € F, all irreducible elements of R are also in F, and F is closed under
multiplication. If R\F is not empty we can create a sequence (;);en, of elements of R\F
iteratively with {(zo) < (x1) < --- which contradicts the ACCP. Let xy € R\F. At step i
we have x; ¢ F and so it is not irreducible and hence x; = y;2; for some y;, z; # x;. Since F
is closed under multiplication we cannot have both y; and z; in F; let x; 1 € {y;, z;} such
that x;,1 ¢ F. This gives the desired sequence and the result is proved. O

Although we did not mention it, this argument required the Axiom of Dependent Choice,
but not the full Axiom of Choice.

There are factorisation domains not having the ACCP but these are not easy to con-
struct; the first example was given by Grams in [Gra74].

Primes are important for ensuring uniqueness of factorisation.

Proposition 10.3. Suppose that R is an integral domain and xi,...,T.,Yy1,...,Ys are
primes with x1 -+ x, ~ Yy -+ ys then r = s and there is a permutation 7 of [r] :=={1,...,r}
such that x; ~ Yrqy for all1 <i <.

Proof. Tt is convenient for this induction to prove something slightly more general: We
shall show that if xy,...,z, are primes and (y;);c; is a sequence of irreducible elements
indexed by a finite set I such that []i_, x; ~ [ [..; v; then there is a bijection 7 : [r] — I
such that @; ~ yrq) for all 1 <i <.
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For r = 0 we have [ [,.; y; ~ 1 (by definition of the empty product) and so y; € U(R) for
all 7 € I meaning that [ is empty since no unit is irreducible. Now, suppose that r» > 0.
Then z, is prime and z, | [ [,.; ¥; whence there is some j € I such that z, | y;. But y; is
irreducible and z, # 1 and so x, ~ y;. By the Cancellation Lemma z; - - - z,_; ~ Hie[\{j} Yi,
and by the inductive hypothesis there is a bijection 7 : [ — 1] — I\{j} such that z; ~ yz;)
for all 1 < <r — 1. Extend this to a bijection [r] — I by setting 7(r) = j and the result
is proved. O

A unique factorisation domain or UFD is a factorisation domain in which all irre-
ducible elements are prime, which leads to a uniqueness of factorisation as described in

Proposition [10.3]
Proposition 10.4. Suppose that R is a PID. Then R is a UFD.

Proof. By Lemma and Lemma we have that R is a factorisation domain. That
every irreducible is prime follows from Proposition [7.6| and Proposition O

In particular, since Z is a PID by Proposition the above gives the Fundamental
Theorem of Arithmetic.

Not all UFDs are PIDs. Indeed, Z[X] is a UFD (we have not proved this) but it is not
a PID (by Q2, Examples Sheet 2) since Z is not a field. In general Gauss’ Lemma can be
used to show that if R is a UFD then R[X] is a UFD, which gives other examples of UFDs
that are not PIDs such as F[X,Y].

11. EUCLIDEAN DOMAINS

Suppose that R is an integral domain. A Euclidean function on R is a function
f : R* — Ny such that if a,b € R* then either b | a or there are ¢ € R, r € R* such that
a=0bqg+rand f(r) < f(b). We say that R is a Euclidean domain if R supports at least
one Euclidean function.

Proposition 11.1 (Division algorithm for integers). Z is a Euclidean domain.

Proof. Take f(z) := |z| for z € Z*. Suppose that a,b € Z and b # 0, and consider the set
{a+bq:qeZ,a+bg >0} This is a non-empty set of natural numbers and so it has
a minimal element, call it ». We certainly have r > 0; suppose r = f(b) = |b| = wb for
some w € {—1,1}. Then r = a + bg, and 0 < r — f(b) = a + b(q — w) < r contradicting
minimality; hence r < f(b). Since r = 0 we have r = 0 or f(r) = r < f(b) as required. [

There is also a division algorithm for polynomials which is captured by the same defini-
tion.

Proposition 11.2 (Division algorithm for polynomials). Suppose that F is a field. Then
F[X] is a Euclidean domain.

Proof. Take f(p) = degp for p e F[X]*. Suppose that a,b € F[X] and b # 0. If b | a then
we take r = 0 and let ¢ be such that a = bg; we are done. It not then P := {a+bq : ¢ € F[X]}
does not contain 0; take r = a + bg such that the degree is minimal for polynomials in P.
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Suppose that degr > degb. Then write A for the coefficient of X9" in r and note
that v’ ;= r — bAX487~de¢b has v’ € P and degr’ < degr, a contradiction. It follows that
degr < degb as required. O

Given an integral domain R, a Dedekind-Hasse function on R is a map N : R* — N
such that whenever a,b e R* either b | a or there is some non-zero element ¢ € {a, by such
that N(c) < N(b). Put another way either b | a or there are elements p,q € R, ¢ € R*
such that ap = bg + ¢ and N(c¢) < N(b). The definition of Euclidean function places the
additional requirement p = 1, so in particular any ring supporting a Euclidean function
supports a Dedekind-Hasse function.

Proposition 11.3. Suppose that R is an integral domain. Then R is a PID if and only
if R admits a Dedekind-Hasse function. In particular, R is a PID if it is a Euclidean
Domain.

Proof. =: Since R is a UFD we can define N : R* — Ny to be the number of irreducible
factord| of its argument. For any a,b e R* either b | a or else {a,b) 2 (b). Since {a,b) is
principal, it is generated by some ¢ € R* and we have ¢ | b, and ¢ # b whence N(c) < N(b).

<: Suppose that [ is a non-zero ideal in R and let b € I have N(b) minimal. Now
suppose that a € I so that by the Dedekind-Hasse property either b | a, or else there is
some non-zero ¢ € {a,by < I with N(c¢) < N(b). The second conclusion is incompatible
with the minimality and so the first holds and hence I = {b) as required. O

There are integral domains that are not Euclidean domains, for example F[X, Y] is not
even a PID and so by the above it is not an ED.

However, more than this there are examples of PIDs which are not Euclidean domains,
but showing this is not easy. The rings Z [1(1 + v/=D)| where D € {19,43,67,163} are
some classic examples all described in [PV08]. We shall give a different example now.

Write A := R[X,Y]/I where I := (X? +Y? +1). Every F' € A has a unique coset

~

representative of the form p(X) + Yq(X) and we write F' := p(X) —Yq(X) + I, which has
two useful properties:
e ~is multiplicative: i.e. FG = FG for all F.Ge A
o If ' =p(X)+ Yq(X)+ I then since the Y-degree of any non-zero element if [ is
positive we have FF nR[X] = p(X)? + ¢(X)*(X? + 1).
In view of this, if F' = p(X) + Yq(X) + I and G = s(X) + Yt(X) + [ and F'G = 04 then
FFGG = 0y, and so

(P(X)* + (X7 + 1)g(X)*)(s(X)* + (X7 + 1)t(X)?) = 0

whence p =g =0or s =t = 0 and we see that A is an integral domain. Similarly, suppose
that FFG = 1+ I so that I’ and G are units of A. The same argument shows that ¢ =t =0
and p and s are constants in R*.

157 one wanted N to be multiplicative one could take 2 to the power of the number of irreducible factors
Instead.
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Lemma 11.4. Suppose that J # {0} is an ideal in A. Then A/J is a finite-dimensional
vector space over R.

Proof. By hypothesis there is some p(X) + Y¢q(X) + I € J without both p and ¢ being 0.
Thus p(X)? + (X? + 1)q(X)? + I € J; write d for the degree of p(X)? + (X? + 1)q(X)?
and note that 1,..., X% and Y, Y X,...,Y X4 are linearly dependent in A/J from which
the result follows. O

The maximal ideals in A have a particular structure.

Lemma 11.5. Suppose that J is a maximal ideal in A. Then J = {a+ BX +~Y + 1) for
a, 3,7 € R with (8,7) # (0,0) and dimg A/J = 2.

Proof. We know by Proposition that A/J is a field and since A and J are both R-
vector spaces we know that A/J is a field extension of R, and it is finite by Lemma
11.4 Thus by Corollary the extension has degree at most 2. On the other hand
(X+T+TP+ Y +I1+TP+(Q+1+J)2=0ay=1+Jand1+1+J+#1+Jsowe
cannot have A/J =~ R (since then a sum of three squares of elements in R would be zero
without all of the elements being zero).

The elements 1 + 1 + J, X + 1+ J, and Y + I + J must be linearly dependent in
A/J and 1 + 1+ J # J, so there are reals «, 3,7 € R with (5,v) # (0,0) such that
al+1)+ (X +1)++(Y +I) = (a+ X +7Y)+ [ e J. Finally (8% ++*)X? + 28X +
(@®+ %) +Tela+BX +~Y + 1), and so A/{a+ X +~Y + 1) is at most 2-dimensional
and J = (o + X + 7Y + I) as required. O

Proposition 11.6. The ring A is not a Fuclidean domain.

Proof. Suppose that A supports a Euclidean function f. A in not a field so we may take
F € A* a non-unit with f(F) minimal (amongst non-units). The ideal {F’) is maximal and
so F ~ a+ X +~Y for some (8,7) # (0,0). Let (8',+') be linearly independent of (3, ),
so that by the Euclidean property we have /X + +'Y € R + (F) and hence (F) = A, a
contradiction. O

Proposition 11.7. The ring A is a PID.

Proof. Suppose that J is a non-principal ideal in A. Then J is non-trivial and so dimg A/J <
o0 by Lemma[l1.4] Set J, := J and at stage n suppose J,, is non-principal. Then it is con-
tained in a maximal ideal by Theorem[7.4] and this ideal is principal by Lemmal[I1.5]so there
is some non-unit F,, such that J,, c (F,); set J,,1 := {F : F'F, € J,} so that J,, ;1 2 J, and
Jp+1 is non-principal. The former conclusion ensures that dimg A/J,1 < dimg A/J, but
this process cannot go on indefinitely since dimg A/.J < o0, so we have a contradiction. [

12. MODULES

Suppose that M is a commutative group. An endomorphism of M is a homomorphism
M — M; we write End(M) for the set of all endomorphisms of M. This has the structure
of a unital ring with addition defined coordinate-wise and multiplication by composition:

(¢ + ¥)(2) = ¢(z) + ¥(z) and (¢¥)(z) 1= ¢((z)) for all z € M.
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The multiplicative identity of this ring is the identity map M — M;xz — x, and the zero
is the map M — M;x — 0p;. There are a number of things to check; we mention the
important parts:

e The set of all functions M — M forms a (commutative) group under pointwise
addition, and the fact that End(M) is a subgroup makes essential use of the
commutativity of M [[Y

e The set of all functions M — M is closed under composition, and this operation
is associative. We also need that the composition of homomorphisms is again a
homomorphism.

e Finally, composition of functions is right-distributive over coordinate-wise ad-
dition, but it is not in general left distributive. This is the point where we
make critical use of the fact that endomorphisms are homomorphism because
this ensures that composition is left distributive over coordinate-wise addition:
(60 (1 +m)(x) = B(u() + 7(x)) = (60 1)(x) + (60 7)(x) for all & M.

Thus End(M) is another example of a ring in roughly the same way as Sym(X) — the set of
bijections of a set X — is a group. An action of a group GG on a set X is a homomorphism
G — Sym(X), and a module is the same sort of thing for rings. Specifically, given a
unital ring R a left R-module M is a commutative group also denoted M and a unital
homomorphism

p: R — End(M)
which we call scalar multiplication; we write rx for p(r)(x).
We begin by mentioning some examples.

(i) The analogue of Cayley’s Theoremﬂ for groups is the fact that for any unital ring
R there is a unital homomorphism

R — End(R);r — (R — R;x — rx).
(ii) Given a vector space V and a field F the map
F— End(V); A — (V- Viv— \v)

is a unital homomorphism giving V' the structure of a left F-module. Conversely,
if V' is a left F-module then it has the structure if an F-vector space with scalar
multiplication the same as that for modules.

(iii) A commutative group M is a left Z-module via the map

Z—End(M);z— (M — M;z — zx).

(iv) Given a vector space V and an endomorphismﬁ T :V — V there are two F[X]-
modules associated with 7*:

161ndeed, the set of homomorphisms G — G with the binary operation (¢,v) — (z — ¢(z)¥(x)) forms
a group if and only if G is commutative. To see this consider what happens if z — 2! is a homomorphism.

17Cayley’s Theorem says that if G is a group then G — Sym(G); g — (G — G;z — gz) is a well-defined
homomorphism.

181\/Ieaning here a linear map V' — V.
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(a) The commutative group V' equipped with
F[X] — End(V);p — (V — Vi — p(T)z).
(b) The commutative group F[T] := {p(T) : p € F[X]} equipped with
F[X] — End(F[T]);p — (F[T] — F[T]; 2 — p(T)z).
Modules can be thought of as analogues of vector spaces with the field replaced by a ring.

A left R-module homomorphism or R-linear map between two left R-modules M
and N is a group homomorphism ¢ : M — N with

é(rx) = ro(x) for all z € M,r € R.

If F is a field this has the same meaning as F-linear in the usual sense.

/NThe ra on the left is the scalar multiplication on M and the r¢(x) is the scalar
multiplication on N.

As before we say that ¢ : M — N is an isomorphism if it is a homomorphism with a
homomorphic inverse or, equivalently, a bijective homomorphism; we write M =~ N.

Given a module M we say that N is a submodule of M if N is a subgroup of M as an
additive group and rz € N for all z € N and r € R.

Proposition 12.1 (Quotient modules). Suppose that M is a left R-module and N is a
submodule of M. Then M /N can be equipped with the scalar multiplication r(x + N) :=
re + N forr € R making it into an R-module.

Proof. Since N is a commutative subgroup of M we have that M /N is a commutative
group. We have already seen that in this case End(M/N) is a unital ring. We just need
to check that the map

R — End(M/N);r— (x + N —rz+ N)

is a well-defined unital homomorphism. To see it is well-defined note that if t+ N = y+ N
then z —y € N, and hence r(z —y) € N and so rx + N = ry + N so that the map on the
right maps M /N — M /N. It is a homomorphism since

r(z+y)+ N=((re)+ (ry)) + N = (re+ N) + (ry + N) for all x,y € M,

and so the map on the left really maps into End(M/N). Since 1z = x for all x € M we
have that 1 is mapped to the multiplicative identity in End(M/N). Finally,

(r+s)z+ N = ((rx) + (sz)) + N =(re + N) + (st + N) for all r,s € R,z € M,
and
(rs)t + N =r(sx)+ N =r(sx+ N) = (rs)(zr+ N) for all r,s € R,z € M.
The result is proved. [l

Theorem 12.2 (First Isomorphism Theorem). Suppose that ¢ : M — N is an R-linear
map between left R-modules M and N. Then ker¢ is a submodule of M; ¢(M) is a
submodule of N; and the map

5:M/kergz5—>N;x+ker¢'—>gz5(x)
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is an injective R-linear map with image ¢(M).

Proof. First, ker ¢ and Im ¢ are subgroups of the additive groups of M and N respectively
by the First Isomorphism Theorem for groups. Now, if r € R and x € ker ¢ then ¢(rx) =
r¢(z) = r0 = 0, and so rx € ker ¢, and ker ¢ is a submodule of M. On the other hand if
re Rand x € ¢(M) then x = ¢(y) for y € M so rz = ro(y) = ¢(ry) € ¢(M)i and so ¢(M)
is a submodule of N.

By Proposition M /%ker ¢ is a left R-module. The map is injective and well-defined
since x + ker ¢ =y + ker ¢ iff  — y € ker ¢ iff p(x — y) = 0 iff ¢p(x) = ¢(y). The image is
certainly ¢(M). It remains to check the map is R-linear:

O((z +y) +ker ) = ¢z +y) = (x) + ¢(y) = d(x + ker §) + (y + ker ¢),

and

5(7“(17 +ker o)) = ¢(rz) = ro(r) = r%(x + ker ¢).
The result is proved. O

Given an indexing set I and left R-modules (M;);cr, the direct sum of (M;);c; is denoted
@,c; M; and is defined to be the direct sum of the commutative groups M;, also denoted
@,c; M;, endowed with the structure of a left R-module via the multiplication rz := (rz;)ies
where rz; denotes the scalar multiplication of » on z; as an element of M;.

We take the usual convention that if I = ¥ then @, ; M; is the zero module, and if
My, ..., M, are modules then we write M;@®---® M,, for @z’e{l,...,n} M;, and finally M™ for
the direct sum of M with itself n-times.

Recall that the direct sum of an infinite family (M;);c; of commutative groups is the
set of x € [[,.; M; with at most finitely many non-identity coordinates. For example, if
I = Ny and M; = Z then @ZENO M, is the set of integer-valued sequences which are non-zero
at a finite number of coordinates under coordinate-wise addition. This is much smaller
than the set of all sequences.

For j € I, define the map

Lj . M] — @ MZ
el
where the jth coordinate of ¢;(z) is « and the ith coordinate is 0y, for all ¢ # j. This map
is R-linear.

13. CycCLIC MODULES AND THE CHINESE REMAINDER THEOREM REVISITED

Vector spaces are an important example of modules, and just as finite dimensional vector
spaces were amenable to particularly detailed study so we shall be interested in the analogue
for modules. Given z1,...,x, in a left R-module M we write

(X1, Ty i={rimy + - +1rpxp:71,...,7n € R}.

This is an R-module, and we say that M is generated by xy,...,z,. M is finitely
generated if there are elements x1,...,x, € M such that M is generated by zi,...,z,,
or equivalently, if there is an R-linear surjection R™ — M for some n € N.
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If R is a field so that M is a vector space then M is finitely generated if and only if it
is finite dimensional, but defining dimension requires two important theorems.

Theorem 13.1 (Finitely generated vector spaces have a basis). Suppose that V' is a finitely
generated vector space over F. Then there is some n € N such that V = F".

Theorem 13.2 (All bases have the same size). Suppose that V is a (finitely generated)
vector space over F. If V = F" and V = F™ then n = m.

Informally we think of the first result as saying that finitely generated vector spaces can
be built out of copies of ; and the second as saying that this can be done in an essentially
unique way. We should like analogues of these theorems for modules, however there are
some obstacles.

Suppose that M is a left R-module. We say that x;,...,z, in M are linearly inde-
pendent if

rixy + -+ rpx, = 0y for r € R™ implies rq,...,r, = Og,
and this coincides with the existing definition for vector spaces. As with vectors, if
x1,...,T, are linearly independent and generate M then we say that z,...,x, form a
basis for M, and any module with a basis is called a free module.[l;gl Put another way,
a finitely generated R-module M is a free module if it is R-linearly isomorphic to R" for
some n € Ng.

Free modules are those that can be built out of copies of their underlying ring so they
include vector spaces, but also modules like Z". However, some relatively simple modules
are not free; indeed, Z/(N) contains no non-empty independent setﬂ. This means that
if we are to hope for an analogue of Theorem for modules we are going to have to
enlarge our class of building blocks to include more than just the underlying ring.

A left R-module M is said to be cyclic if M is generated by one element.

(i) For a field F, a cyclic F-module is either the zero module or isomorphic to F.
(ii) A cyclic Z-module is isomorphic to Z/{N) for some N € Ny. These are the cyclic
groups, also denoted Z/NZ for N # 0 and Z for Z/{0).

Cyclic modules can be described in terms of something called left ideals: given a unital
ring R we say that [ is a left ideal of R if [ is an additive subgroup of R and ra € I for
all r € R and a € I. Equivalently, I is a submodule of R considered as a left R-module
over itself.

If R is commutative then a left ideal is an ideal as defined earlier in the course — sometimes
these are called two-sided ideals for clarity. In general R/I does not have the structure
of a ring, but since I is a submodule of R, R/I does have the structure of an R-module
and it is cyclic generated by 1+ I. The scalar multiplication in these instances is given by

R — End(I);r — (I - I}z — rz) and R — End(R/I);r — (R/I — R/I;xl — ral)
respectively.

9We should be a little careful here about modules that are not finitely generated but we shall not be
dealing with those in this course.
20As a Z-module. As a Z/{N)-module is does contain independent sets.
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Given a module M and an element x € M we write Anng(z) := {r € R:rx = 0y} and
call this the annihilator of .

Lemma 13.3. Suppose that R is a unital ring, M is a left R-module, and x € M. Then
Anng(z) is a left ideal of R and if M is generated by x then M =~ R/ Anng(z).

Proof. That Anng(x) is a left ideal of R is a short check. For the second part, by the
First Isomorphism Theorem for modules (Theorem applied to the R-linear map R —
M;r — rz, the map

R/ Anng(z) — (x);r + Anng(z) — rz
is an R-linear isomorphism of left R-modules. U

Informally the lemma tells us that up to isomorphism cyclic R-modules are quotients of
R by left ideals.

The intersection and sum of two left ideals is a left ideal (c.f. Lemma [3.4)), and these
operations on ideals provide a way to combine cyclic modules.

Theorem 13.4. Suppose that R is a unital ring and I and J are left ideals with I +J = R.
Then R/(I nJ) = (R/I)® (R/J) as left R-modules.
Proof. We define 7 : R — (R/I)® (R/J);r — (r+ I,r + J). First, 7 is a homomorphism
of commutative groups:
mr+s)=r+s+I,r+s+J)

=((r+D)+(s+1),(r+J)+(s+J))

=(r+ILr+J)+(s+1,s+J)=mn(r)+n(s)
for all r, s € R. Secondly,

n(rs)=(rs+IL,rs+J)=(r(s+I),r(s+J))=r(s+1,s+J)=rn(s),

for all r,s € R and so 7 is an R-linear map.

To show that the map is surjective, suppose that (z + I,y + J) € (R/I)@® (R/J). Since
I+ J = R there are elements a € I and § € J such that a+ § = 1. Consider z := x5 + ya.
We have

2+l =zf+ya+Il=x+(y—x)a+1,
but y —z € R and a € I and so (y — x)a € I since [ is a left ideal. We conclude that
z+ 1 =x+ 1. Similarly 2+ J =y + J and hence 7(z) = (z + I,y + J), so 7 is surjective.

Finally, the kernel of m is I n J and so the result follows by the First Isomorphism
Theorem for modules. U

This theorem might be called a ‘non-commutative version’ of the Chinese Remainder
Theorem. It does not in general extend to more than two summands, but if R is commu-
tative then it does.

Theorem 13.5 (Chinese Remainder Theorem for modules). Suppose that R is a commu-
tative unital ring and Iy, ..., Iy are pairwise coprime ideals in R. Then

R/(LiA- )= (R/)® - & (R/I})
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as left R-modules.

Proof. The additive group of the ring (R/I;) x - - - x (R/I}) is the same as the additive group
of the module (R/I,)®--- @ (R/I}). Theorem [5.1 gives a bijective (group) homomorphism
between the additive groups of R/(Iy n---n 1) and (R/1)®---® (R/I}) and the explicit
form of this homomorphism is easily checked to be R-linear. The result is proved. U

14. UNIQUENESS OF CYCLIC DECOMPOSITIONS

A basic obstacle to an analogue of Theorem for modules comes from some non-
obvious relationships between cyclic modules e.g. the fact that Z/{(6) = Z/(3) ® Z/{2) as
Z-modules by Theorem [13.5

Despite this, there is a way to recover uniqueness at least for modules over commutative
rings provided our cyclic modules are suitably nested.

Theorem 14.1 (Uniqueness Theorem). Suppose that R is a commutative unital ring, M
is a (finitely generated) R-module, and I < --- < I, and J, < --- < J,, are proper ideals
such that M = (R/I;)®---® (R/1,) and M = (R/J,)®---® (R/J). Then n =m and
Jp=1; forall1 <k < n.

We begin with a result which bootstraps the analogous fact for vector spaces.

Lemma 14.2. Suppose that R is a commutative unital ring, and I, < --- < I, are proper
ideals. Then (R/Iy)®---@® (R/I,) is generated by a set of size n and by no smaller set.

Proof. Surjective R-linear maps take generating sets to generating sets. The R-module R"
has a generating set of size n and so the R-linear surjection

R"—> (R/L)® - -®(R/L,);r— (ri+Li,...,rn + 1)

ensures the first part of the lemma. For the second, by Theorem there is a maximal
ideal J o I, and hence J D [, for all 1 < k < n. The R-linear surjection

(R/Il)@@(R/In) - (R/J)n;(l‘l—l-fh...,l'n-l-]n) — <171+J,...71En+<])

is therefore well-defined, and ensures that if (R/I;) @ ---@® (R/I,) has a generating set of
size t then so does (R/J)" as an R-module. Let (V... z(®) be a generating set for (R/J)"

as an R-module, and note that for every x € (R/J)" there are elements 7, ...,7, € R such
that
T = T1I(1) ot Ttx(t)
= (ma 4 2?2 D)
= ((ry + J):L“gl) + o (e + J)x(lt), o+ D 4 (e + )z

= (r + J)x(l) +oe (e + (])x(t)'

Proposition [7.3| ensures that R/J is a field and the map r + J — ((R/J)" — (R/J)";x —
(ray,...,rxy,)) is a well-defined unital homomorphism so that (R/J)™ is a vector space
over R/J and the above calculation shows that z(),... 2® is a spanning set for (R/J)"
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as an (R/J)-module i.e. as a vector space over R/J. Since (R/J)" is an n-dimensional
vector space over R/J any spanning set has size at least n i.e. t > n. U

Proof of Theorem[1].1]. First, by Lemma [I4.2] we have n = m. Since the map M —
M; z — xz is R-linear we have that M is an R-module. We shall show that for 1 <k <n

Ity = {z € R: M has a generating set with strictly fewer than k elements},

from which the result follows without loss of generality. Write K} for the set on the right.
Suppose that z € R. The module z(R/Iy) is generated by = + I as an R-module, and
so by Lemma z(R/I;) = R/ Anng(x + Ii,). Now

Amng(z 4+ Iy) ={re R:r(v+ 1) = I} = {r : ro € I},

so x ¢ Iy, if and only if Anng(z + I;) is proper’’} and Anng(z + 1) < --- < Anng(z + I,,)
since the Iy < --- < I. Let 0 < j(z) < n be maximal such that « ¢ I (with j(z) = 0 if
x € 1) then

M = z(R/1L)®--- @ (R/1,))

~ (R/A I R/ A +In Anng(z + Ix) not proper
(R/Anng(z + 11)) @ - @ (R/ Anng(z + 1)) e ) e e

= (R/Anng(x + 1)) @ - ® (R/ Anng(s + L)) ¥ for jo) <k <n
with the convention that this is the zero module if j(z) = 0 since then the sum is empty.
By Lemma we conclude that if x ¢ I then j(x) > k and so xM is not generated
by strictly fewer than j(z) (and hence k) elements and so x ¢ K. On the other hand if
x € I then j(z) < k and so xM is generated by at most j(x) (i.e. strictly fewer than k)
elements and so x € K. The result is proved. Il

This theorem lets us define the rank of a free module to be the size of its basis. Indeed,
suppose that we had a free R-module with two bases. Then we have an isomorphism
R - R™ and taking [, = --- =1, = {0} and J; = --- = J,,, = {0} we get n = m.

ASuppose that M is the direct sum of countably many copies of Z indexed by Ny and
R := End(M). Then it can be shown that R >~ R? as left R-modules. In particular, we
cannot hope to extend Theorem to all unital rings.

15. EXISTENCE OF CYCLIC DECOMPOSITIONS
We now turn to the problem of an analogue of Theorem [13.1}

Theorem 15.1. Suppose that R is a PID and M 1is a finitely generated R-module. Then
there is n € Ny and proper ideals Iy < --- < I, such that

M= (R/L)®-- & (R/I,)
with the convention that this is the zero module if the sum is empty i.e. if n = 0.

To prove this we need the following lemma to let us change variables.

217 paused here in lectures, and since this was not obvious to me in that moment I am adding some
clarification here: If x € Iy, then rx € Iy for all r € R since I is an ideal, and hence Anng(z + I) = R.
Conversely, if Anng(x + I;) = R then 1.(x + I}) = I, and so z € I}.
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Lemma 15.2. Suppose that R is a PID with elements ay, ... ,a,,h € R, and{ay,...,a,) =
(hy, and M is an R-module with elements z1,...,x, € M. Then there are elements
Yty ooy Yn € M with {y1, ..., yn) = {x1,...,2y) such that hy, = a1z1 + -+ + apTy.

Proof. If h = 0 then a4, ...,a, = 0 and the result is trivial with y; = x; for 1 <7 < n, so
we may assume h € R*.

We proceed by induction on n; n = 1 is immediate since a; ~ h in that case. For
n > 1 let ' be a generator of {ay,...,a,_1). By the inductive hypothesis we may take
Yl -y Ynoo, Y 1 such that (yi,. .., yn_o,y* > ={x1,..., 2,1y and K'y* | = a1x1 +- -+
Ap—1Tpn—1-

Let a, 8 € R be such that A’ = ah and a,, = Bh. Since (h) = (h/, a,) there are elements
7,0 € R such that h = b’ + va,, and so ad + By = 1 by the Cancellation Lemma (since
h € R*). Now put y,,—1 := vy} , — éx, and y,, := ay’_, + fx,. Then x,, = —ay,—1 + YYn
and y?_, = Byn_1 + 6yy, and S0

<y1a s 7yn> = <y17 ceey Yn—2, y;:—la xn> = <l’1, s 7xn>'
Finally, hy, = h'y* | + apx, = a121 + - - - + a,x, and the result is proved. O

Proof of Theorem [15.1 We proceed inductively to show that there are elements 24, ..., z,
generating M such that

M =~ (R/Anng(z)) @ - @ (R/ Anng(z,)) and Anng(z;) < --- < Anng(z,).

Since M is finitely generated there is a minimal n € N such that M is generated by a set of
size n. Let x1,...,x, be a set of generators in which Anng(x,,) is generated by an element
rn (possibly Og) with the smallesﬂ number of irreducible factors i.e. for every generating
set y1,...,y, of M, any generator of the ideal Anng(y,) has at least as many irreducible
factors as r,, and hence any r € Anng(y,) has at least as many irreducible factors as r,,.
Note that Anng(z,,) is proper since otherwise 1, ..., z,_1 would generate M contradicting
minimality of n.
Let M' :={x,...,2,_1) and consider the map

UM @) — M;(2,y) — z +y.
This is an R-linear surjection; the key fact, however, is the following.
Claim. V¥ is an injection i.e. ker U = {0}.

Proof. Suppose that z+y = 0 for some z € M’ and y € (x,,yso that z = a1+ -+ a1, 1
and y = a,z, for some ay,...,a, € R. Let a} be such that {(a}) = {a,,r,); @, € R be
such that a* = aa, + Br,; and h be such that {aay,...,aa,_1,a’) = (h). Apply Lemma

15.2/to get y1,...,yn € M with {y1,...,yn) ={x1,..., 2,y = M and

hy, = carxy + -+ + Qp_1Tp—1 + arx, = a(arxy + -+ - + apzy) + Broz, = 0.
Now h | a} | r, and so by minimality of r,, we have h ~ r,, and hence a’ ~ r,. But then
rn | a, and a,x, = 0 as required. OJ

22Where we count the number of irreducible factors of 0 as co and order Ny U {oo} in the usual way.
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Finally, by the inductive hypothesis there are elements z1, ..., z,_1 generating M’ such
that M’ =~ (R/Anng(z1)) ® --- @ (R/ Anng(z,-1)) with Anng(z;) < --- < Anng(z,-1).
Set z, := x, and since {(x,) =~ R/Anng(z,) the result is proved if we can show that

Anng(z,-1) < Anng(z,).

To see this last claim, suppose that r € Anng(z,_1) and let A be such that (hy = {r,r,).
Apply Lemma to get y1,...,yn With {y1,..., 4y = {z1,...,2,) = M and hy, =
r2p_1 + Tnz, = 0. But h | r, and so by minimality of the number of irreducible factors of
r, we have h ~ r, and hence r,, | r i.e. r € {r,) = Anng(z,). O

16. THE STRUCTURE THEOREM FOR MODULES OVER PIDS AND APPLICATIONS
With the work of the last two sections we can now formulate the structure theorem.

Theorem 16.1 (Structure Theorem for modules over PIDs). Suppose that R is a PID and
M is a finitely generated R-module. Then

(i) (Invariant factor form) There is a sequence a, | -+ | ai of elementf™ of R with
a, * 1 such that
M = (R/{a)) ®--- @ (R/{ar))
and the sequence (a;)i_, is unique up to associates.

(i1) (Primary form) There are some s,t € Ny, irreducible elements py,...,p; € R, and
ey, ...,e € N, such that

M =R @ (R/(p1")) ®--- @ (R/{p;))-

Proof. The first part is just the combination of Theorems [14.1] & [I5.1] and the fact that
every ideal in a PID is generated by one element.

For the second part, apply the first and then decompose each factor R/(a) further: If
a =0 then R/{(a) = R.

If not then since a # 1 and R is a UFD we have irreducible elements ¢y, ..., q € R* with
¢ # q; for i # j and naturals ¢y, ..., ¢ such that a ~ ¢* -+ - ¢/*.

Let h be a generator of {g;", q?j > for i # j. Since R is a UFD, any prime factor of h
must be an associate of something in {¢;} and {g;}, but since ¢; # ¢; we have h ~ 1 i..e
(") +{q;’) = R for all i # j. Thus by the Chinese Remainder Theorem for modules we

have
Rf{a) = (R/gi")) @ @ (R/{q"))

as R-modules.

Hence all the factors in the invariant factor decomposition arising from modules of the
form R/{a;) with a; € R* can be decomposed into the desired form and the result is
proved. ]

There is a uniqueness statement for the primary form of the structure theorem but we
do not pursue that here.
We have an immediate corollary.

23As usual 0 | 0 and so this sequence may end in a series of 0s.
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Theorem 16.2 (Structure of finitely generated commutative groups). Suppose that G is
a finitely generated commutative group. Then there are unique (non-zero) natural numbers
1#d, | d_1 |- | dy and s € Ny such that

G227 @®(Z/LT)®- - & (Z/d,Z).

Proof. G is a Z-module, so we may apply Theorem to get the desired structure,
writing Z/NZ for Z/{N) and Z* for the s copies of Z/{0) in the given decomposition.
Then uniqueness follows from the fact that U(Z) = {—1, 1}. O

This result tells us a lot, for example if N is square-free then there is exactly one
commutative group of order N — the cyclic group of order N. To see this, suppose that G
has order N, then by the above G =~ Z°* ® (Z/d\Z) ® - - - ® (Z/d,Z) for some s € Ny and
d. | -+ | dy. Since G is finite s = 0 and N = d,.---d;. Thus if » > 1 then d> | N and
hence d, = 1, a contradiction. Hence r = 1 and G is cyclic as claimed.

Theorem 16.3 (Jordan Normal Form). Suppose that V is a finite-dimensional vector
space over C and T :'V — V s linear. Then there is a basis for V' such that the matriz
for T in this basis is

J(Ah nl) On1 XNg o 0n1 XMt
0n2 Xny ’ ' :
: - - Ontfl Xng
Om X N1 T Ont XMt_1 J(Ata nt)

where O,y 18 the the all zeros matrixz in M, x.,(C), and J(\, n) is the n x n matriz, called

a Jordan block,

A 0 O -0

1

' 0

: A0

0 -+ -+ 1 M\
The scalars Ay, ..., \; are all the eigenvalues of T'.

Proof. We regard V' as a C[X]-module via the map C[X] — End(V);p — (v — p(T)v).
Since C[X] is a PID we may apply the primary form of the structure theorem to V. We
get irreducible polynomials py, ..., p; € C[X] and natural numbers ny, ..., n; such that

¢V — (CIX])" @ (CIX]/(p (X)™)) @ --- @ (C[X]/(pu(X)™))

is a C[X]-linear bijection. In particular, ¢ is a C-linear bijection but V' is finite-dimensional
and C[X] is infinite dimensional so s = 0. By the Fundamental Theorem of Arithmetic, ev-
ery non-constant polynomial in C[X] has a root in C, and so every non-constant polynomial
has a degree 1 factor and so the only irreducible polynomials in C[X] have degree 1. Thus
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there are Ay, ..., A € C such that (p;(X)™) = ((X —X\;)™); write M; := C[X]/{(X —X\;)"™)
for the ith C[X]-module above. For each 1 <i <t let (e;;)jL, be such that

¢(6m’) = (0M17- . ‘70Mi—17 (X — /\i)ji1 —|—<(X — )\Z')ni>,0Mi+1,. .. 70Mz)-

Then ¢(e11), ..., d(€1n,), lea1), .. P(€i—1my 1) Pler1), .., P(ern,) is a basis for the C-
vector space M1 @ - --@® M; and since ¢ is a C-linear isomorphism, the sequence of vectors
€115+ €1mys €213 Cl—1my 1,€L1,---5€Ln, 15 & basis for V as a vector space over C.

Now we have

¢(€i,j+1) + )\i¢<€i,j> 1f] <n;
QS()\ieLj) lfj = 1Ny '
Since ¢ is a C-linear bijection we conclude that T has the required form.

For the last part, certainly the \;s are eigenvalues since J(\, n)(0,...,0,1)" = X(0,...,0,1)%.
On the other hand (J(A\,n) — AI)" = 0 and so the minimal polynomial for 7" divides
(X —Ap)™ -+ (X — A\)™ and hence all the roots of the minimal polynomial are in the set

A1, ..., A. However every eigenvalue of T'is a root of the minimal polynomial and so the
claim is proved. O

¢(Teij) = Xolei;) = {

/N The ;s in the theorem need not be distinct.

The fact that C is algebraically closed i.e. every polynomial with coefficients in C has
a root in C is vital to the Jordan normal form, but there is another simple form available
more generally.

Theorem 16.4 (Rational Canonical Form). Suppose that V is a finite-dimensional vector
space over F and T : V. — V s linear and not identically 0. Then there are monic

polynomials fy | -+ | f- of degree ny, ..., ny with fi non-constant, and a basis for V such
that the matriz for T in this basis is

O(fl) 0n1 X9 T 0n1 X M

0n2 Xny ’ - :

OTL,,‘,l XNy

Onrxnl T Oannr71 C(fT)

where 0,5y, s the the all zeros matriz in M, ., (F), and C(f) Zﬁ the n x n matriz, called
the companion matrix for the monic f(X) = X" +a, 1 X" '+ + a; X + aq,

0 -+ -+ 0 —ap
1 . -
0

o .0 —ap_9
0O -+ 0 1 —ap_1

The minimal polynomial for T s f, and the characteristic polynomial is fi--- f,.

247t n = 1 then C(f) = (—ao).
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Proof. We regard V' as an F[X]-module via the map F[X] — End(V);p — (v — p(T)v).
Since F[X] is a PID we may apply the invariant factor form of the structure theorem to
V. Then we get polynomials f; | --- | f, with f; # 1 and

¢V — (FIX]/[(f) @ @ (F[X]/{f))

an F[X]-linear bijection. First none of the f;s is 0 since then F[X]/{f;) = F[X] and this
is an infinite dimensional vector space while V' is not, and ¢ is an F-linear bijection. Thus
we may put n; := deg f; and may suppose that each f; is monic (since multiplying by a
unit does not change the ideal).

For 1 < i < 7 we write M; := F[X]/(f;) for the F[X]-module described above let (e; )%,
be such that

d(ei;) = Onryy -y Ongy o, X704+ {Fi), Oy - -+, Oar, )

Then ¢(e11),...,P(€1n,);0(€21), s d(€r—1m, 1), P(€r1)s ..., d(ern,) is a basis for the F-

vector space M1 @ - --@ M, and since ¢ is an F-linear isomorphism, the sequence of vectors

€115 3Clnys €215+ Cr—1m, 15Crls---,Ern, 1S & basis for V' as a vector space over F.
Now, we have

¢(ei,j+1) lfj < n;

¢(Teij) = Xo(ei;) = {_aoqs(ei,l) —aidein) — - — an10(ein)  ifj=mni

Since ¢ is an F-linear bijection we conclude that 7" has the required form.

For the last part we first show that for a monic polynomial f the minimal polynomial of
C(f)is f: By design f(C(f)) = 0 and so the minimal polynomial divides f and we shall
be done if we can show the minimal polynomial has degree n. For 0 < r < n — 1 the first
column of C'(f)"is (0,...,0,1,0,...,0)" where the 1 is in the (r + 1)th position, thus the
matrices I, C(f),...,C(f)" ! are linearly independent over F and hence the degree of the
minimal polynomial is at least n.

Since f; | f, for all 1 <@ < r we see that f.(T') = 0. On the other hand 7" is conjugate
to a matrix containing C'(f,) which we have seen has minimal polynomial f, and hence f,
is the minimal polynomial of 7.

The characteristic polynomial is invariant under change of basis, and the characteristic
polynomial of C(f) is f (it is degree n and divisible by the minimal polynomial), hence the
characteristic polynomial is the product of the characteristic polynomials of the companion
matrices in the rational canonical form. It follows that it is [[;_, f; as required. O

The Rational Canonical Form is also sometimes called the Frobenius Normal Form.
As an example, suppose that n > 2 and T is the n x n all 1s matrix:

1 .- 1
1 .- 1

The image of T' is one-dimensional and so by the rank-nullity theorem the kernel has
dimension n — 1. On the other hand n is an eigenvalue with eigenvector (1,...,1)" and
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so T" has a basis of eigenvectors and is diagonalisable hence the minimal polynomial is
X (X —n) and the characteristic polynomial is X" (X —n).

Suppose that f; | --- | f, are monic polynomials with f; non-constant ¢.e. of degree at
least 1. Then f;--- f, = X" (X —n) and f; = X(X —n). Thus f;--- fr_1 = X" % and
so primality of X means that each f; is a non-zero power of X. It follows that f; = X for
all 1 <4 < r, and hence r = n — 1 so that T" is similar to

0O 0 - --- 0
0

O --- 0 0 0
O -~ 0 1 n

17. PRESENTATIONS

Suppose that R is a commutative unital ring and M is a module over R. M is finitely
generated if and only if there is a k € N and an R-linear surjection R¥ — M. In particular, if
x1,...,T; is a generating set for M then there is a unique R-linear surjection ¢ : R¥ — M
such that ¥(e;) = x; for 1 < i < k and ¢; = (0,...,0,1,0,...,0) with a 1 in the ith
position. We shall say that 1 is the R-linear surjection corresponding to the generating
set x1,...,Tk.

Given a generating set x1,...,xy for M, by the First Isomorphism Theorem we have
M = R*/kert where 1 is the corresponding R-linear surjection. If ker 1) is itself finitely
generated then we say that M is finitely presented.

/N\This definition seems to depend on the particular generating set zy,...,x; chosen
rather than just on the module M, but we shall see in Proposition[17.1]that this dependence
is illusory.

/N There are finitely generated modules that are not finitely presented: Suppose that
R := F[X;, X, ...], the ring of polynomials with countably many different variableﬂ
Then [ :={(X;, Xs,...) is an ideal in R and R/I is a finitely generated R-module, but it
turns out it is not finitely presented.

While not every finitely generated module is finitely presented, if R is a PID then
Theorem tells us that there is an R-linear isomorphism

¥ (Rfa1))® - @ (Rf(ar)) > M
and so putting
ZT; = @Z)(OR + <CL1>7 N ,OR + <ai_1>, 1R + <6Li>, OR + <ai+1>, e ,OR + <(IT>)

for 1 < ¢ < r we have that xq,...,x, generates M and, moreover, the kernel of the
corresponding R-linear surjection is {a; )@ - -@{a,y which is generated by (ay,0g,...,0r),
..., (Or,...,0gr,a;). Thus every finitely generated module over a PID is finitely presented.

Z5We did not formally define this at the start of the course, but it behaves in a fairly natural way.
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Proposition 17.1. Suppose that R is a commutative unital ring, M is a finitely presented
R-module, and ¢ : R™ — M 1s a surjective R-linear map. Then ker ¢ is finitely generated.

Proof. Since M is finitely presented there is an R-linear surjection 1 : R¥ — M with ker 1)
finitely generated. We first choose an R-linear ¢ such that the following diagram commutes

RF Y M

)
Rm

To do this, note that since ¢ is surjective, for each 1 < ¢ < k there is some f; € R™
such that ¢(f;) = 1(e;) where e; = (0,...,0,1,0,...,0) € R has the 1 in the ith position.
Then put

q<>\1€1 +"'+/\kek) =Mfi+ -+ MNfefor A\,..., s € R.

This is a well-defined R-linear map since ey, . .., e is a basis for R¥, and it has the desired
property that ¢ o q = 1.

Since ¢ o ¢ = 1) we have x € ker® if and only if ¢(z) € ker ¢. First this tells us that ¢
induces an R-linear map q : ker¢) — ker ¢; x — ¢(z). Now consider the map

U:ker¢/Imqg— R™/Imq;y + Imq— y+ Img.

U is a well-defined injection: Suppose y,y’ € ker ¢. Then y + Im g = ' + Im ¢ if and only
if y —y' = q(z) for some x € R*. Since y — 3/ € ker ¢ we have y — 1’ = q(x) for some z € R*
if and only if y — ¢/ = ¢(2) for some z’ € ker ¢. Finally, y — ¢/ = ¢q(2’) for some 2’ € ker ¢
if and only if z — 2’ € Im ¢.

U is also a surjection: Suppose that y € R™. Then there is some x € R* such that
é(y) = 1(x), and hence ¢p(y—q(z)) = 0 and hence y—q(z) € ker ¢ and ¥(y—q(z)+Imq) =
y—q(x)+Imqg =y +Img.

Finally ¥ is R-linear, and hence an R-linear isomorphism and we have an R-linear
surjection

R™ = Yer ¢/ Tm gy — U~y + Im ),
and ker ¢/ Im q is finitely generated by some set z; +Img@, ..., z. + Imq (where z1,..., 2, €
ker ¢). On the other hand ker 1) is finitely generated by wy, ..., w; and so Im ¢ is generated
by q(wy),...,q(w;). Thus ker ¢ is generated by z1,..., 2., q(wy),...,q(w;) and the result
is proved. O

This argument can also be cast in terms of the Snake Lemma which is an important
result in future courses on commutative algebra.

18. ELEMENTARY OPERATIONS AND SMITH NORMAL FORM

Suppose that R is a commutative unital ring, and M is finitely presented over R. If
x1,...,T, is a generating set for M and ry,...,r, is a generating set for the the kernel of
the R-linear surjection corresponding to x1, ..., z,, then there is a matrix A € M,,x,(R),
called the presentation matrix, defined by

1 = (Ay, ..., Apg) forall 1 <@ < n.
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We have M =~ R™/AR" by the first isomorphism theorem (since AR" is the kernel of the
surjection R™ — M defined by the generating set x1,...,x,,), and this module can be
understood through the matrix A. It is the purpose of this section to examine how we can
put A in a particularly nice form.

Then we put GL,(R) := U(M,(R)) and we say that two m x n matrices A and B are
equivalent if there are S € GL,,(R) and T € GL,(R) such that A = SBT. Note, in
particular, if A and B are equivalent then they are presentation matrices for isomorphic
modules.

There are particular types of elements of GL,(R) whose left and right multiplication
correspond to row and column operations respectively. For A an m x n matrix we write
Cly- -y Cm € R™ for the columns of A so A= (c,...,c)), and r1,...,r, € R™ for the rows
of A so that A = (rq,...,r,)". Write E,(i,7) for the n x n matrix with Os everywhere
except for row ¢ and column j where the entry is 1.

(i) (Transvections) Given 1 < i,j < n with i # j and A € R put P,(i,j;\) =
I+ \E(i,j). We write

A G2 AP (i 5 N).
to mean that the matrix A after the column operation replacing c; by ¢; + Ac; is the
matrix A post-multiplied by P, (4, j; A). This can be checked by direct calculation.
Similarly
AT B s M)A
means that the matrix A after the row operation replacing r; by r; + Ar; is the
matrix A pre-multiplied by P, (i, j; A). Again this can be checked by direct calcu-
lation.
(ii) (Dilations) Given 1 < i < n and u € U(R) let D,(i;u) := I, + (u — 1)E,(i,17)
so that D,,(i;u) is the matrix with 1s on the diagonal except for the ith element
which is u, and Os elsewhere. As above we write

A L AD,(i;u) and A T, D (i5u) A

to mean the matrix A with column ¢; replaced by uc; etc.
(iii) (Interchanges) Given 1 < i,j < mnlet S,(i,7) = I, + En(i,J) + En(J, 1) — En(i, 1) —
E,.(4,7). By
AZ7Y A8, (i, 5) and A 77 S, (4, §) A
to mean the matrix A with ¢; and ¢; swapped etc.

These three types of operations are the elementary column and row operations respec-
tively. The matrices are all invertible, since their pre- and post- multiplication corresponds
to row and column operations respectively, and these operations are easily seen to be in-
vertible. This invertibility is the reason for restricting dilates to elements of the group of
units.

In view of the invertibility of these matrices we see that applying these elementary row
and column operations to a matrix preserves equivalence of matrices.
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The subgroup of GL,,(R) generated by the elementary row operations is denoted GE,,(R).
Of course GE,(R) < GL,(R), and for some rings it is a proper subgroup (Cohn in [Coh66]
gives an example of a PID where these groups are different), however for Euclidean domains
these two groups are the same. We shall not need this fact though it could be proved by
the approach below.

We say that an m x n matrix A is in Smith normal form if there are elements
ay | az [ -+ | Gmingn,my such that

aq 0

A= 0 (05}

Note the divisibility condition so that, for example,

5 0 0
1 0 00 0 25 0
0 -2 0 0 | and 0 0 100
0 0 00 0 0 O

0 0 O

are both in Smith normal form over Z, however neither of the matrices

100 300
020 |and [ O 3 O
00 3 0 01

is in Smith normal form over Z, although they are both in Smith normal form over Q.
Suppose that R is a Euclidean domain with Euclidean function f and A is an m x n
matrix with entries in R. Then there is an algorithm to find a matrix A that is equivalent
to A and which is in Smith normal form.
The main step is to show that A is equivalent to a matrix of the form

a [0 - 0
0

(18.1) : o
0

where A is an (m—1) x (n—1) matrix with a; | A;j forall 1 <i<m—1land1<j<n—1.
We can then proceed recursively since the application of any row and column operations
to A do not impact that first column or row of the matrix above.

Achieving the above is a two step process: first we establish the above without the
divisibility conclusion.

Extend the Euclidean function by putting f(0) = o, so that f(0) > f(z) for all x € R*,
and write f(A) for the smallest value of f(A;;) for 1 <i < m and 1 < j < n. Finally for
a vector r € R* write z(z) for the number of indices 7 such that z; = 0.
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(i) Suppose f(A11) # f(A). Then we use interchanges to move the matrix entry with

smallest weight in the Euclidean function to the (1, 1) position in the matrix.

Specifically, let (7, j) be such that f(A;;) < f(A1;) and apply the row operation
r; <> 71 and the column operation ¢; < ¢; to get an equivalent matrix A where
f(An) < f(Aunr) and f(A) = f(A).

(il) Suppose f(A11) = f(A) and the top row or first column of the matrix has a non-
zero entry other than its first coordinate, say it is in column j (rows are similar).
Then

(a) if Ayy | Ay; we apply the column operation ¢; — ¢; — (A1;/A11)c1 to get an
equivalent matrix A with f(Ay1) = f(A11), f(A) = f(A), and 2(&)) + z(7)) >
z(r1) + z(c1);

(b) if Ayy t Ay, then since f(A1) < f(Ai;) there is some ¢ such that A;; =
qA1+7r where f(r) < f(A11), and we apply the column operation ¢; — ¢;—qc;
to get an equivalent matrix A where f(A) < f(Ay;) = f(r) < f(An) = f(A).

At each step of the iteration we produce an equlvalent matrix A such that either f (ﬁ)
f(A); or f(A ) = f(A) and f(An) < f(An); or f(A ) = f(A), f(Au) = f(An), z(¢1) +
2(T1) > z(e1) + 2(r).

Since z(c¢) + z(r) < n+m — 1 we see that the above algorithm must terminate at some
stage when A has the form (18.1)) where f(a1) < f(A’). Now, if there is some (i, j) such
that a; | A;; then j # 1 since A;; = 0 for all 7 > 1 and so we can apply the column
operation ¢; = ¢; + ¢;. By the Euclidean property we have A;; = ga; + r for some r with
f(r) < f (a1) hence we may apply the row operation r; — r; — qr; to get an equivalent
matrix A with f(A) < f(r) < f(a1) = f(A).

Again, this process must terminate since the natural numbers are bounded below. The
resulting matrix has the from as described in . We can now repeat the algorithm on
A’. Eventually this process of passing to smaller matrices terminates since the number of
rows and columns decreases by 1 at each step.

The above shows that any matrix is equivalent to a matrix in Smith normal form.
However, it may not be the most efficient route. We are, of course, free to apply elementary
operations as we wish to put a matrix into Smith normal form — any sequence of applications
leads to an equivalent matrix since all elementary operations are in GL,(R).

This argument can be used to give a proof of the structure theorem for modules over
EDs, and conversely the structure theorem can be used to give a non-constructive proof of
the existence of Smith Normal form. It does not, however, give an algorithm and that is
the benefit of the above.

18.1. Describing the structure of a commutative group using the SNF. Suppose
that G is a commutative group with generators g1, g2, g3, 94, g5 and relations

291 + 692 —8g3 = 0,91 + g2 + g4 = 0, and 5g; + 5g4 + 25g5 = 0.



50 TOM SANDERS

This group is isomorphic to (Z/{10)) ®Z?, and to show this we use the Smith normal form.
First we put the relation matrix, R, into Smith normal form:

26 —8 0 0 11 0 1 0\ e
R={11 010 |26 -80 0 |27
50 0 5 25 50 0 5 25
1 0 0 0 0 ror>re—21] 1 0 0 0 0
2 4 -8 —2 (0 |B2mLlg o4 -8 —2 (|l
5 =5 0 0 25 0 -5 0 0 25
1 0 0 0 0 1 0 0 0 0 SR
0 —1 —8 —2 25 |D=m%2 (g 1 —8 —2 25 |<ezet®e,
0 -5 0 0 25 0 0 40 10 —100
1 0 0 0 0 1 0 0 0 0 camsca—dcs
0 -1 0 0 0 &40 -1 0 0 o0 ozetls
0 0 40 10 —100 0 0 10 40 —100
1 0 0 00
0 -1 0 00
0 0 10 0 0
Thus we have P € GL3(Z) and @ € GL5(Z) such that
26 -8 0 0 1 0 0 00
pl11 0 10 |Q=[0-10 00
50 0 5 25 0 0 10 0 0

We can compute the matrix ) by applying the column operations to the identity matrix:

10000 1 =10 -1 0

01000 |eoma |0 1 0 0 0] az852
00100 |22 ]10 0 1 0 0 |2zete
00010 00 0 1 0

0000 1 00 0 0 1

1 -1 8 1 -925 1 -1 1 8 -25

0 1 -8 -2 25 0 1 -2 -8 25 | covesdes
00 1 0 0 |=2=%]l0o o0 o0 1 0 |ozetls
00 0 1 0 00 1 0 0

0 0 0 1 o0 0 0 1

1 -1 1 4 -15

01 -2 0 5

00 0 1 0

0 0 1 —4 10

00 0 0 1
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Similarly we can compute P:

100 01 0\ roore2es [0 1 0
010 |22 (100 |22, 1 20
00 1 00 1 0 -5 1
0 0 1 0
ror>To 413 _7 1 r3—r3—ory 512 1 —7 1
—5 1) 5 30 —4

This gives us a well-defined isomorphism

6: G — (2)10)) ® 72
2191 + -+ 2505 — (21 — 229 + 24,421 + 23 — 424, —1521 + 529 + 1024 + 2’5).

For a matrix A we write RowSpan(A) for the Z-module generated by the rows of A. To
see that ¢ is a well-defined injection note:

211+ + 2505 = 2191 + -+ 255 Definition of G
Since P € GL3(Z)
Since Q € GL5(Z)
Design of PRQ)
Definition of ¢

(21 —21,...,25 — 2t) € RowSpan(R)
(21 — 2}, ...,25 — 25) € RowSpan(PR)
£)Q € RowSpan(PRQ)
< (2 — zi, —2£)Q € {(u, —v, 10w, 0,0) : u,v,w € Z}
<o((21 - 21)91 +ooo 4 (25— 25)95) = 0
<¢(2101 + -+ 2595) = G101 + -+ + 2595).

/ /
< (2 — 21, — 2z

N S N N N

The map ¢ is also certainly Z-linear (in fact we have already used this to some extent
above). Moreover, since ¢ is well-defined and ¢(g5) = (0,0,1), ¢(g93) = (0,1,0), and
d(g1 — 493 + 15g5) = (1,0,0) we see that the image of ¢ contains a generating set for the
codomain and hence ¢ is a surjection. The claim that ¢ is an isomorphism is complete.

18.2. Computing the rational canonical form using the SNF. Suppose we wish to
compute the rational canonical form of the matrix

b

|
OO =
i)
O = =
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We begin by putting the matrix X1 — A in Smith normal form over the Euclidean domain
Q[X]:

X -1 1 —1 1 X-1 -1 co—ca—(X—1)c1
0o X -1 ]2 x o0 01 | Emeta
0 -1 X -1 0 X
1 0 0 ro—ro—Xr] 1 0 0
X X—-X?2 X—1 |22, o X—-X2 X1 |22%
-1 X-1 X-1 0 X—-1 X-1
1 0 0 1 0 0
0 X—1 XxX—x2 |aezetXe [ 5 x-1 0
0 X-1 X-1 0 X—-1 X2-1
1 0 0
et g X—10000

0 0 X2-1
As above we can identify the matrices P, Q) € GLy(Q[X]) such that

1 0 0 X-1 1 -1 0 0 1 1 0 0
-X 1 0 0 X -1 11 1 |=(0 X-1 0
X+1 -1 1 0 -1 X 01 X 0 0 X% -1

This form can be used to identify the rational canonical form of A: the invariant polyno-
mials are read off the diagonal as X — 1 and X2 — 1 and A is similar to
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