
A3: RINGS AND MODULES, 2019–2020

TOM SANDERS

We begin with the course overview as described on https://courses.maths.ox.ac.

uk/node/44027.

Course Overview: The first abstract algebraic objects which are normally studied are
groups, which arise naturally from the study of symmetries. The focus of this course is
on rings, which generalise the kind of algebraic structure possessed by the integers: a ring
has two operations, addition and multiplication, which interact in the usual way. The
course begins by studying the fundamental concepts of rings (already met briefly in core
Algebra): what are maps between them, when are two rings isomorphic etc. much as
was done for groups. As an application, we get a general procedure for building fields,
generalising the way one constructs the complex numbers from the reals. We then begin
to study the question of factorization in rings, and find a class of rings, known as Unique
Factorization Domains, where any element can be written uniquely as a product of prime
elements generalising the case of the integers. Finally, we study modules, which roughly
means we study linear algebra over certain rings rather than fields. This turns out to have
powerful applications to ordinary linear algebra and to abelian groups.

Learning Outcomes: Students should become familiar with rings and fields, and under-
stand the structure theory of modules over a Euclidean domain along with its implications.
The material underpins many later courses in algebra and number theory, and thus should
give students a good background for studying these more advanced topics.

Course Synopsis: Recap on rings (not necessarily commutative or with an identity) and
examples: Z, fields, polynomial rings (in more than one variable), matrix rings. Zero-
divisors, integral domains. Units. The characteristic of a ring. Discussion of fields of
fractions and their characterization (proofs non-examinable) [2]

Homomorphisms of rings. Quotient rings, ideals and the first isomorphism theorem and
consequences, e.g. Chinese remainder theorem. Relation between ideals in R and R{I.
Prime ideals and maximal ideals, relation to fields and integral domains. Examples of
ideals. Application of quotients to constructing fields by adjunction of elements; examples
to include C “ RrXs{xX2`1y and some finite fields. Degree of a field extension, the tower
law. [4]

Last updated : 1st April, 2020.
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Euclidean Domains. Examples. Principal Ideal Domains. EDs are PIDs. Unique factori-
sation for PIDs. Gauss’s Lemma and Eisenstein’s Criterion for irreducibility. [3]

Modules: Definition and examples: vector spaces, abelian groups, vector spaces with an
endomorphism. Submodules and quotient modules and direct sums. The first isomorphism
theorem. [2]

Row and column operations on matrices over a ring. Equivalence of matrices. Smith Nor-
mal form of matrices over a Euclidean Domain. [1.5]

Free modules and presentations of finitely generated modules. Structure of finitely gener-
ated modules of a Euclidean domain. [2]

Application to rational canonical form and Jordan normal form for matrices, and structure
of finitely generated Abelian groups. [1.5]

References. There is an alternative approach to the course given in Earl’s notes [Ear19]
which is an excellent source for further examples.

Blue text indicates non-examinable material.
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1. Rings: a recap and motivating examples

We begin by fixing some terminology for some concepts which have been introduced in
previous courses. A ring R is a set (also denoted R and called the carrier set) equipped
with two binary operations `, called addition, and ˆ, called multiplication, such that

(i) the set R equipped with ` is a commutative group, called the additive group;
(ii) ˆ is an associative operation on R;

(iii) ˆ distributes over `, meaning that

xˆ py ` zq “ xˆ y ` xˆ z and px` yq ˆ z “ pxˆ zq ` py ˆ zq for all x, y, z P R.

The additive group of a ring has a unique identity called the zero of the ring and denoted
0. We write ´x for the additive inverse of x P R; the map R Ñ R;x ÞÑ ´x is called
negation.

We say R is a commutative ring if multiplication is commutative.
We shall often write xy in place of xˆ y in a ring.1 We respect the usual precedence of

multiplication over addition so by x` yz we mean x` py ˆ zq, and not px` yq ˆ z.
We write R˚ for the set of non-zero elements of the ring R.

Lemma 1.1. Suppose that R is a ring.

(i) (Zero annihilates) 0x “ x0 “ 0 for all x P R;
(ii) (Negation distributes) ´pxyq “ p´xqy “ xp´yq for all x, y P R.

Proof. First 0 “ 0x` p´p0xqq “ p0` 0qx` p´p0xqq “ p0x` 0xq ` p´p0xqq “ 0x` 0 “ 0x
for all x P R and similarly for x0. Secondly, pxyq ` pp´xqyq “ px ` p´xqqy “ 0y “ 0 and
so by uniqueness of additive inverses ´pxyq “ p´xqy, and similarly ´pxyq “ xp´yq. �

It may happen that multiplication has an identity. If it does then this identity is unique
and we denote it 1 and call it the multiplicative identity. A ring with a multiplicative
identity is called unital.

!4Take care here as some authors define a ring to be what we call unital ring; see e.g.
[Poo19] for some motivation for this point of view.

If R is a unital ring, then we say that x P R is a unit if it has an inverse with respect
to multiplication, and we write UpRq for the set of units of R. If x does have an inverse
with respect to multiplication then it is unique; we call it the multiplicative inverse of
x and denote it x´1.

!4Some authors write R˚ for UpRq – we reserve R˚ for the non-zero elements of the
ring – and some write Rˆ for UpRq.

Proposition 1.2 (Unit group). Suppose that R is a unital ring. Then multiplication on
R restricts to a group operation on UpRq with identity 1 and the inverse of x under this
restricted operation is also x´1.

1Since x´y, which is shorthand for x`p´yq, and x´y, which is shorthand for xˆp´yq, look remarkably
similar, we shall avoid the latter.
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Proof. Certainly 1 P UpRq since 1ˆ 1 “ 1. If x, y P UpRq then there are elements u, v P R
such that xu “ ux “ 1 and yv “ vy “ 1, whence pxyqpvuq “ xppyvquq “ xp1uq “ xu “ 1
and similarly pvuqpxyq “ 1 so xy P UpRq, which means multiplication on R restricts to a
binary operation on UpRq.

Associativity of this restricted operation is inherited from multiplication on R, as is the
fact that 1 is an identity. It remains to note that if x P UpRq then xx´1 “ 1 “ x´1x and
so x´1 P UpRq and x´1 is an inverse for x under this multiplication map. �

A key example of a commutative unital ring, and the source of the terminology above, is
the integers Z. For them we have UpZq “ t´1, 1u. On the other hand 2Z, the set of even
integers, with operations inherited from Z is an example of a ring that is not a unital ring.

Given a ring R we say that S is a subring of R if it is a subset of R, and a ring when the
addition and multiplication on R are restricted to S. We say that S is a unital subring
of R if S is a subring of R, R is unital and S contains the multiplicative identity of R.

!4t0u is a subring of Z and both are unital rings, but the former is not a unital subring
of the latter.

Lemma 1.3. Suppose that R is a ring and S is a non-empty set of (unital) subrings of R.
Then

Ş

SPS S is a (unital) subring of R.

Proof. Note that 0 P S for all S P S so 0 P
Ş

SPS S. Similarly, if x, y P
Ş

SPS S then
x, y P S for all S P S, and hence x ` p´yq P S for all S P S and so x ` p´yq P

Ş

SPS S. It
follows that the intersection is an additive subgroup. Similarly it is multiplicatively closed
and associativity of multiplication and distributivity of multiplication over addition are
inherited from the operations on R. Finally if all the rings in S are unital, they all contain
1 and so the intersection does too. �

Given a subring S of R, and elements λ1, . . . , λn P R we write Srλ1, . . . , λns for the
intersection of all subrings containing S and λ1, . . . , λn, which is a subring since R is
certainly a subring of R containing S and λ1, . . . , λn. Srλ1, . . . , λns is a unital subring of
R if S is a unital subring of R.

A ring homomorphism is a map φ : RÑ S between two rings such that

φpxyq “ φpxqφpyq and φpx` yq “ φpxq ` φpyq for all x, y P R;

a unital ring homomorphism is a ring homomorphism φ : R Ñ S between two unital
rings with the additional property that φp1q “ 1.

If S is a (unital) subring of R then the inclusion map S Ñ R is a (unital) homomorphism.
!4If R and S are rings and there is an obvious injective (unital) homomorphism j :

S Ñ R we shall frequently identify S with jpSq, speak of S as a (unital) subring of R ,and
write Srλ1, . . . , λns for what would properly be written jpSqrλ1, . . . , λns.

Lemma 1.4. Suppose that φ : R Ñ S is a ring homomorphism. Then φp0q “ 0 and
φp´xq “ ´φpxq for all x P R. If φ is a unital ring homomorphism and x P UpRq then
φpxq P UpSq and φpx´1q “ φpxq´1.
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Proof. For x P R we have

φp´xq “ φp´xq ` 0 “ φp´xq ` pφpxq ` p´φpxqqq

“ pφp´xq ` φpxqq ` p´φpxqq “ φpp´xq ` xq ` p´φpxqq “ φp0q ` p´φpxqq.

Setting x “ 0 above gives φp0q “ 0, which then gives the second fact. A similar argument2

shows that if φ is a unital homomorphism and x P UpRq then φpxq P UpSq and φpx´1q “
φpxq´1. �

In particular, if φ : RÑ S is a unital ring homomorphism then φpUpRqq ď UpSq.
!4The inclusion j : ZÑ Q is a unital homomorphism and φpZqXUpQq “ Z ‰ t´1, 1u “

φpUpZqq.
Any commutative group can be given a ring structure by setting all products to be 0; we

call this a trivial multiplicative structure. We call a ring trivial if it has one element
– it is the one element additive group with the aforementioned multiplicative structure. A
trivial ring is unital with 0 “ 1, and a unital ring is trivial if 0 “ 1.3

It follows from Lemma 1.1 that unless a unital ring is trivial we must have UpRq Ă R˚.
A field is a (non-trivial) commutative unital ring in which UpRq “ R˚, and this gives us
some more examples of commutative unital rings: Q, R, C, and Fp (the integers modulo p
for p a prime).

The above examples are all commutative but they can be used to produce non-commutative
rings. Given a unital ring R and n P N we write MnpRq for the set of nˆ n matrices with
entries in R. We define addition and multiplication of two elements A,B PMnpRq by

A`B :“ pAij `Bijq
n
i,j“1 and AB :“

˜

n
ÿ

k“1

AikBkj

¸n

i,j“1

,

and these operations make MnpRq into a unital ring, where 0MnpRq is the matrix with 0R
in every entry and 1MnpRq is the matrix with 1R on the main diagonal and 0R elsewhere.

These rings are called matrix rings and they are not commutative (provided either R
is not commutative or n ą 1).

For A1, . . . , Ak P MnpRq we write RrA1, . . . , Aks for the unital subring of MnpRq gen-
erated by the scalar multiples of the identity – that is the matrices with r on the main
diagonal for some r P R and 0R elsewhere – and the matrices A1, . . . , Ak.

2. Integral domains and polynomial rings

Suppose that R is a ring. We say that x P R is a (left) zero divisor if there is some
y P R˚ such that xy “ 0, and similarly for right zero divisors.

2Note that we require φp1q “ 1 so that we know φp1q´1 exists; we know that ´φp0q exists in the first
argument because S under addition is a group.

3Lemma 1.1 shows that if 0 “ 1 then 0 “ 0x “ 1x “ x for all x P R and hence that R has only one
element.
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Given a field F the ring M2pFq has non-zero zero divisors e.g.
ˆ

0 0
0 1

˙ˆ

1 0
0 0

˙

“

ˆ

0 0
0 0

˙

;

and the ring of integers mod N has non-zero zero-divisors if (and only if) N is composite:
if N “ pq for 1 ă p, q ă N then p, q ı 0 pmod Nq but pq “ N ” 0 pmod Nq.

We say that a ring R is an integral domain if it is a non-trivial commutative unital
ring with no non-zero zero divisors.

Lemma 2.1 (Cancellation lemma). Suppose that R is an integral domain, and x P R˚ and
y, z P R have xy “ xz. Then y “ z.

Proof. By distributivity we have 0 “ pxyq ´ pxzq “ xpy ´ zq. Since x P R˚ and R is an
integral domain it follows that y ´ z “ 0 as required. �

This immediately gives the following cute proposition.

Proposition 2.2. Suppose that R is a finite integral domain. Then R is a field.

Proof. SinceR is non-trivialR˚ is non-empty. For a P R˚ consider the mapRÑ R;x ÞÑ ax.
This is an injection by the cancellation lemma, and since R is finite it is a surjection. It
follows that there is some x P R such that ax “ 1. Since R is commutative, we conclude
that xa “ ax “ 1 so a P UpRq and hence R is a field. �

Integral domains and polynomial rings are closely related. Suppose that R is a commu-
tative unital ring (but not necessarily an integral domain). We write RrXs for the set of
R-polynomials in the variable X with coefficients in R, that is the set of expressions of
the form

(2.1) ppXq “
8
ÿ

i“0

aiX
i,

where ai P R for all i, and ai P R
˚ for finitely many i P N0. We call the ais the coefficients

of the polynomial; two polynomials are equal if and only if their coefficients are equal. Given
polynomials p and q with coefficients paiq

8
i“0 and pbiq

8
i“0 we have

pp` qqpXq “
8
ÿ

i“0

pai ` biqX
i and ppqqpXq :“

8
ÿ

i“0

˜

ÿ

j`k“i

ajbk

¸

X i.

With these operations RrXs is a commutative unital ring.
The map j : RÑ RrXs taking elements of R to the corresponding constant polynomial

is an injective unital homomorphism, and we shall write r both for an element of R and
the constant polynomial r.

!4This is a very important map: if F is a field then the map j : FÑ FrXs above gives
FrXs the structure of an F-vector space.

Note that the sum in (2.1) is just a notation and should be thought of as a way of
recording the coefficients of the polynomial. It is written this way to give a suggestion for
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how to evaluate the polynomial: if λ P R and p P RrXs then the map

RrXs Ñ R; p ÞÑ ppλq :“
ÿ

i:ai‰0

aiλ
i,

with the usual convention that the empty sum is 0, is a well-defined (since the sum is finite)
unital ring homomorphism.

!4The maps Fp Ñ Fp;λ ÞÑ λp and Fp Ñ Fp;λ ÞÑ λ are the same by Fermat’s Little
Theorem, but the polynomials qpXq “ Xp and qpXq “ X are distinct.

If p P RrXs˚ then we define its degree4, denoted deg p, to be the largest d P N0 such
that the coefficient of Xd in p is non-zero, and we say that λ P R is a root of p if ppλq “ 0.

Proposition 2.3. Suppose that R is a non-trivial commutative unital ring. Then the
following are equivalent:

(i) R is an integral domain;
(ii) RrXs is an integral domain;

(iii) for every p, q P RrXs˚ we have deg pq “ deg p` deg q;
(iv) every p P RrXs˚ of degree at most d has at most d roots.

Proof. Certainly (ii) implies (i) by looking at the constant polynomials, and (iii) implies
(ii) since the latter is just the former with the second part forgotten.

To see (i) implies (iii) suppose that p, q P RrXs˚ so we can write

ppXq “ anX
n
` ¨ ¨ ¨ ` a0 and qpXq “ bmX

m
` ¨ ¨ ¨ ` b0

where an, . . . , a0, bm, . . . , b0 P R, an, bm P R
˚ and n “ deg p and m “ deg q. Then

ppqqpXq “ ppXqqpXq “
n`m
ÿ

r“0

ÿ

i`j“r
iďn
jďm

aibjX
i`j.

Thus the coefficient of Xn`m is anbm, and it is non-zero since R is an integral domain. We
conclude that pq P RrXs˚ and deg pq “ n`m “ deg p` deg q.

If R is not an integral domain then there are a, b P R˚ such that ab “ 0, but then the
polynomial aX has degree 1 but at least two roots since ab “ 0 and a0 “ 0 by Lemma 1.1.
This shows (iv) implies (i).

In the other direction, we proceed by induction on the degree d assuming, as we may,
(i) and (ii). If d “ 0 then the polynomial is a non-zero constant and so has no roots as

4Occasionally it is useful to define the degree of the zero polynomial to be ´8 and adopt the arithmetic
convention that ´8` n “ ´8 for all n P N0 so that the degree identity in Proposition 2.3 (iii) continues
to hold.
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required. Now suppose that d ą 0 and p has a root λ P R. Then

ppXq “ ppXq ´ ppλq “
d
ÿ

n“0

anpX
n
´ λnq

“ pX ´ λq
d
ÿ

n“1

anpX
n´1

` ¨ ¨ ¨ ` λn´1q

“ pX ´ λq
d´1
ÿ

m“0

˜

d´m´1
ÿ

l“0

al`m`1λ
l

¸

Xm
“: pX ´ λqqpXq.

Since RrXs is an integral domain, q P RrXs˚, and from its definition we see that deg q ď
d´ 1. If λ1 ‰ λ then ppλ1q “ 0 if and only if qpλ1q “ 0 since R is an integral domain. The
result follows. �

In view of (iii) above, when R is an integral domain, the units of UpRrXsq have to
be polynomials of degree 0, and the map UpRq Ñ UpRrXsq taking r to the degree zero
polynomial with constant coefficient r is an isomorphism.

Note that p1`2Xq2 “ 1 in pZ{4ZqrXs, so that 1`2X P UppZ{4ZqrXsq. More generally,
if R is a commutative unital ring then UpRrXsq is exactly the set of polynomials a0`a1X`
¨ ¨ ¨ ` adX

d where a0 P UpRq and there is some n P N such that ani “ 0 for all 1 ď i ď d.
(x P R is called nilpotent if xd “ 0 for some d P N.)

We write RrX1, . . . , Xns for the ring of polynomials in the variables X1, . . . , Xn with
coefficients in R. Already for n “ 2 this gives two ways of viewing the resulting ring. If R
is an integral domain then Proposition 2.3 tells us that RrXs and RrY s are both integral
domains and so elements of RrX, Y s have both an X-degree, when considered as elements
of RrY srXs, and a Y -degree when considered as elements of RrXsrY s.

The degree bound on the number of roots in Proposition 2.3 (iv) is important so we give
an application. The first part of the proof below has a lot in common with the method
we shall use later to establish the existence of Smith Normal Form, and is an adaptation
of Schenkman’s proof of the basis theorem for finitely generated commutative groups in
[Sch60].

Proposition 2.4. Suppose that F is a finite field. Then UpFq is cyclic.

Proof. Suppose that tx1, . . . , xnu is a smallest set of generators for UpFq. If n ą 1 let
G be the group generated by xn´1 and xn, and px, yq be a pair of generators for G (not
necessarily from X) with the order of x minimal out of all such pairs.

Let au be the order of x and bu be the order of y with hcfpa, bq “ 1. By Bezout’s Theorem
there are α, β P Z such that aα` bβ “ 1. Put z :“ xay´b and w :“ xβyα, so x “ zαwb and
y “ z´βwa and the pair pz, wq generates G. Moreover, zu “ xauy´bu “ 1 ¨ 1 “ 1 and so
u ě au by minimality of the order of x.

Since y has order bu, the elements yb, y2b, . . . , yub are u distinct elements, and they are all
roots of Xu ´ 1 P FrXs˚. Hence by Proposition 2.3 (iv) they are the only roots of Xu ´ 1,
but then x is also a root of Xu ´ 1 and so x “ ybi for some 1 ď i ď u. We conclude G is
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generated by the one element y, and hence tx1, . . . , xn´2, yu is a generating set for UpFq,
contradicting the minimality of n. Hence n “ 1 and UpFq is cyclic. �

Conrad collects together many different proofs of the above result in [Con].
The construction of Q from Z only uses the fact that Z is an integral domain. Given

an integral domain R let FracpRq be the pairs pa, bq P R ˆ R˚ subject to the equivalence
relation

pa, bq „ pa1, b1q if and only if ab1 “ a1b.

Addition and multiplication are defined by

pa, bq ` pa1, b1q :“ pab1 ` a1b, bb1q and pa, bqpa1, b1q :“ paa1, bb1q

for all a, a1 P R and b, b1 P R˚ which are well-defined by the cancellation lemma. The
relevant features are summarised in the following theorem whose proof is just a check.

Theorem 2.5 (Field of fractions). Suppose that R is an integral domain. Then there is
a field FracpRq and an injective unital ring homomorphism ι : R Ñ FracpRq such that for
any field F and injective unital ring homomorphism φ : R Ñ F there is a unique injective
unital ring homomorphism ψ : FracpRq Ñ F such that ψ ˝ ι “ φ i.e. so the following
diagram commutes

R
φ

##

ι // FracR

ψ
��
F

The field of fractions may be quite large: the field of fractions of RrXs is denoted RpXq.
It is the set of rational functions, that is ratios ppXq

qpXq
where p P RrXs and q P RrXs˚.

Viewing RrXs as a vector space over R, the set t1, X,X2, . . . u is a basis. RpXq is also
a vector space over R but in this case it is much larger.

Lemma 2.6. The set tpX ´ λq´1 : λ P Ru is (uncountable and) linearly independent in
RpXq.

Proof. To check linear independence suppose that there were distinct reals λ1, . . . , λk and
α1, . . . , αk such that

α1pX ´ λ1q
´1
` ¨ ¨ ¨ ` αkpX ´ λkq

´1
“ 0.

Rearranging we get

α1

ź

i‰1

pX ´ λiq ` ¨ ¨ ¨ ` αk
ź

i‰k

pX ´ λiq “ 0;

and then evaluating successively at λ1, . . . , λk we get αj
ś

i‰j pλj ´ λiq “ 0 for 1 ď j ď k
which in turn implies αj “ 0 for 1 ď j ď k. The lemma is proved. �
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3. Homomorphisms and ideals

A ring homomorphism between rings R and S is called an isomorphism if it has an
inverse map that is also a homomorphism; if such a function exists we say that R and S
are isomorphic.

Lemma 3.1. Suppose that φ : RÑ S is a bijective ring homomorphism. Then the inverse
is also a homomorphism. Moreover, if R or S is unital then they are both unital and φ
and its inverse are both unital homomorphisms.

Proof. Suppose that x, y P S. Since φ is bijective there are elements u, v P R such that
x “ φpuq and y “ φpvq. Hence

φ´1px` yq “ φ´1pφpuq ` φpvqq “ φ´1pφpu` vqq “ u` v “ φ´1pxq ` φ´1pyq.

Similarly φ´1pxyq “ φ´1pxqφ´1pyq.
Now suppose that one of R and S is unital; we may assume R is unital by switching

R and S and replacing φ by φ´1 if necessary. Bijectivity of φ means for all s P S there
is some r P R such that φprq “ s, and hence φp1Rqs “ φp1Rqφprq “ φprq “ s “ φprq “
φprqφp1Rq “ sφp1Rq. It follows that φp1Rq is a multiplicative identity in S, so S is unital
with 1S “ φp1Rq, and φ and φ´1 are unital homomorphisms. �

!4This bootstrapping of bijections occurs for groups, vector spaces, and many other
algebraic structures. On the other hand f : r0, 1q Y t2u Ñ r0, 1s with fpxq “ x if x ă 1
and fp2q “ 1 is a continuous bijection, but the inverse function is not continuous.

Lemma 3.2. Suppose that φ : S Ñ R is a (unital) ring homomorphism. Then φpSq is a
(unital) subring of R.

Proof. Since S is nonempty, φpSq is non-empty. Moreover if x, y P φpSq then there are
elements u, v P S such that x “ φpuq and y “ φpvq. Then xy “ φpuqφpvq “ φpuvq P φpSq
since S is multiplicatively closed. Additionally, by Lemma 1.4, x`p´yq “ φpuq`p´φpvqq “
φpuq ` φp´vq “ φpu ` p´vqq P φpSq since S is an additive group. Since associativity and
distributivity are inherited from R we conclude that φpSq is a subring of R. If φ is a unital
homomorphism then 1 “ φp1q P φpSq and so φpSq is a unital subring of R. �

Suppose that R is a ring. We say that I is an ideal5 if it is an additive subgroup of R
with xr, rx P I for all r P R and x P I. The notation I CR is used in places (e.g. [Coh00,
p12]) to mean I is an ideal of R.

The sets t0u and R are always ideals in any ring, and so the only ring with fewer than
two ideals is a trivial ring, where R “ t0u.

Given a ring homomorphism φ : R Ñ S, the kernel of φ is the set kerφ :“ tx P R :
φpxq “ 0u.

Lemma 3.3. Suppose that φ : RÑ S is a homomorphism. Then kerφ is an ideal in R.

5One might also call these two-sided ideals by way of contrast with left and right ideals but this will
not be of concern to us here.
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Proof. By Lemma 1.4 we have φp0q “ 0 so 0 P kerφ and φp´xq “ ´φpxq for all x P R.
Hence if x, y P kerφ we have φpx` p´yqq “ φpxq ` p´φpyqq “ 0´ 0 “ 0 and so x` p´yq P
kerφ and it is an additive subgroup by the subgroup test.

Now suppose x P kerφ and r P R. Then φpxrq “ φpxqφprq “ 0φprq “ 0 by Lemma 1.1,
and similarly φprxq “ 0. It follows that xr, rx P kerφ. The lemma is proved. �

There are two important operations on ideals: intersection and summation. If I1, . . . , Ik
are ideals in R then we write I1 ` ¨ ¨ ¨ ` Ik for the sum of these sets, that is the set
tx1 ` ¨ ¨ ¨ ` xk : xi P Ii for 1 ď i ď ku. There is an infinite version of this6 which is
notationally more complicated but not otherwise more problematic.

Lemma 3.4. Suppose that R is a ring. If I1, . . . , Ik are ideals of R then so is I1`¨ ¨ ¨` Ik.
If I is a non-empty family of ideals of R, then

Ş

IPI I is an ideal of R.

Proof. This is essentially just unpacking notation. Doing this for the intersection is easiest
since x P

Ş

IPI I if and only if x P I for all I P I. For the sum, it follows since addition is
commutative. �

The above may be used to define the ideal generated by a set: if R is a ring and V is a
subset of R then the ideal generated by V is7

xV y :“
č

tI : V Ă I and I is an ideal in Ru.

Note that this intersection is well-defined since V Ă R and R is an ideal in R, and xV y is
an ideal by Lemma 3.4.

We give a few examples:

(i) If n P Z then xny is the set of multiples of n in Z. We shall see later that every

ideal in Z is of this form. !4If n ‰ 0 then xny “ Q in Q.
(ii) For λ P R, the ideal xX ´ λy in RrXs is the set of polynomials p with ppλq “ 0.

We proved that the polynomials with λ as a root are in this ideal in the course of
the proof of Proposition 2.3; the other direction follows from Lemma 1.1.

(iii) For F a field and λ, λ1 P F distinct, the ideal xX´λ,X´λ1y “ FrXs in FrXs. This
follows since any ideal containing X ´ λ and X ´ λ1 must contain their difference
λ´ λ1 which is a unit in F.

(iv) The ideal x2, Xy in ZrXs is the set of polynomials with even constant term. Cer-
tainly the polynomials with even constant term are an ideal in ZrXs, and every
such polynomial has the from 2q `XppXq for some p P ZrXs and constant poly-
nomial q P ZrXs, and hence all such polynomials are in this ideal.

Lemma 3.5. Suppose that R is a non-trivial commutative unital ring. Then R is a field
if and only if the only ideals in R are t0u and R.

6For I a set of ideals in R we put
ř

IPI I :“
Ť

SĂI:|S|ă8
ř

IPS I.
7We also write xv1, . . . , vn, V1, . . . , Vmy :“ xtv1, . . . , vnu Y V1 Y ¨ ¨ ¨ Y Vmy where v1, . . . , vn P R and

V1, . . . , Vm Ă R.
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Proof. Suppose that R is a field, and I is an ideal with x P I non-zero. Then x P UpRq by
definition and so there is some y P R such that yx “ 1. Hence if z P R then z “ pzyqx P I
since rx P I for all r P R. We conclude that I “ R as required.

In the other direction, suppose that t0u and R are the only ideals. For x P R the set
xR :“ txr : r P Ru is an ideal in R since R is commutative. If x P R˚ then xR ‰ t0u
and so xR “ R and hence there is some y P R such that xy “ 1, and since xy “ yx we
conclude x P UpRq. On the other hand since R is non-trivial we have UpRq Ă R˚, and
hence UpRq “ R and commutativity seals the deal: R is a field. �

Corollary 3.6. Suppose that F is a field, R is a ring, and φ : FÑ R is a ring homomor-
phism. Then either φ is identically 0 or φ is injective.

Proof. By Lemma 3.3 the kernel of φ is an ideal in F, and hence by Lemma 3.5 we have
kerφ “ t0u or kerφ “ F. If φ is not identically 0 then there is some x P F with x R kerφ,
so that kerφ “ t0u and φ is injective as claimed. �

It is worth checking that some of the classical examples of commutative unital rings are
not secretly the same i.e. are not isomorphic. In fact something rather stronger is true:
while the inclusion maps

Z ãÑ Q ãÑ R ãÑ C
are injective unital ring homomorphisms, in the other direction there are only zero homo-
morphisms, and so no unital homomorphisms (since none of these rings is trivial).

(i) If φ : C Ñ R is a ring homomorphism then φpiq2 ` φp1q2 “ φp0q “ 0 and so
φp1q “ φpiq “ 0 and hence φpzq “ 0 for all z P C by Lemma 1.1.

(ii) If φ : R Ñ Q is a ring homomorphism then it is certainly not injective since R is
uncountable, so by Corollary 3.6 we have φpxq “ 0 for all x P R.

(iii) If φ : Q Ñ Z is a ring homomorphism then φp1qp2φp1{2q ´ 1q “ φp1qpφp1{2q `
φp1{2qq ´ φp1q “ 0, but 2φp1{2q ´ 1 is odd and so non-zero. Thus φp1q “ 0 and
hence φpqq “ 0 for all q P Q by Lemma 1.1.8

4. Quotient rings and the isomorphism theorems

Kernels of homomorphisms are a key source of ideals and, as the next proposition shows,
all ideals arise in this way.

Proposition 4.1 (Quotient rings). Suppose that R is a unital ring, and I is an ideal in
R. Then the set R{I :“ ta ` I : a P Ru may be given the structure of a unital ring such
that q : RÑ R{I; a ÞÑ a` I is a unital ring homomorphism.

Proof. We should like to define addition and multiplication on R{I by

(4.1) pa` Iqp`pb` Iq :“ pa` bq ` I and pa` Iqpˆpb` Iq :“ pabq ` I

8Alternatively, by Corollary 3.6 if φ is not identically 0 then φ is injective. Now, φp1qpφp1q´ 1q “ 0 and
since Z is an integral domain φp1q “ 1 and so φ is unital and by Lemma 1.4 we have φpUpQqq ď UpZq “
t´1, 1u, which is a contradiction since φ is injective and UpQq “ Q˚ is infinite.
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for a, b P R. To see that this is well-defined suppose that a` I “ a1` I and b` I “ b1` I.
Then

pa` bq ´ pa1 ` b1q “ pa´ a1q ` pb´ b1q P I ` I “ I

since I is a group, and hence pa` bq ` I “ pa1 ` b1q ` I. Similarly

pabq ´ pa1b1q “ papb` p´b1qqq ` ppa` p´a1qqb1q P aI ` Ib1 “ I ` I “ I,

by Lemma 1.1, then that I is a group, then the second property of ideals, and finally that
I is a group again. It follows that pabq ` I “ pa1b1q ` I.

We have shown that there are well-defined binary operations p` and pˆ on R{I, and this
is the substance of the argument. We complete the demonstration that R{I is a unital ring
by saying that the remaining ring axioms are inherited from the corresponding axioms in
R.

For clarity we record some details though these were unlectured and the blue text here
will not be examined. If we define a unary operation p´ : R{I Ñ R{I;x ` I ÞÑ p´xq ` I

and two constants p0 :“ I and p1 :“ 1 ` I then R{I is a unital ring with addition p`,

multiplication pˆ, negation p´, zero p0, and multiplicative identity p1 if (and only if)

U p`pV p`W q “ pU p`V qp`W for all U, V,W P R{I;(R1)

p0p`U “ U p`p0 “ U for all U P R{I;(R2)

U p`pp´Uq “ pp´Uqp`U “ p0 for all U P R{I;(R3)

U p`V “ V p`U for all U, V P R{I;(R4)

U pˆpV pˆW q “ pU pˆV qpˆW for all U, V,W P R{I;(R5)

U pˆpV p`W q “ pU pˆV qp`pU pˆW q for all U, V,W P R{I;(R6)

pU p`V qpˆW “ pU pˆW qp`pV pˆW q for all U, V,W P R{I;(R7)

p1pˆU “ U pˆp1 “ U for all U P R{I.(R8)

These can be verified from the corresponding identities for R since for any U, V,W P R{I
there are elements x, y, z P R with U “ x ` I, V “ y ` I and W “ z ` I. Then, for
example, associativity of p` (that is (R1)) follows from associativity of ` by noting that

U p`pV p`W q “ px` Iqp`ppy ` Iqp`pz ` Iqq

“ px` Iqp`ppy ` zq ` Iq

“ px` py ` zqq ` I

“ ppx` yq ` zq ` I

“ ppx` yq ` Iqp`pz ` Iq

“ ppx` Iqp`py ` Iqqp`pz ` Iq

“ pU p`V qp`W

Definition of p`

Definition of p`

Associativity of `

Definition of p`

Definition of p`

and all the others in the same way as they have the same form.
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Finally, q is a unital homomorphism since it is a homomorphism by the design of (4.1),

and unital since qp1q “ p1 “ 1` I is the multiplicative identity of R{I. �

Note that the kernel of the projection map q is exactly the ideal I.
!4A similar result is true for rings that are not necessarily unital, and also groups,

vector spaces, and modules which we shall encounter later in the course. This is because
of the fact that all these structures can be defined in terms of some data – that is some
operations and some constants – and some axioms which take the form of some equations
in these operations and constants which hold for all values of the variables. Fields and
integral domains do not (in general) have quotients that are fields or integral domains
because their axiomatisation requires equations quantified over R˚ as well as R (and in a
sense this is unavoidable). Concretely, if F is a field and I “ F then F{I is the trivial ring
and so not a field.

One may think of the quotient of a ring by an ideal as the ring in which the elements of
the ideal are set to 0. We consider some examples:

(i) The quotient Z{xny where n P N is just the ring integers modulo n, often written
as Z{nZ when discussing groups. (For n composite this serves an an example of a
quotient of an integral domain by an ideal which is not an integral domain.)

(ii) The elements of the ring RrXs{xX2y are the polynomials in RrXs with all quadratic
and higher terms ‘set to zero’. For f P RrXs we write f 1p0q for the coefficient of
X in f . We know from the definition of multiplication of polynomials how to
work out pfgq1p0q from f and g. It is also possible to do this by considering the
equivalence class of polynomials where we set X2 equal to 0. Specifically, since
multiplication in RrXs{xX2y is well-defined we have

pfgqp0q ` pfgq1p0qX ` xX2
y

“ pfgqpXq ` xX2
y

“ pfp0q ` f 1p0qXqpgp0q ` g1p0qXq ` xX2
y

“ fp0qgp0q ` pfp0qg1p0q ` f 1p0qgp0qqX ` f 1p0qg1p0qX2
` xX2

y

“ fp0qgp0q ` pfp0qg1p0q ` f 1p0qgp0qqX ` xX2
y,

where the passage between the last lines is because xX2 ` 1y is a group and
f 1p0qg1p0qX2 P xX2y. We conclude that

(4.2) pfgqp0q ´ fp0qgp0q ` ppfgq1p0q ´ pfp0qg1p0q ` f 1p0qgp0qqqX P xX2
y.

If the left hand side is not identically 0 then it has a degree which is at most 1. On
the other hand, any element of xX2y has the form X2qpXq for some q P RrXs. If
the left hand side of (4.2) is not zero then q is not identically 0 by Lemma 1.1 and
so 1 ě degX2 ` deg q ě 2, a contradiction. We conclude that pfgqp0q “ fp0qgp0q
(as expected) and we also recover Leibniz’s identity that pfgq1p0q “ pfg1 ` f 1gqp0q
(at least for polynomials).

(iii) The ring RrXs{xX2 ` 1y can be thought of as R with an additional element X `

xX2` 1y – more commonly denoted i – such that pX ` xX2` 1yq2` 1 “ 0. It is a
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‘realisation’ of C; indeed, the map

ψ : CÑ RrXs{xX2
` 1y; a` bi ÞÑ a` bX ` xX2

` 1y

is an isomorphism. First, suppose z, w P C and write z “ a ` bi and w “ c ` di
for a, b, c, d P R so that

ψpz ` wq “ ψppa` cq ` pb` dqiq

“ pa` cq ` pb` dqX ` xX2
` 1y

“ pa` cXq ` xX2
` 1y ` pb` dXq ` xX2

` 1y “ ψpzq ` ψpwq.

Since zw “ pac´ bdq ` pbc` adqi we have

ψpzwq “ ψpac´ bd` pbc` adqiq

“ pac´ bdq ` pbc` adqX ` xX2
` 1y

“ ac` pbc` adqX ` bdX2
´ pX2

` 1qbd` xX2
` 1y

“ pa` bXqpc` dXq ` xX2
` 1y “ ψpzqψpwq.

Thus ψ is a ring homomorphism.
ψ is surjective: any element of RrXs{xX2` 1y – recall an element in this case is

a coset – contains a polynomial of minimal degree, say qpXq with lead coefficient
a, and if deg q ě 2 then qpXq ´ aXdeg q´2pX2` 1q has smaller degree and is in the
same coset, so we know that this element of minimal degree has degree at most 1
i.e. is of the form a` bX. However, ψpa` biq “ a` bX ` xX2 ` 1y and so every
coset on the codomain has a preimage.

Finally, ψ is injective: since it is surjective it is not identically 0 and so by
Corollary 3.6 it is injective since C is a field.9. We conclude that ψ is a bijective
ring homomorphism and so by Lemma 3.1 it is an isomorphism.

The First Isomorphism Theorem is a more general result by which we can access such
isomorphisms.

Theorem 4.2 (First Isomorphism Theorem). Suppose that φ : R Ñ S is a unital homo-
morphism. Then φpRq is a unital subring of S; kerφ is an ideal in R; and the map

ψ : R{ kerφÑ S;x` kerφ ÞÑ φpxq

is a well-defined injective unital homomorophism with image φpRq i.e. ψ is an injective
unital homomorphism such that the following diagram commutes

R
φ

##

q // R{ kerφ

ψ
��
S

9In lectures we proceeded by examining degree: if a` bX P xX2 ` 1y then a` bX “ pX2 ` 1qppXq for
some p P RrXs, and if pa, bq ‰ p0, 0q then ppXq P RrXs˚ and so 1 ě degpa`bXq “ degpX2`1q`deg p ě 2,
a contradiction. Hence kerφ “ t0u, and φ is injective as claimed.
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x1y “ Z

x3y x5yx2y

x10yx6yx4y x15y

x30yx20yx12y

x60y

Figure 1. Lattice of ideals in Z{x60y

Proof. The first two conclusions are Lemma 3.2 and Lemma 3.3 respectively. By Proposi-
tion 4.1 R{ kerφ is a unital ring.

Now, x ` kerφ “ y ` kerφ if and only if x ` p´yq P kerφ which is true if and only if
φpxq ` p´φpyqq “ φpx ` p´yqq “ 0 by Lemma 1.4, which in turn is true if and only if
φpxq “ φpyq. It follows that ψ is a well-defined injection; its image is clearly φpRq. ψ is a
ring homomorphism since

ψppx` kerφqpy ` kerφqq “ φppxyq ` kerφq

“ φpxyq “ φpxqφpyq “ ψpx` kerφqψpy ` kerφq

and

ψppx` kerφq ` py ` kerφqq “ φppx` yq ` kerφq

“ φpx` yq “ φpxq ` φpyq “ ψpx` kerφq ` ψpy ` kerφq.

Finally, ψp1 ` kerφq “ φp1q “ 1 and so ψ a unital ring homomorphism. The result is
proved. �

The ideals of a ring form a lattice as do the ideal in a ring containing a particular lattice.
The figure shows the lattice of ideals in Z containing the ideal x60y. These ideals are in
one to one correspondence with the ideals in Z{x60y. The next theorem establishes this in
general.

Theorem 4.3 (Relationship between ideals in R and R{I). Suppose that R is a ring and
I is an ideal in R. Write I for the set of ideals in R containing I, and J for the set of
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ideals in R{I. Then the map

φ : I Ñ J ; I 1 ÞÑ tx` I : x P I 1u.

is a well-defined inclusion-preserving bijection.

Proof. First, we show the map is well-defined. Suppose that I 1 P I, and S, T P φpI 1q. Then
there are elements x, y P I 1 such that S “ x` I and T “ y ` I so

S ` p´T q “ px` Iq ` pp´yq ` Iq “ px` p´yqq ` I P φpI 1q.

Since φpI 1q is non-empty, the subgroup test φpI 1q is an additive subgroup of R{I. Further-
more, if x` I P R{I and y P I 1 then

px` Iq ˆ py ` Iq “ pxyq ` I P φpI 1q and py ` Iq ˆ px` Iq “ pyxq ` I P φpI 1q

since xy, yx P I 1. Thus φpI 1q is genuinely an ideal in R{I.
φ is visibly inclusion-preserving; it is an injection since I 1 “

Ť

xPI 1 px` Iq in view of the
fact that I Ă I 1.

Finally, if J is an ideal in R{I then put I 1 :“
Ť

KPJ K. I Ă I 1 since I P J . If x, y P I 1

then x ` I, y ` I P J and so px ` p´yqq ` I P J (since J is an additive group) and hence
x ` p´yq P I 1. It follows that I 1 is an additive group by the subgroup test. If x P R and
y P I 1 then px` Iq ˆ py ` Iq P J and so pxyq ` I P J and xy P I 1, and we see that I 1 is an
ideal. Moreover φpI 1q “ J so we see that φ is a surjection and the result is proved. �

This result also goes by the name of the Correspondence Theorem and sometimes the
Fourth Isomorphism Theorem for rings.

In lectures we discussed the case R “ Z and I “ xpy for a prime p. Let I and J as
defined in Theorem 4.3.

(i) If I 1 P I and I 1 ‰ xpy then let x P I 1zxpy. Since x is not a multiple of p – recall that
xpy is exactly the multiples of p – then hcfpx, pq “ 1 and so by Bezout’s Theorem
there are α, β P Z such that αx` βp “ 1. But then

1 “ αx` βp P αI 1 ` βxpy Ă αI 1 ` βI 1 “ I 1.

However, 1 P I 1 means I 1 “ Z. Hence I “ txpy,Zu
(ii) On the other hand Fp “ Z{xpy is a field and so by Lemma 3.5 the only ideals are

the zero ideal and the whole field so J “ tt0Fpu,Fpu.
Since Fp “ Z{xpy we have 0Fp “ xpy. The correspondence in Theorem 4.3 takes xpy to
txpyu and Z to tx` xpy : x P Zu “ Fp.

!4The appearance of Bezout’s Theorem in (i) should not be too much of a surprise: it
is hiding in the fact that Fp is a field in the second part. The main component of proving
this is showing that every x P F˚p has a multiplicative inverse. If x P F˚p then x “ x0 ` xpy
for some x0 R xpy. Thus hcfpx0, pq “ 1 and hence by Bezout’s Theorem there are α, β P Z
such that αx0 ` βp “ 1, whence pα ` xpyqx “ 1` xpy and x has an inverse as required.
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5. The Chinese Remainder Theorem

Given a family pRiqiPI of unital rings we write
ś

iPI Ri (or R1ˆ¨ ¨ ¨ˆRk if I “ t1, . . . , ku)
for the direct product of these rings, that is the set10

ś

iPI Ri endowed with pointwise
operations:

a` b :“ pai ` biqiPI and ab :“ paibiqiPI for all a, b P
ź

iPI

Ri.

This is a unital ring with 0ś
iRi
“ p0Ri

qiPI , 1ś
iRi
“ p1Ri

qiPI , and

(5.1) U

˜

ź

iPI

Ri

¸

“
ź

iPI

UpRiq.

The projection maps

πj :
ź

iPI

Ri Ñ Rj;x ÞÑ xj

are all unital homomorphism; their existence is what really captures the product structure.
!4The maps ιj : Rj Ñ

ś

iPI Ri (which are defined so that πjpιjpxqq “ x and πipιjpxqq “
0Ri

if i ‰ j) are ring homomorphisms, but they are not in general unital ring homomor-
phisms.

!4Direct products do not preserve the property of being an integral domain: in the ring
Rˆ R we have pa, 0q ˆ p0, bq “ 0 for all a, b P R.

We say that ideals I and J in a ring R are coprime if I ` J “ R. To explain the
terminology recall that Bezout’s Theorem can be phrased as saying that if R “ Z then
1 P xxy ` xyy if (and only if) x and y are coprime.

Theorem 5.1 (Chinese Remainder Theorem). Suppose that R is a commutative unital
ring and I1, . . . , Ik are pairwise coprime ideals in R. Then the map

R{pI1 X ¨ ¨ ¨ X Ikq Ñ pR{I1q ˆ ¨ ¨ ¨ ˆ pR{Ikq; r ` I1 X ¨ ¨ ¨ X Ik ÞÑ pr ` I1, . . . , r ` Ikq

is an isomorphism.

Proof. It is enough to show that the map

φ : RÑ pR{I1q ˆ ¨ ¨ ¨ ˆ pR{Ikq; r ÞÑ pr ` I1, . . . , r ` Ikq

is a surjective unital homomorphism with kernel I1 X ¨ ¨ ¨ X Ik. The result then follows by
the First Isomorphism Theorem. Quotient maps are all unital homomorphisms and so is
this map. The kernel is exactly the set of r P R such that r ` Ii “ Ii for all 1 ď i ď k
which is to say kerφ “ I1 X ¨ ¨ ¨ X Ik as required.

10This is the Cartesian product. We take it to be the set of functions f : I Ñ
Ť

iPI Ri such that fpiq P Ri

for all i P I. Such functions are sometimes called choice functions in the literature, the idea being that for
each i P I we choose some fpiq P Ri. If I is an initial segment of the natural numbers we often write fi
instead of fpiq.
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Proving that the map is surjective is the rub and is perhaps most easily done in the
k “ 2 case first. In general, note that11

R “
č

i‰j

pIj ` Iiq “ Ij `
č

i‰j

Ii,

so we can take xj P Ij and yj P
Ş

i‰j Ii with xj ` yj “ 1. For u P pR{I1q ˆ ¨ ¨ ¨ ˆ pR{Ikq we
have

φ pu1y1 ` ¨ ¨ ¨ ` ukykq “ pu1y1 ` I1, . . . , ukyk ` Ikq

and the map is surjective as required. �

This result immediately gives the usual formulation where we are trying to solve simul-
taneous congruences: if m1, . . . ,mk are pairwise coprime naturals and a1, . . . , ak P Z then
there is some a P Z such that a ” ai pmod miq for 1 ď i ď k.

Similarly, Euler’s totient function is φpnq :“ |UpZ{xnyq| and the above coupled with
(5.1) shows that this function is multiplicative, meaning φpmnq “ φpmqφpnq whenever
hcfpm,nq “ 1.

!4φ is not totally multiplicative, for example φp4q “ 2 ‰ 1 “ φp2q2.

Corollary 5.2 (Polynomial interpolation). Suppose that F is a field, λ1, . . . , λk P F are
pairwise distinct and a1, . . . , ak P F. Then there is a polynomial p P FrXs of degree at most
k ´ 1 such that ppλiq “ ai for all 1 ď i ď k.

Proof. Since λi ‰ λj and F is a field we see that pλj´λiq
´1pX´λiq´pλj´λiq

´1pX´λjq “ 1

and hence the ideals pxX ´ λiyq
k
i“1 are pairwise coprime. Write I :“

Şk
i“1 xX ´ λiy and

apply the Chinese Remainder Theorem to FrXs to see that there is a polynomial q P FrXs{I
such that qpXq P ai ` xX ´ λiy for all 1 ď i ď k.

Let ppXq P qpXq ` I have minimal degree so that ppXq P qpXq ` I Ă ai ` xX ´ λiy for
all 1 ď i ď k. If d :“ deg p has d ě k then write ad for the lead coefficient of p and note
that ppXq ´ adX

d´k
śk

i“1 pX ´ λiq P qpXq ` I and has strictly smaller degree. The result
is proved. �

!4Note that the obvious extension of Theorem 5.1 to infinitely many rings fails: if R “ Z
and Ii :“ xpiy where pi is the ith prime then the product

ś

i pZ{xpiyq is uncountable, but
any quotient of Z is countable so there cannot be a surjection from a quotient of Z to this
product.

11 !4The second equality here, while true, is misleading as it makes use of the coprimality condition
and is not true for general ideals. Specifically, since Ij is coprime to Ii for all i ‰ j, there are elements

zi P Ij and wi P Ii with zi ` wi “ 1. Thus 1 “
´

1´
ś

i‰j p1´ ziq
¯

`

´

ś

i‰j wi

¯

P Ij `
Ş

i‰j Ii. Thanks

to Terry Song for asking for more explanation here. These details are not needed in the k “ 2 case and I
do not regard the details for k ą 2 in this footnote as bookwork for the exam.

For a specific example of ideals I, J , and K with pI ` Jq X pI `Kq ‰ I ` J XK consider R “ ZrXs,
I “ x2y, J “ xX ` 1y and K “ xX ´ 1y. Here X ` 1 P I ` J “ I `K whereas J XK “ xX2 ´ 1y and so if
X ` 1 P I ` J XK then X ` 1 “ ppXqpX2 ´ 1q ` 2qpXq for p, q P ZrXs. Degree considerations show that
p ” 0 and then 2 � X ` 1 which is a contradiction.
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!4Take care with the meaning of coprime for ideals: there is no non-unit qpXq in ZrXs
such that X ´ 1 and X ` 1 are multiples of qpXq, but the ideals xX ´ 1y and xX ` 1y are
not coprime. This is reflected in the failure of Corollary 5.2 if F is replaced by Z where,
for any ppXq P ZrXs we must have 2 � pp1q´pp´1q so we cannot specify the value of these
two points arbitrarily.

6. The Integers and characteristic

The ideal structure of the integers is well-behaved. We say that an ideal in a ring R is
principal if it is generated by one element.

Proposition 6.1. Every ideal in Z is principal.

Proof. Suppose that I is a non-zero ideal and let µ ą 0 be its smallest positive element.
If I ‰ xµy then there is a minimal positive ν P Izxµy. By minimality of µ we have ν ą µ.
By the ideal property of I we have ν ´ µ P I, and by minimality of ν we have ν ´ µ P xµy
and hence ν P xµy, a contradiction. The result is proved. �

The integers play a uniquely important role amongst unital rings:

Proposition 6.2. Suppose that R is a unital ring. Then there is a unique unital ring
homomorphism φ : ZÑ R.

Proof. For existence we define φ recursively on N0 by φp0q “ 0 and φpn ` 1q :“ φpnq ` 1
for n P N0, and then put φp´nq :“ ´φpnq for n P N. Certainly φp1q “ 1, and we can use
induction to show that φ is a ring homomorphism.

In the other direction if φ and ψ are unital ring homomorphisms we can show φpxq “ ψpxq
for all x P N0 by induction (since φp1q “ 1 “ ψp1q), which extends to the whole of Z since
φp´xq “ ´φpxq and ψp´xq “ ´ψpxq by Lemma 1.4. �

!4A function f is said to be right cancellable if whenever g ˝f “ h˝f we have g “ h. It
can be shown that a function is right cancellable if and only if it is surjective. This remains
true if we restrict f , g, and h to be linear maps between vector spaces; or homomorphisms
between groups; or continuous maps between compact Hausdorff spaces; amongst many
other things.

By contrast, let f : ZÑ Q be the inclusion map (which is an injective unital homomor-
phism), and suppose g, h : QÑ R are unital ring homomorphisms with g ˝f “ h˝f . Then
for all a P Z and b P Z˚ we have gpab´1q “ gpaqgpbq´1 “ hpaqhpbq´1 “ hpab´1q so g “ h
despite the fact that f is not surjective.

Proposition 6.2 tells us that for any unital ring R there is a unique unital homomorphism
φ : Z Ñ R. This map has a kernel which is an ideal by Lemma 3.3 and principal by
Proposition 6.1, say kerφ “ xxy. If xyy “ kerφ then we have x � y and y � x and so
x “ ˘y, thus there is a unique element of n P N0 such that kerφ “ xny. This is called the
characterstic of the ring R.

The inclusion map from Z into Z, Q, R and C is a unital ring homomorphism in each
case, and hence the unital ring homomorphism and we see that the characteristic at these
rings is 0.
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Proposition 6.3. Suppose that R is an integral domain of non-zero characteristic. Then
R has prime characteristic p and is a vector space over Fp.

Proof. Let φ : Z Ñ R be the unital homomorphism of Proposition 6.2 and suppose that
the characteristic is p. If p “ ab for a, b ě 1 then 0 “ φppq “ φpaqφpbq and since R is
an integral domain we conclude that φpaq “ 0 or φpbq “ 0; say the former. Then a P xpy
whence a “ 0 or a ě p. It must be the latter and hence p is prime.

The First Isomorphism Theorem gives an injective unital homomorphism Z{xpy Ñ R,
and so R is a vector space over Fp “ Z{xpy as required. �

In view of Theorem 2.5 this means that any integral domain R is of prime characteristic
p and sits between two fields of characteristic p.

While integral domains of characteristic 0 need not be vector spaces, a field of charac-
teristic 0 is a vector space over Q by Theorem 2.5.

7. Prime and maximal ideals

Suppose that R is a commutative unital ring. We say that an ideal I in R is proper if
I ‰ R, and have the following immediate consequence.

Lemma 7.1. Suppose that R is a commutative unital ring. Then I is proper if and only
if R{I is non-trivial.

We say that an ideal I is prime if it is proper and whenever ab P I we have either a P I
or b P I.

For example, if R is an integral domain then xXy is prime in RrXs. To see this note
that p P xXy if and only if pp0q “ 0, whence the primality of xXy follows from the fact
that R is an integral domain. This is a close connection which manifests more generally:

Proposition 7.2. Suppose that R is a commutative unital ring and I is a proper ideal.
Then I is a prime ideal if and only if R{I is an integral domain.

Proof. Note that a` I, b` I P R{I has pa` Iqpb` Iq “ pabq ` I “ I if and only if ab P I.
ñ: pa ` Iqpb ` Iq “ 0R{I “ I implies ab P I implies, and a P I or b P I by primality.

Consequently a ` I “ I “ 0R{I or b ` I “ I “ 0R{I i.e. R{I is an integral domain. (Note
R{I is non-trivial since I is proper.)
ð: If ab P I then pa`Iqpb`Iq “ I “ 0R{I and hence a`I “ 0R{I “ I or b`I “ 0R{I “ I

so a P I or b P I i.e. I is prime. �

!4Note that R is an integral domain if and only if t0u is prime.
We say that an ideal I is maximal if I is proper and whenever I Ă J Ă R for some

ideal J we have J “ I or J “ R.
!4Maximal here is maximal with respect to inclusion amongst proper ideals; all ideals

in R are contained in R.

Proposition 7.3. Suppose that R is a commutative unital ring and I is a proper ideal in
R. Then I is maximal ideal if and only if R{I is a field.
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Proof. By Theorem 4.3 there is an ideal I Ĺ J Ĺ R if and only if there is an ideal
t0u Ĺ J̃ Ĺ R{I. The result follows from Lemma 3.5 since R{I is non-trivial. �

It follows immediately from this and Proposition 7.2 that every maximal ideal is prime,
but this can also be proved directly.

It is not immediately obvious that a non-trivial commutative unital ring, R, should have
a maximal proper ideal. If R is finite then we might proceed iteratively: note that t0u is
a proper ideal (since R is non-trivial). Suppose we have constructed some proper ideal I.
If this it is maximal then stop; if not then there is some proper ideal strictly containing I.
In the second case replace I by this new ideal. The new ideal is strictly larger, and since
R is finite this process must terminate.

If R is infinite this process might not terminate, but we still have the intuition that we
should be able to keep going until we exhaust all the element of R. This intuition can
be formalised through a transfinite induction, but the conclusion (in a slightly generalised
form which follows) is more commonly established via Zorn’s Lemma following [Zor35].

Theorem 7.4. Suppose that R is a commutative unital ring and I is a proper ideal in R.
Then there is a maximal ideal J in R containing I.

We shall not prove this here, though it is not particularly involved. In fact we could
take it an an axiom – it is known to be equivalent to the axiom of choice or Zorn’s Lemma
[Hod79].

We say that an element x P R is prime if xxy is a prime ideal. On the face of it this
seems different to the ‘usual’ notion of prime in the naturals when they are considered
as elements of the ring of integers. To explain the connection we shall need a little more
notation.

In a commutative unital ring, we have xxy “ txr : r P Ru, which we sometimes write as
xR (or Rx).

!4In the commutative (but not unital) ring 2Z, all the elements of t2r : r P 2Zu are
divisible by 4 and so, in particular, this set does not contain 2, and we have x2y ‰ t2r :
r P 2Zu.

Principal ideals in commutative unital rings capture a notion of divisibility: we say that
a divides b or b is a multiple of a, and write a � b if any of the following equivalent
properties holds:

b P xay; or xby Ă xay; or there is some x P R such that b “ xa.

Note that for all x P R we have x � 0 (including 0 � 0) and u � x for all u P UpRq. We say
that a and b are associates and write a „ b if xay “ xby, which is trivially an equivalence
relation.

We say that a P R˚ is irreducible if either of the following equivalent properties holds:

(i) xay is maximal amongst proper principal ideals;
(ii) whenever x � a we have x „ a xor x „ 1.

!4Note that units are not irreducible since the ideal generated by a unit is not proper.

Lemma 7.5. Suppose that R is an integral domain. Then
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(i) a „ b if and only if there is some x P UpRq such that a “ xb;
(ii) a P R˚ is irreducible if and only if whenever a “ xy we have x „ 1 or y „ 1;

(iii) a P R˚ is irreducible if and only if whenever a “ xy we have x „ a or y „ a;
(iv) if a P R˚ is prime then it is irreducible.

Proof. ð from (i): If x P UpRq then by closure xR Ă R, and if z P R implies pzx´1qx P Rx,
whence R “ Rx and hence Ra “ Rb.
ñ from (i): If Ra “ Rb then there are x, y P R such that a “ xb and b “ ya, whence

a “ xya and by the Cancellation Lemma xy “ 1 so x P UpRq.
ð from (ii): Suppose that xay Ă xxy then a “ xy for some y P R and either x „ 1, or

y „ 1 whence x „ a by (i).
ñ from (ii): Suppose a is irreducible and a “ xy. Then xay Ă xyy and either y „ 1 (and

we are done) or y „ a. In the latter case by (i) we have a “ zy for some z P UpRq and
hence zy “ xy so by the Cancellation Lemma z “ x and hence x „ 1 by (i).

The proof of (iii) is similar to the proof of (ii).
For (iv), suppose that a is prime and a “ yz for y, z P R. Then a � yz and so by

primality, either a � y meaning xyy Ă xay Ă xyy and y „ a, or a � x and the same
argument gives x „ a. The result follows from (iii). �

!4The right to left implication in part (i) of the Lemma is true in any commutative unital
ring, but the left to right implication may fail if R is not an integral domain: Consider the
ideal I “ xZ ´XY Zy in the ring FrX, Y, Zs viewed as polynomials in Z with coefficients
in FrX, Y s. Then we may think of the (commutative unital) ring R :“ FrX, Y, Zs{I as
the polynomials in Z with constant coefficient from FrX, Y s and all other coefficients from
FrX, Y s{x1 ´ XY y. In R we have xZy “ xY Zy. But if u P UpRq then u “ a ` Zb where
b P R and a P UpFrX, Y sq “ F˚, so if Z “ uY Z pmod Iq then equating coefficients of Z we
have 1´XY � 1´ aY in FrX, Y s which is a contradiction when we look at the X-degree.
We conclude that there is no unit u P UpRq such that Z “ uY Z pmod Iq.

!4Even in integral domains, irreducible elements need not be primes: The ring FrX2, X3s,
which is the unital subring of FrXs consisting of polynomials whose coefficient of X is 0,
is an integral domain. In this ring X3 is irreducible, but pX3q2 P xX2y while X3 R xX2y.

An integral domain is said to be a principal ideal domain or PID if every ideal is
principal. Every field is a PID, and we saw in Proposition 6.1 that Z is also a PID. In
PIDs we have the following complement to Lemma 7.5 part (iv).

Proposition 7.6. Suppose that R is a PID and x P R˚. Then x is irreducible if and only
if R{xxy is a field. In particular, any non-zero prime ideal is maximal.

Proof. xxy is maximal amongst proper principal ideals if and only if xxy is maximal amongst
all proper ideals in R (since R is a PID) which is true if and only if R{xxy is a field by
Proposition 7.3.

For the last part if I is a non-zero prime ideal then since R is a PID, I “ xxy for some
x P R˚. Hence x is irreducible by Lemma 7.5 (iv), and so xxy is maximal amongst proper
principal ideals, but these are the only proper ideals in R so I is maximal amongst all
proper ideals. �
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Since Proposition 6.1 established that Z is a PID, we have from Proposition 7.2 and
Proposition 7.6 that n P N is prime in the old sense if and only if it is prime in the new
sense.

Proposition 7.6 immediately explains our existing supply of finite fields: the fields Fp of
the integers mod p are all quotients of the principal ideal of integers by an irreducible. To
get more we need some more PIDs; the proof that Z is a PID in Proposition 6.1 adapts to
give the following.

Proposition 7.7. Suppose that F is a field. Then FrXs is a PID.

Proof. Suppose that I is an ideal in FrXs. We may assume that it is non-zero and since the
units of FrXs are the elements of F˚ we may take p P I a monic polynomial of minimum
degree. If I is not principal then there is an element q P Izxpy, also monic, and of minimal
degree (in this complement). By minimality of the degree of p we have deg p ď deg q. Since
I is an ideal qpXq ´ ppXqXdeg q´deg p P I, and since p and q are monic this difference has
degree less than q. By minimality of q it follows that qpXq ´ ppXqXdeg q´deg p P xpy, but
then q P xpy – a contradiction. �

8. Fields and adjunction of elements

We say that a field F is a subfield of a field K or K is a field extension of F if F is a
unital subring of K.12 In this situation K has the structure of a vector space over F and
we call its F-dimension the degree of the field extension, also denoted |K : F|.

Theorem 8.1. Suppose that F is a field and f P FrXs is irreducible of degree d. Then
K :“ FrXs{xfy is a degree d field extension of F, there is α P K such that K “ Frαs and
the set of F-polynomials with α as a root is the ideal generated by f .

Proof. Proposition 7.7 tells us FrXs is a PID and hence Proposition 7.6 tells us that
FrXs{xfy is a field. The map F Ñ FrXs Ñ FrXs{xfy is a composition of the embedding
of F as the constant functions of a polynomial ring, and then the quotient map. This is
a unital homomorphism which is injective since f is non-constant (being maximal), so K
is an F-vector space. Let α :“ X ` xfy. The set of F-polynomials with α as a root is an
ideal and since FrXs is a PID it is generated by some g. Since fpαq “ fpXq ` xfy “ 0 we
see that f P xgy, but f is irreducible so xfy “ xgy.

The elements 1, α, . . . , αd´1 are F-independent in K; if they were not then there would
be a polynomial g P FrXs˚ of degree at most d ´ 1 such that gpαq “ 0, but all non-zero
polynomials with this property are in the ideal generated by f and so have degree at least
d.

By induction αn P Spanp1, α, . . . , αd´1q for all n ě d, so K is a degree d extension and
K “ Frαs. �

We think of K as the field F with the element α adjoined.

12Note that not all unital subrings of fields are subfields e.g. Z is a unital subring of C, but Z is not a
field.
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Suppose that K is a field extension of F and α P K. The set tf P FrXs : fpαq “ 0u is an
ideal in FrXs. If it is non-trivial we say that α is F-algebraic, and since FrXs is a PID
there is a unique monic generator, which we call the minimal polynomial of α. Note
that if |K : F| “ d then 1, α, . . . , αd must be linearly dependent for any α P K, so every
such α is F-algebraic.

All degree one polynomials in FrXs are irreducible, but in view of Theorem 8.1 they do
not give us any new fields. A quadratic is irreducible if and only if it does not have a root
in F which leads to a couple of examples:

(i) X2 ` 1 is irreducible over R. Hence RrXs{xX2 ` 1y is a field, as we saw directly
in example (iii) after Proposition 4.1.

(ii) Suppose that p is an odd prime. The map13 UpFpq Ñ UpFpq;x ÞÑ x2 is not injective
since p´1q2 “ 12 (and ´1 ‰ 1 in for odd p), but the domain and codomain are
finite and of the same size, so the map is not surjective. Thus there is some ap P Fp
such that qpXq :“ X2 ´ ap has no roots over Fp, and hence FprXs{xX2 ´ apy is a
field of order p2.

(iii) Any quadratic q P F2rXs must have the form qpXq “ X2`aX` b. q is irreducible
if and only if qp0q “ qp1q “ 1, whence X2`X` 1 is the only quadratic irreducible
in F2rXs. F2rXs{xX

2 `X ` 1y is then a field of order 4.

!4The field in this last example is the unique (up to isomorphism) field with 4 elements
and is denoted F4. It is not equal to the ring Z{4Z – 2ˆ 2 “ 0 in the latter.

Corollary 8.2. Suppose that F is a finite field extension of R. Then F has degree at most
2.

Proof. Suppose that α P FzR. Since F is a finite extension of R, α is R-algebraic and it
has a minimal polynomial m P RrXs. By the Fundamental Theorem of Algebra m is either
linear or quadratic; since α R R it is quadratic. In particular there is some element β P F
such that β2` 1 “ 0 and hence C is (isomorphic) to a subfield of F. F is a finite extension
of C (since it is a finite extension of R). However, if α P FzC then it is C-algebraic and so
has a minimal polynomial m1 P CrXs. Again, by the Fundamental Theorem of Algebra m1

is linear, contradicting the fact that α R C. The result is proved. �

!4Note that the finiteness here is critical: RpXq is a field extension of R that is certainly
not finite.

Theorem 8.3 (Tower Law). Suppose that L is a field extension of K and K is a field
extension of F. Then |L : F| “ |L : K||K : F|.

Proof. Let e1, . . . en be a basis for K as a vector space over F and f1, . . . , fm be a basis for
L as a vector space over K. We shall show that peifj : 1 ď i ď n, 1 ď j ď mq is a basis for
L as a vector space over F. There are two things to check:

13In fact it is a homomorphism.
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Independence: Suppose that
ř

i,j λi,jeifj “ 0 for some λi,j P F. Then

m
ÿ

j“1

˜

n
ÿ

i“1

λi,jei

¸

fj “ 0,

but each coefficient of fj is an element of K, and so by linear independence of pf1, . . . , fmq
we see that

řn
i“1 λi,jei “ 0 for all 1 ď j ď m. But then by linear independence of

pe1, . . . , enq we see that λi,j “ 0 for all 1 ď i ď n and 1 ď j ď m.
Spanning: If x P L then since pf1, . . . , fmq is a basis for L over K we have elements

µ1, . . . , µm P K such that x “ µ1f1` ¨ ¨ ¨ ` µmfm. Since pe1, . . . , enq is a basis for K over F,
for each 1 ď i ď m we have λi,1, . . . , λi,n such that µi “ λi,1e1 ` ¨ ¨ ¨ ` λi,nen and hence

x “
m
ÿ

i“1

µifi “
ÿ

i,j

λi,jeifj

as required. �

!4The polynomial X3 ` X ` 1 is irreducible14 so L :“ F2rXs{xX
3 ` X ` 1y is a field

of order 8. However, L does not have a subfield of order 4: suppose it did, and call it K.
Since 1 P K, we have that F2 is a subfield of K. However, |K : F2| “ 2 and |L : F2| “ 3 and
the Tower Law then gives us |L : K| ˆ 2 “ 3, a contradiction.

9. Irreducibility tests for polynomials

Suppose that φ : RÑ S is a unital homomorphism between two integral domains. Then

(9.1) φ̃ : RrXs Ñ SrXs; adX
d
` ¨ ¨ ¨ ` a1X ` a0X ÞÑ φpadqX

d
` ¨ ¨ ¨ ` φpa1qX ` φpa0q

is also a unital homomorphism between integral domains. We can use this homomorphism
to examine irreducibility in SrXs and RrXs through each other. We begin with the case
when φ is the embedding map from Theorem 2.5 of an integral domain into its field of
fractions.

!42X is reducible in ZrXs but irreducible in QrXs. We say that f P ZrXs is primitive
if there is no prime p dividing all of the coefficients of f .

Theorem 9.1 (Gauss’ Lemma). A non-constant polynomial f P ZrXs is irreducible in
ZrXs if and only if it is primitive, and irreducible in QrXs.

Proof. ð: Suppose that f is primitive and irreducible in QrXs. Write f “ gh for g, h P
ZrXs. Since f is irreducible in QrXs we see that either deg g “ 0 or deg h “ 0, and since
f is primitive we then conclude that either g or h is ˘1.
ñ: Suppose that f is irreducible in ZrXs, and f “ gh for some g, h P QrXs. Let

λ P N be minimal such that there is some q P Q˚ with λq´1g P ZrXs and qh P ZrXs. Let
q P Q˚ be such that g1 :“ λq´1g P ZrXs and h1 :“ qh P ZrXs. Suppose that p is a prime
dividing λ. Then p � g1h1 and applying the modulo p reduction map to g1h1 we get pg1

14There are only two irreducible cubics in F2rXs, with the other being X3 `X2 ` 1. To see this note
that any reducible cubic p has a linear factor i.e. pp0q “ 0 or pp1q “ 0.
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pmod pqqph1 pmod pqq “ 0 in the integral domain FprXs. Hence g1 ” 0 pmod pq or h1 ” 0
pmod pq, but then p � λq´1g or p � qh (in ZrXs) contradicting minimality of λ since either
pλp´1qq´1g P ZrXs and qh P ZrXs, or pλp´1qpqp´1q´1 P ZrXs and pqp´1qh P ZrXs. We
conclude that λ “ 1 and so g or h is a unit in ZrXs and hence in QrXs as required. �

In the proof above we used the reduction pmod pq map which itself gives rise to a useful
test.

Theorem 9.2 (Reduction test). Suppose that f P ZrXs is monic, and p is a prime such
that f pmod pq is irreducible. Then f is irreducible.

Proof. Write r̈ for the homomorphism ZrXs Ñ FprXs; g ÞÑ g pmod pq. Suppose that

f “ gh for g, h P ZrXs, so that rf “ rgrh. Since rf is irreducible we see that either rg or rh is
a unit in FprXs which means that exactly one of them has degree 0. Since f is monic we
have

deg g ` deg h “ deg f “ deg rf “ deg rg ` degrh.

However deg rg ď deg g and degrh ď deg h, hence deg rg “ deg g and degrh “ deg h and so
exactly one of the polynomials g and h has degree 0; say g. Since the lead coefficient of f
is 1 we conclude that g � 1 and hence g is a unit as required. �

For example, the polynomial ppXq “ X3 ´ 34X2 ` 17X ` 289 is irreducible in ZrXs
because ppXq pmod 2q “ X3 `X ` 1 is irreducible in F2rXs.

!4We need some condition like f being monic: for example, if fpXq “ p2X`1q2X then
f pmod 2q “ X which is irreducible but f is not.

Sometimes the reduction test is not enough to establish irreducibility, and the following
proposition gives another useful approach.

Proposition 9.3 (Eisenstein’s Criterion). Suppose that fpXq “ anX
n ` ¨ ¨ ¨ ` a1X ` a0 is

a primitive polynomial in ZrXs and p is a prime such that p � ai for all 0 ď i ă n; p ffl an;
and p2 ffl a0. Then f is irreducible in ZrXs and, hence, in QrXs.

Proof. Write r̈ for the homomorphism ZrXs Ñ FprXs; g ÞÑ g pmod pq. The first two

hypotheses mean that rf „ Xn, and if f “ gh then rgrh „ Xn. Since X is prime in FprXs
we conclude that rg „ X i and rh „ Xn´i for some 0 ď i ď n. If 0 ă i ă n then this means
that the constant term of g and the constant term of h are both divisible by p and hence
the constant term of f is divisible by p2, a contradiction. Since deg g ` deg h “ deg f “

deg rg ` degrh and deg rg ď deg g and degrh ď deg h we conclude that deg rg “ deg g and

degrh “ deg h. Since f is primitive it has no non-unit constant divisors and the result is
proved. �

For example, fpXq “ 2X4 ` 3X ` 3 is irreducible in ZrXs by Eisenstein’s Criterion.
The polynomial qpXq “ X4 ` 1 is irreducible in ZrXs. There are various ways this can

be shown and various ways it cannot.

(i) (Equating coefficients) q has no degree 1 factors in ZrXs since it has no roots. Thus
if it were reducible then there would be two quadratic factors fpXq “ a2X

2`a1X`
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a0 and gpXq “ b2X
2 ` b1X ` b0 in ZrXs such that q “ fg. Equating coefficients

gives

a2b2 “ 1, a2b1 ` a1b2 “ 0, a2b0 ` a1b1 ` a0b2 “ 0, a1b0 ` a0b1 “ 0, and a0b0 “ 1,

which gives a contradiction.
(ii) (Eisenstein’s Criterion) This does not apply directly, however qpX ` 1q “ pX `

1q4 ` 1 “ X4 ` 4X3 ` 6X2 ` 4X ` 2 is irreducible by the Criterion at p “ 2, and
hence q is irreducible.

(iii) (Prime values) qp0q “ 1, qp˘1q “ 2, qp˘2q “ 17, qp˘4q “ 257, qp˘6q “ 1297
are all primes or units. As before, the critical case is when q is a product of
two quadratic factors in ZrXs. Then one of the factors has to take a value from
t´1, 1u at every element of Z :“ t´6,´4,´2,´1, 0, 1, 2, 4, 6u, hence at least one
factor takes a value from t´1, 1u at at least five values in Z, and this quadratic
either takes the value 1 at least 3 times or ´1 at least 3 times. But a quadratic
that is the same value at three points is constant. Hence q is irreducible.

!4By contrast, the polynomial X2`X`2 is irreducible in ZrXs (since it has no
integer roots) but is also even on the integers and so prime at only finitely many
values.

(iv) (Reduction modulo a prime) This test does not work for any prime. Suppose that
p is a prime and write rq for q pmod pq. Then for p “ 2, rqpXq “ pX ` 1q4 and
so q is reducible pmod 2q. Now suppose that p is odd. We saw in example (ii)
after Theorem 8.1 that for every odd prime p there is a field extension F of Fp of
degree 2. Now UpFq has order p2´ 1 in this case which, since p is odd, is divisible
by 8. Since UpFq is cyclic (Proposition 2.4) it follows that it has an element α of
multiplicative order exactly 8. Since 0 “ α8 ´ 1 “ pα4 ´ 1qpα4 ` 1q we see it must
be the second factor that is 0 (otherwise α would have order dividing 4). But then
rqpαq “ 0 and so q is in the ideal generated by the minimal polynomial (in FprXs)
of α which has degree 2. It follows that rq is not irreducible in FprXs.

10. Unique factorisation domains

The aim of this section is to establish an analogue of the Fundamental Theorem of
Arithmetic for PIDs. It is instructive to keep the case R “ Z in mind for understanding
the arguments.

We say that a commutative unital ring R has the ascending chain condition on
principal ideals or ACCP if whenever pIiqiPN0 is an ascending chain (meaning Ii Ă Ii`1
for all i P N0) of principal ideals then there is some N P N0 such that In “ IN for all
n ě N .

Lemma 10.1. Suppose that R is a PID. Then R has the ACCP.

Proof. Suppose that pIiqiPN0 is an ascending chain of principal ideals. Then I :“
Ť

iPN0
Ii

is an ideal, and so principal say I “ xxy. But then there is some N P N0 such that x P IN
and hence for n ě n we have xxy Ă IN Ă In Ă I “ xxy, and hence In “ xxy “ IN for all
n ě N . The result is proved. �
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A ring is said to be Noetherian if it satisfies the ascending chain condition on all ideals,
meaning that whenever pIiqiPN0 is an ascending chain (meaning Ii Ă Ii`1 for all i P N0) of
ideals then there is some N P N0 such that In “ IN for all n ě N . This is a much more
important concept but will not be a focus of this course.

!4The fact that the chain of ideals is ascending rather than descending makes a sig-
nificant difference. We say that R has the descending chain condition on principal
ideals or DCCP if whenever pIiqiPN0 is a descending chain (meaning Ii Ą Ii`1 for all
i P N0) of principal ideals then there is some N P N0 such that In “ IN for all n ě N .

While any PID has the ACCP, it turns out that an integral domain has the DCCP if
and only if it is a field. The if direction is immediate since there are only two ideals in a
field. In the other direction, suppose x P R˚. Then we have a chain of ideals xxy Ą xx2y Ą
¨ ¨ ¨ Ą xxiy Ą ¨ ¨ ¨ . By the DCCP there is some i P N such that xxiy “ xxi`1y, and so there
is some r P R such that xi “ rxi`1 and hence by the Cancellation Lemma rx “ xr “ 1
and so x P UpRq as required.

For us the important feature of the ACCP is that it will let us factorise elements of a
ring. To formulate this precisely we say an integral domain R is factorisation domain
or atomic domain if for every x P R˚ there is a possibly-empty vector px1, . . . , xrq of
irreducible elements of R such that x „ x1 ¨ ¨ ¨ xr with the convention that the empty
product is 1.

Lemma 10.2. Suppose that R is an integral domain with the ACCP. Then R is a factori-
sation domain.

Proof. Write F for the set of elements of R that can be written as a product of irreducible
elements so that 1 P F , all irreducible elements of R are also in F , and F is closed under
multiplication. If RzF is not empty we can create a sequence pxiqiPN0 of elements of RzF
iteratively with xx0y Ĺ xx1y Ĺ ¨ ¨ ¨ which contradicts the ACCP. Let x0 P RzF . At step i
we have xi R F and so it is not irreducible and hence xi “ yizi for some yi, zi  xi. Since F
is closed under multiplication we cannot have both yi and zi in F ; let xi`1 P tyi, ziu such
that xi`1 R F . This gives the desired sequence and the result is proved. �

Although we did not mention it, this argument required the Axiom of Dependent Choice,
but not the full Axiom of Choice.

There are factorisation domains not having the ACCP but these are not easy to con-
struct; the first example was given by Grams in [Gra74].

Primes are important for ensuring uniqueness of factorisation.

Proposition 10.3. Suppose that R is an integral domain and x1, . . . , xr, y1, . . . , ys are
primes with x1 ¨ ¨ ¨ xr „ y1 ¨ ¨ ¨ ys then r “ s and there is a permutation π of rrs :“ t1, . . . , ru
such that xi „ yπpiq for all 1 ď i ď r.

Proof. It is convenient for this induction to prove something slightly more general: We
shall show that if x1, . . . , xr are primes and pyiqiPI is a sequence of irreducible elements
indexed by a finite set I such that

śr
i“1 xi „

ś

iPI yi then there is a bijection π : rrs Ñ I
such that xi „ yπpiq for all 1 ď i ď r.
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For r “ 0 we have
ś

iPI yi „ 1 (by definition of the empty product) and so yi P UpRq for
all i P I meaning that I is empty since no unit is irreducible. Now, suppose that r ą 0.
Then xr is prime and xr �

ś

iPI yi whence there is some j P I such that xr � yj. But yj is
irreducible and xr  1 and so xr „ yj. By the Cancellation Lemma x1 ¨ ¨ ¨ xr´1 „

ś

iPIztju yi,

and by the inductive hypothesis there is a bijection π̃ : rr´ 1s Ñ Iztju such that xi „ yπ̃piq
for all 1 ď i ď r ´ 1. Extend this to a bijection rrs Ñ I by setting πprq “ j and the result
is proved. �

A unique factorisation domain or UFD is a factorisation domain in which all irre-
ducible elements are prime, which leads to a uniqueness of factorisation as described in
Proposition 10.3.

Proposition 10.4. Suppose that R is a PID. Then R is a UFD.

Proof. By Lemma 10.1 and Lemma 10.2 we have that R is a factorisation domain. That
every irreducible is prime follows from Proposition 7.6 and Proposition 7.2. �

In particular, since Z is a PID by Proposition 6.1 the above gives the Fundamental
Theorem of Arithmetic.

Not all UFDs are PIDs. Indeed, ZrXs is a UFD (we have not proved this) but it is not
a PID (by Q2, Examples Sheet 2) since Z is not a field. In general Gauss’ Lemma can be
used to show that if R is a UFD then RrXs is a UFD, which gives other examples of UFDs
that are not PIDs such as FrX, Y s.

11. Euclidean domains

Suppose that R is an integral domain. A Euclidean function on R is a function
f : R˚ Ñ N0 such that if a, b P R˚ then either b � a or there are q P R, r P R˚ such that
a “ bq` r and fprq ă fpbq. We say that R is a Euclidean domain if R supports at least
one Euclidean function.

Proposition 11.1 (Division algorithm for integers). Z is a Euclidean domain.

Proof. Take fpzq :“ |z| for z P Z˚. Suppose that a, b P Z and b ‰ 0, and consider the set
ta ` bq : q P Z, a ` bq ě 0u. This is a non-empty set of natural numbers and so it has
a minimal element, call it r. We certainly have r ě 0; suppose r ě fpbq “ |b| “ ωb for
some ω P t´1, 1u. Then r “ a ` bq, and 0 ď r ´ fpbq “ a ` bpq ´ ωq ă r contradicting
minimality; hence r ă fpbq. Since r ě 0 we have r “ 0 or fprq “ r ă fpbq as required. �

There is also a division algorithm for polynomials which is captured by the same defini-
tion.

Proposition 11.2 (Division algorithm for polynomials). Suppose that F is a field. Then
FrXs is a Euclidean domain.

Proof. Take fppq “ deg p for p P FrXs˚. Suppose that a, b P FrXs and b ‰ 0. If b � a then
we take r “ 0 and let q be such that a “ bq; we are done. It not then P :“ ta`bq : q P FrXsu
does not contain 0; take r “ a` bq such that the degree is minimal for polynomials in P .
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Suppose that deg r ě deg b. Then write λ for the coefficient of Xdeg r in r and note
that r1 :“ r ´ bλXdeg r´deg b has r1 P P and deg r1 ă deg r, a contradiction. It follows that
deg r ă deg b as required. �

Given an integral domain R, a Dedekind-Hasse function on R is a map N : R˚ Ñ N0

such that whenever a, b P R˚ either b � a or there is some non-zero element c P xa, by such
that Npcq ă Npbq. Put another way either b � a or there are elements p, q P R, c P R˚

such that ap “ bq ` c and Npcq ă Npbq. The definition of Euclidean function places the
additional requirement p “ 1, so in particular any ring supporting a Euclidean function
supports a Dedekind-Hasse function.

Proposition 11.3. Suppose that R is an integral domain. Then R is a PID if and only
if R admits a Dedekind-Hasse function. In particular, R is a PID if it is a Euclidean
Domain.

Proof. ñ: Since R is a UFD we can define N : R˚ Ñ N0 to be the number of irreducible
factors15 of its argument. For any a, b P R˚ either b � a or else xa, by Ľ xby. Since xa, by is
principal, it is generated by some c P R˚ and we have c � b, and c  b whence Npcq ă Npbq.
ð: Suppose that I is a non-zero ideal in R and let b P I have Npbq minimal. Now

suppose that a P I so that by the Dedekind-Hasse property either b � a, or else there is
some non-zero c P xa, by Ă I with Npcq ă Npbq. The second conclusion is incompatible
with the minimality and so the first holds and hence I “ xby as required. �

There are integral domains that are not Euclidean domains, for example FrX, Y s is not
even a PID and so by the above it is not an ED.

However, more than this there are examples of PIDs which are not Euclidean domains,
but showing this is not easy. The rings Z

“

1
2
p1`

?
´Dq

‰

where D P t19, 43, 67, 163u are
some classic examples all described in [PV08]. We shall give a different example now.

Write A :“ RrX, Y s{I where I :“ xX2 ` Y 2 ` 1y. Every F P A has a unique coset

representative of the form ppXq`Y qpXq and we write rF :“ ppXq´Y qpXq` I, which has
two useful properties:

‚ r̈ is multiplicative: i.e. rF rG “ ĄFG for all F,G P A.
‚ If F “ ppXq ` Y qpXq ` I then since the Y -degree of any non-zero element if I is

positive we have F rF X RrXs “ ppXq2 ` qpXq2pX2 ` 1q.

In view of this, if F “ ppXq ` Y qpXq ` I and G “ spXq ` Y tpXq ` I and FG “ 0A then

F rFG rG “ 0A, and so

pppXq2 ` pX2
` 1qqpXq2qpspXq2 ` pX2

` 1qtpXq2q “ 0

whence p “ q “ 0 or s “ t “ 0 and we see that A is an integral domain. Similarly, suppose
that FG “ 1`I so that F and G are units of A. The same argument shows that q “ t “ 0
and p and s are constants in R˚.

15If one wanted N to be multiplicative one could take 2 to the power of the number of irreducible factors
Instead.



32 TOM SANDERS

Lemma 11.4. Suppose that J ‰ t0u is an ideal in A. Then A{J is a finite-dimensional
vector space over R.

Proof. By hypothesis there is some ppXq ` Y qpXq ` I P J without both p and q being 0.
Thus ppXq2 ` pX2 ` 1qqpXq2 ` I P J ; write d for the degree of ppXq2 ` pX2 ` 1qqpXq2

and note that 1, . . . , Xd and Y, Y X, . . . , Y Xd are linearly dependent in A{J from which
the result follows. �

The maximal ideals in A have a particular structure.

Lemma 11.5. Suppose that J is a maximal ideal in A. Then J “ xα` βX ` γY ` Iy for
α, β, γ P R with pβ, γq ‰ p0, 0q and dimRA{J “ 2.

Proof. We know by Proposition 7.3 that A{J is a field and since A and J are both R-
vector spaces we know that A{J is a field extension of R, and it is finite by Lemma
11.4. Thus by Corollary 8.2 the extension has degree at most 2. On the other hand
pX ` I ` Jq2 ` pY ` I ` Jq2 ` p1 ` I ` Jq2 “ 0A{J “ I ` J and 1 ` I ` J ‰ I ` J so we
cannot have A{J – R (since then a sum of three squares of elements in R would be zero
without all of the elements being zero).

The elements 1 ` I ` J , X ` I ` J , and Y ` I ` J must be linearly dependent in
A{J and 1 ` I ` J ‰ J , so there are reals α, β, γ P R with pβ, γq ‰ p0, 0q such that
αp1` Iq ` βpX ` Iq ` γpY ` Iq “ pα` βX ` γY q ` I P J . Finally pβ2` γ2qX2` 2αβX `
pα2` γ2q ` I P xα` βX ` γY ` Iy, and so A{xα` βX ` γY ` Iy is at most 2-dimensional
and J “ xα ` βX ` γY ` Iy as required. �

Proposition 11.6. The ring A is not a Euclidean domain.

Proof. Suppose that A supports a Euclidean function f . A in not a field so we may take
F P A˚ a non-unit with fpF q minimal (amongst non-units). The ideal xF y is maximal and
so F „ α`βX`γY for some pβ, γq ‰ p0, 0q. Let pβ1, γ1q be linearly independent of pβ, γq,
so that by the Euclidean property we have β1X ` γ1Y P R ` xF y and hence xF y “ A, a
contradiction. �

Proposition 11.7. The ring A is a PID.

Proof. Suppose that J is a non-principal ideal inA. Then J is non-trivial and so dimRA{J ă
8 by Lemma 11.4. Set J0 :“ J and at stage n suppose Jn is non-principal. Then it is con-
tained in a maximal ideal by Theorem 7.4, and this ideal is principal by Lemma 11.5 so there
is some non-unit Fn such that Jn Ă xFny; set Jn`1 :“ tF : FFn P Jnu so that Jn`1 Ľ Jn and
Jn`1 is non-principal. The former conclusion ensures that dimRA{Jn`1 ă dimRA{Jn but
this process cannot go on indefinitely since dimRA{J ă 8, so we have a contradiction. �

12. Modules

Suppose that M is a commutative group. An endomorphism of M is a homomorphism
M ÑM ; we write EndpMq for the set of all endomorphisms of M . This has the structure
of a unital ring with addition defined coordinate-wise and multiplication by composition:

pφ` ψqpxq :“ φpxq ` ψpxq and pφψqpxq :“ φpψpxqq for all x PM.
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The multiplicative identity of this ring is the identity map M Ñ M ;x ÞÑ x, and the zero
is the map M Ñ M ;x ÞÑ 0M . There are a number of things to check; we mention the
important parts:

‚ The set of all functions M Ñ M forms a (commutative) group under pointwise
addition, and the fact that EndpMq is a subgroup makes essential use of the
commutativity of M .16

‚ The set of all functions M Ñ M is closed under composition, and this operation
is associative. We also need that the composition of homomorphisms is again a
homomorphism.

‚ Finally, composition of functions is right-distributive over coordinate-wise ad-
dition, but it is not in general left distributive. This is the point where we
make critical use of the fact that endomorphisms are homomorphism because
this ensures that composition is left distributive over coordinate-wise addition:
pφ ˝ pψ ` πqqpxq “ φpψpxq ` πpxqq “ pφ ˝ ψqpxq ` pφ ˝ πqpxq for all x PM.

Thus EndpMq is another example of a ring in roughly the same way as SympXq – the set of
bijections of a set X – is a group. An action of a group G on a set X is a homomorphism
G Ñ SympXq, and a module is the same sort of thing for rings. Specifically, given a
unital ring R a left R-module M is a commutative group also denoted M and a unital
homomorphism

ρ : RÑ EndpMq

which we call scalar multiplication; we write rx for ρprqpxq.
We begin by mentioning some examples.

(i) The analogue of Cayley’s Theorem17 for groups is the fact that for any unital ring
R there is a unital homomorphism

RÑ EndpRq; r ÞÑ pRÑ R;x ÞÑ rxq.

(ii) Given a vector space V and a field F the map

FÑ EndpV q;λ ÞÑ pV Ñ V ; v ÞÑ λvq

is a unital homomorphism giving V the structure of a left F-module. Conversely,
if V is a left F-module then it has the structure if an F-vector space with scalar
multiplication the same as that for modules.

(iii) A commutative group M is a left Z-module via the map

ZÑ EndpMq; z ÞÑ pM ÑM ;x ÞÑ zxq.

(iv) Given a vector space V and an endomorphism18 T : V Ñ V there are two FrXs-
modules associated with T :

16Indeed, the set of homomorphisms GÑ G with the binary operation pφ, ψq ÞÑ px ÞÑ φpxqψpxqq forms
a group if and only if G is commutative. To see this consider what happens if x ÞÑ x´1 is a homomorphism.

17Cayley’s Theorem says that if G is a group then GÑ SympGq; g ÞÑ pGÑ G;x ÞÑ gxq is a well-defined
homomorphism.

18Meaning here a linear map V Ñ V .
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(a) The commutative group V equipped with

FrXs Ñ EndpV q; p ÞÑ pV Ñ V ;x ÞÑ ppT qxq.

(b) The commutative group FrT s :“ tppT q : p P FrXsu equipped with

FrXs Ñ EndpFrT sq; p ÞÑ pFrT s Ñ FrT s;x ÞÑ ppT qxq.

Modules can be thought of as analogues of vector spaces with the field replaced by a ring.
A left R-module homomorphism or R-linear map between two left R-modules M

and N is a group homomorphism φ : M Ñ N with

φprxq “ rφpxq for all x PM, r P R.

If F is a field this has the same meaning as F-linear in the usual sense.
!4The rx on the left is the scalar multiplication on M and the rφpxq is the scalar

multiplication on N .
As before we say that φ : M Ñ N is an isomorphism if it is a homomorphism with a

homomorphic inverse or, equivalently, a bijective homomorphism; we write M – N .
Given a module M we say that N is a submodule of M if N is a subgroup of M as an

additive group and rx P N for all x P N and r P R.

Proposition 12.1 (Quotient modules). Suppose that M is a left R-module and N is a
submodule of M . Then M{N can be equipped with the scalar multiplication rpx ` Nq :“
rx`N for r P R making it into an R-module.

Proof. Since N is a commutative subgroup of M we have that M{N is a commutative
group. We have already seen that in this case EndpM{Nq is a unital ring. We just need
to check that the map

RÑ EndpM{Nq; r ÞÑ px`N ÞÑ rx`Nq

is a well-defined unital homomorphism. To see it is well-defined note that if x`N “ y`N
then x´ y P N , and hence rpx´ yq P N and so rx`N “ ry `N so that the map on the
right maps M{N ÑM{N . It is a homomorphism since

rpx` yq `N “ pprxq ` pryqq `N “ prx`Nq ` pry `Nq for all x, y PM,

and so the map on the left really maps into EndpM{Nq. Since 1x “ x for all x P M we
have that 1 is mapped to the multiplicative identity in EndpM{Nq. Finally,

pr ` sqx`N “ pprxq ` psxqq `N “ prx`Nq ` psx`Nq for all r, s P R, x PM,

and

prsqx`N “ rpsxq `N “ rpsx`Nq “ prsqpx`Nq for all r, s P R, x PM.

The result is proved. �

Theorem 12.2 (First Isomorphism Theorem). Suppose that φ : M Ñ N is an R-linear
map between left R-modules M and N . Then kerφ is a submodule of M ; φpMq is a
submodule of N ; and the map

rφ : M{ kerφÑ N ;x` kerφ ÞÑ φpxq
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is an injective R-linear map with image φpMq.

Proof. First, kerφ and Imφ are subgroups of the additive groups of M and N respectively
by the First Isomorphism Theorem for groups. Now, if r P R and x P kerφ then φprxq “
rφpxq “ r0 “ 0, and so rx P kerφ, and kerφ is a submodule of M . On the other hand if
r P R and x P φpMq then x “ φpyq for y PM so rx “ rφpyq “ φpryq P φpMqi and so φpMq
is a submodule of N .

By Proposition 12.1 M{ kerφ is a left R-module. The map is injective and well-defined
since x ` kerφ “ y ` kerφ iff x ´ y P kerφ iff φpx ´ yq “ 0 iff φpxq “ φpyq. The image is
certainly φpMq. It remains to check the map is R-linear:

rφppx` yq ` kerφq “ φpx` yq “ φpxq ` φpyq “ rφpx` kerφq ` rφpy ` kerφq,

and
rφprpx` kerφqq “ φprxq “ rφpxq “ rrφpx` kerφq.

The result is proved. �

Given an indexing set I and left R-modules pMiqiPI , the direct sum of pMiqiPI is denoted
À

iPIMi and is defined to be the direct sum of the commutative groups Mi, also denoted
À

iPIMi, endowed with the structure of a leftR-module via the multiplication rx :“ prxiqiPI
where rxi denotes the scalar multiplication of r on xi as an element of Mi.

We take the usual convention that if I “ H then
À

iPIMi is the zero module, and if
M1, . . . ,Mn are modules then we write M1‘¨ ¨ ¨‘Mn for

À

iPt1,...,nuMi, and finally Mn for
the direct sum of M with itself n-times.

!4Recall that the direct sum of an infinite family pMiqiPI of commutative groups is the
set of x P

ś

iPIMi with at most finitely many non-identity coordinates. For example, if
I “ N0 and Mi “ Z then

À

iPN0
Mi is the set of integer-valued sequences which are non-zero

at a finite number of coordinates under coordinate-wise addition. This is much smaller
than the set of all sequences.

For j P I, define the map

ιj : Mj Ñ
à

iPI

Mi

where the jth coordinate of ιjpxq is x and the ith coordinate is 0Mi
for all i ‰ j. This map

is R-linear.

13. Cyclic modules and the Chinese Remainder Theorem revisited

Vector spaces are an important example of modules, and just as finite dimensional vector
spaces were amenable to particularly detailed study so we shall be interested in the analogue
for modules. Given x1, . . . , xn in a left R-module M we write

xx1, . . . , xny :“ tr1x1 ` ¨ ¨ ¨ ` rnxn : r1, . . . , rn P Ru.

This is an R-module, and we say that M is generated by x1, . . . , xn. M is finitely
generated if there are elements x1, . . . , xn P M such that M is generated by x1, . . . , xn,
or equivalently, if there is an R-linear surjection Rn ÑM for some n P N.
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If R is a field so that M is a vector space then M is finitely generated if and only if it
is finite dimensional, but defining dimension requires two important theorems.

Theorem 13.1 (Finitely generated vector spaces have a basis). Suppose that V is a finitely
generated vector space over F. Then there is some n P N such that V – Fn.

Theorem 13.2 (All bases have the same size). Suppose that V is a (finitely generated)
vector space over F. If V – Fn and V – Fm then n “ m.

Informally we think of the first result as saying that finitely generated vector spaces can
be built out of copies of F; and the second as saying that this can be done in an essentially
unique way. We should like analogues of these theorems for modules, however there are
some obstacles.

Suppose that M is a left R-module. We say that x1, . . . , xn in M are linearly inde-
pendent if

r1x1 ` ¨ ¨ ¨ ` rnxn “ 0M for r P Rn implies r1, . . . , rn “ 0R,

and this coincides with the existing definition for vector spaces. As with vectors, if
x1, . . . , xn are linearly independent and generate M then we say that x1, . . . , xn form a
basis for M , and any module with a basis is called a free module.19 Put another way,
a finitely generated R-module M is a free module if it is R-linearly isomorphic to Rn for
some n P N0.

Free modules are those that can be built out of copies of their underlying ring so they
include vector spaces, but also modules like Zn. However, some relatively simple modules
are not free; indeed, Z{xNy contains no non-empty independent sets20. This means that
if we are to hope for an analogue of Theorem 13.1 for modules we are going to have to
enlarge our class of building blocks to include more than just the underlying ring.

A left R-module M is said to be cyclic if M is generated by one element.

(i) For a field F, a cyclic F-module is either the zero module or isomorphic to F.
(ii) A cyclic Z-module is isomorphic to Z{xNy for some N P N0. These are the cyclic

groups, also denoted Z{NZ for N ‰ 0 and Z for Z{x0y.
Cyclic modules can be described in terms of something called left ideals: given a unital
ring R we say that I is a left ideal of R if I is an additive subgroup of R and ra P I for
all r P R and a P I. Equivalently, I is a submodule of R considered as a left R-module
over itself.

IfR is commutative then a left ideal is an ideal as defined earlier in the course – sometimes
these are called two-sided ideals for clarity. In general R{I does not have the structure
of a ring, but since I is a submodule of R, R{I does have the structure of an R-module
and it is cyclic generated by 1` I. The scalar multiplication in these instances is given by

RÑ EndpIq; r ÞÑ pI Ñ I;x ÞÑ rxq and RÑ EndpR{Iq; r ÞÑ pR{I Ñ R{I;xI ÞÑ rxIq

respectively.

19We should be a little careful here about modules that are not finitely generated but we shall not be
dealing with those in this course.

20As a Z-module. As a Z{xNy-module is does contain independent sets.
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Given a module M and an element x P M we write AnnRpxq :“ tr P R : rx “ 0Mu and
call this the annihilator of x.

Lemma 13.3. Suppose that R is a unital ring, M is a left R-module, and x P M . Then
AnnRpxq is a left ideal of R and if M is generated by x then M – R{AnnRpxq.

Proof. That AnnRpxq is a left ideal of R is a short check. For the second part, by the
First Isomorphism Theorem for modules (Theorem 12.2) applied to the R-linear map RÑ
M ; r ÞÑ rx, the map

R{AnnRpxq Ñ xxy; r ` AnnRpxq ÞÑ rx

is an R-linear isomorphism of left R-modules. �

Informally the lemma tells us that up to isomorphism cyclic R-modules are quotients of
R by left ideals.

The intersection and sum of two left ideals is a left ideal (c.f. Lemma 3.4), and these
operations on ideals provide a way to combine cyclic modules.

Theorem 13.4. Suppose that R is a unital ring and I and J are left ideals with I`J “ R.
Then R{pI X Jq – pR{Iq ‘ pR{Jq as left R-modules.

Proof. We define π : R Ñ pR{Iq ‘ pR{Jq; r ÞÑ pr ` I, r ` Jq. First, π is a homomorphism
of commutative groups:

πpr ` sq “ pr ` s` I, r ` s` Jq

“ ppr ` Iq ` ps` Iq, pr ` Jq ` ps` Jqq

“ pr ` I, r ` Jq ` ps` I, s` Jq “ πprq ` πpsq

for all r, s P R. Secondly,

πprsq “ prs` I, rs` Jq “ prps` Iq, rps` Jqq “ rps` I, s` Jq “ rπpsq,

for all r, s P R and so π is an R-linear map.
To show that the map is surjective, suppose that px` I, y ` Jq P pR{Iq ‘ pR{Jq. Since

I`J “ R there are elements α P I and β P J such that α`β “ 1. Consider z :“ xβ` yα.
We have

z ` I “ xβ ` yα ` I “ x` py ´ xqα ` I,

but y ´ x P R and α P I and so py ´ xqα P I since I is a left ideal. We conclude that
z ` I “ x` I. Similarly z ` J “ y ` J and hence πpzq “ px` I, y ` Jq, so π is surjective.

Finally, the kernel of π is I X J and so the result follows by the First Isomorphism
Theorem for modules. �

This theorem might be called a ‘non-commutative version’ of the Chinese Remainder
Theorem. It does not in general extend to more than two summands, but if R is commu-
tative then it does.

Theorem 13.5 (Chinese Remainder Theorem for modules). Suppose that R is a commu-
tative unital ring and I1, . . . , Ik are pairwise coprime ideals in R. Then

R{pI1 X ¨ ¨ ¨ X Ikq – pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Ikq
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as left R-modules.

Proof. The additive group of the ring pR{I1qˆ¨ ¨ ¨ˆpR{Ikq is the same as the additive group
of the module pR{I1q‘ ¨ ¨ ¨‘ pR{Ikq. Theorem 5.1 gives a bijective (group) homomorphism
between the additive groups of R{pI1X ¨ ¨ ¨ X Ikq and pR{I1q‘ ¨ ¨ ¨ ‘ pR{Ikq and the explicit
form of this homomorphism is easily checked to be R-linear. The result is proved. �

14. Uniqueness of cyclic decompositions

A basic obstacle to an analogue of Theorem 13.2 for modules comes from some non-
obvious relationships between cyclic modules e.g. the fact that Z{x6y – Z{x3y ‘ Z{x2y as
Z-modules by Theorem 13.5.

Despite this, there is a way to recover uniqueness at least for modules over commutative
rings provided our cyclic modules are suitably nested.

Theorem 14.1 (Uniqueness Theorem). Suppose that R is a commutative unital ring, M
is a (finitely generated) R-module, and I1 Ă ¨ ¨ ¨ Ă In and J1 Ă ¨ ¨ ¨ Ă Jm are proper ideals
such that M – pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inq and M – pR{J1q ‘ ¨ ¨ ¨ ‘ pR{Jmq. Then n “ m and
Jk “ Ik for all 1 ď k ď n.

We begin with a result which bootstraps the analogous fact for vector spaces.

Lemma 14.2. Suppose that R is a commutative unital ring, and I1 Ă ¨ ¨ ¨ Ă In are proper
ideals. Then pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inq is generated by a set of size n and by no smaller set.

Proof. Surjective R-linear maps take generating sets to generating sets. The R-module Rn

has a generating set of size n and so the R-linear surjection

Rn
Ñ pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inq; r ÞÑ pr1 ` I1, . . . , rn ` Inq

ensures the first part of the lemma. For the second, by Theorem 7.4 there is a maximal
ideal J Ą In and hence J Ą Ik for all 1 ď k ď n. The R-linear surjection

pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inq Ñ pR{Jqn; px1 ` I1, . . . , xn ` Inq ÞÑ px1 ` J, . . . , xn ` Jq

is therefore well-defined, and ensures that if pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inq has a generating set of
size t then so does pR{Jqn as an R-module. Let xp1q, . . . , xptq be a generating set for pR{Jqn

as an R-module, and note that for every x P pR{Jqn there are elements r1, . . . , rt P R such
that

x “ r1x
p1q
` ¨ ¨ ¨ ` rtx

ptq

“ pr1x
p1q
1 ` ¨ ¨ ¨ ` rtx

ptq
1 , . . . , r1x

p1q
n ` ¨ ¨ ¨ ` rtx

ptq
n q

“ ppr1 ` Jqx
p1q
1 ` ¨ ¨ ¨ ` prt ` Jqx

ptq
1 , . . . , pr1 ` Jqx

p1q
n ` ¨ ¨ ¨ ` prt ` Jqx

ptq
n q

“ pr1 ` Jqx
p1q
` ¨ ¨ ¨ ` prt ` Jqx

ptq.

Proposition 7.3 ensures that R{J is a field and the map r ` J ÞÑ ppR{Jqn Ñ pR{Jqn;x ÞÑ
prx1, . . . , rxnqq is a well-defined unital homomorphism so that pR{Jqn is a vector space
over R{J and the above calculation shows that xp1q, . . . , xptq is a spanning set for pR{Jqn
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as an pR{Jq-module i.e. as a vector space over R{J . Since pR{Jqn is an n-dimensional
vector space over R{J any spanning set has size at least n i.e. t ě n. �

Proof of Theorem 14.1. First, by Lemma 14.2 we have n “ m. Since the map M Ñ

M ; z ÞÑ xz is R-linear we have that xM is an R-module. We shall show that for 1 ď k ď n

Ik “ tx P R : xM has a generating set with strictly fewer than k elementsu,

from which the result follows without loss of generality. Write Kk for the set on the right.
Suppose that x P R. The module xpR{Ikq is generated by x ` Ik as an R-module, and

so by Lemma 13.3 xpR{Ikq – R{AnnRpx` Ikq. Now

AnnRpx` Ikq “ tr P R : rpx` Ikq “ Iku “ tr : rx P Iku,

so x R Ik if and only if AnnRpx` Ikq is proper21; and AnnRpx` I1q Ă ¨ ¨ ¨ Ă AnnRpx` Inq
since the I1 Ă ¨ ¨ ¨ Ă Ik. Let 0 ď jpxq ď n be maximal such that x R Ijpxq (with jpxq “ 0 if
x P I1) then

xM – xppR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inqq

– pR{AnnRpx` I1qq ‘ ¨ ¨ ¨ ‘ pR{AnnRpx` Inqq

– pR{AnnRpx` I1qq ‘ ¨ ¨ ¨ ‘ pR{AnnRpx` Ijpxqqq

AnnRpx` Ikq not proper

ñ R{AnnRpx` Ikq – t0u

for jpxq ă k ď n

with the convention that this is the zero module if jpxq “ 0 since then the sum is empty.
By Lemma 14.2 we conclude that if x R Ik then jpxq ě k and so xM is not generated

by strictly fewer than jpxq (and hence k) elements and so x R Kk. On the other hand if
x P Ik then jpxq ă k and so xM is generated by at most jpxq (i.e. strictly fewer than k)
elements and so x P Kk. The result is proved. �

This theorem lets us define the rank of a free module to be the size of its basis. Indeed,
suppose that we had a free R-module with two bases. Then we have an isomorphism
Rn Ñ Rm, and taking I1 “ ¨ ¨ ¨ “ In “ t0u and J1 “ ¨ ¨ ¨ “ Jm “ t0u we get n “ m.

!4Suppose that M is the direct sum of countably many copies of Z indexed by N0 and
R :“ EndpMq. Then it can be shown that R – R2 as left R-modules. In particular, we
cannot hope to extend Theorem 14.1 to all unital rings.

15. Existence of cyclic decompositions

We now turn to the problem of an analogue of Theorem 13.1.

Theorem 15.1. Suppose that R is a PID and M is a finitely generated R-module. Then
there is n P N0 and proper ideals I1 Ă ¨ ¨ ¨ Ă In such that

M – pR{I1q ‘ ¨ ¨ ¨ ‘ pR{Inq

with the convention that this is the zero module if the sum is empty i.e. if n “ 0.

To prove this we need the following lemma to let us change variables.

21I paused here in lectures, and since this was not obvious to me in that moment I am adding some
clarification here: If x P Ik then rx P Ik for all r P R since Ik is an ideal, and hence AnnRpx ` Ikq “ R.
Conversely, if AnnRpx` Ikq “ R then 1.px` Ikq “ Ik and so x P Ik.
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Lemma 15.2. Suppose that R is a PID with elements a1, . . . , an, h P R, and xa1, . . . , any “
xhy, and M is an R-module with elements x1, . . . , xn P M . Then there are elements
y1, . . . , yn PM with xy1, . . . , yny “ xx1, . . . , xny such that hyn “ a1x1 ` ¨ ¨ ¨ ` anxn.

Proof. If h “ 0 then a1, . . . , an “ 0 and the result is trivial with yi “ xi for 1 ď i ď n, so
we may assume h P R˚.

We proceed by induction on n; n “ 1 is immediate since a1 „ h in that case. For
n ą 1 let h1 be a generator of xa1, . . . , an´1y. By the inductive hypothesis we may take
y1, . . . , yn´2, y

˚
n´1 such that xy1, . . . , yn´2, y

˚
n´1y “ xx1, . . . , xn´1y and h1y˚n´1 “ a1x1 ` ¨ ¨ ¨ `

an´1xn´1.
Let α, β P R be such that h1 “ αh and an “ βh. Since xhy “ xh1, any there are elements

γ, δ P R such that h “ δh1 ` γan and so αδ ` βγ “ 1 by the Cancellation Lemma (since
h P R˚). Now put yn´1 :“ γy˚n´1 ´ δxn and yn :“ αy˚n´1 ` βxn. Then xn “ ´αyn´1 ` γyn
and y˚n´1 “ βyn´1 ` δyn, and so

xy1, . . . , yny “ xy1, . . . , yn´2, y
˚
n´1, xny “ xx1, . . . , xny.

Finally, hyn “ h1y˚n´1 ` anxn “ a1x1 ` ¨ ¨ ¨ ` anxn and the result is proved. �

Proof of Theorem 15.1. We proceed inductively to show that there are elements z1, . . . , zn
generating M such that

M – pR{AnnRpz1qq ‘ ¨ ¨ ¨ ‘ pR{AnnRpznqq and AnnRpz1q Ă ¨ ¨ ¨ Ă AnnRpznq.

Since M is finitely generated there is a minimal n P N such that M is generated by a set of
size n. Let x1, . . . , xn be a set of generators in which AnnRpxnq is generated by an element
rn (possibly 0R) with the smallest22 number of irreducible factors i.e. for every generating
set y1, . . . , yn of M , any generator of the ideal AnnRpynq has at least as many irreducible
factors as rn, and hence any r P AnnRpynq has at least as many irreducible factors as rn.
Note that AnnRpxnq is proper since otherwise x1, . . . , xn´1 would generate M contradicting
minimality of n.

Let M 1 :“ xx1, . . . , xn´1y and consider the map

Ψ : M 1
‘ xxny ÑM ; px, yq ÞÑ x` y.

This is an R-linear surjection; the key fact, however, is the following.

Claim. Ψ is an injection i.e. ker Ψ “ t0u.

Proof. Suppose that x`y “ 0 for some x PM 1 and y P xxny so that x “ a1x1`¨ ¨ ¨`an´1xn´1
and y “ anxn for some a1, . . . , an P R. Let a˚n be such that xa˚ny “ xan, rny; α, β P R be
such that a˚n “ αan ` βrn; and h be such that xαa1, . . . , αan´1, a

˚
ny “ xhy. Apply Lemma

15.2 to get y1, . . . , yn PM with xy1, . . . , yny “ xx1, . . . , xny “M and

hyn “ αa1x1 ` ¨ ¨ ¨ ` αan´1xn´1 ` a
˚
nxn “ αpa1x1 ` ¨ ¨ ¨ ` anxnq ` βrnxn “ 0.

Now h � a˚n � rn and so by minimality of rn we have h „ rn, and hence a˚n „ rn. But then
rn � an and anxn “ 0 as required. �

22Where we count the number of irreducible factors of 0 as 8 and order N0 Y t8u in the usual way.
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Finally, by the inductive hypothesis there are elements z1, . . . , zn´1 generating M 1 such
that M 1 – pR{AnnRpz1qq ‘ ¨ ¨ ¨ ‘ pR{AnnRpzn´1qq with AnnRpz1q Ă ¨ ¨ ¨ Ă AnnRpzn´1q.
Set zn :“ xn and since xxny – R{AnnRpznq the result is proved if we can show that
AnnRpzn´1q Ă AnnRpznq.

To see this last claim, suppose that r P AnnRpzn´1q and let h be such that xhy “ xr, rny.
Apply Lemma 15.2 to get y1, . . . , yn with xy1, . . . , yny “ xz1, . . . , zny “ M and hyn “
rzn´1 ` rnzn “ 0. But h � rn and so by minimality of the number of irreducible factors of
rn we have h „ rn and hence rn � r i.e. r P xrny “ AnnRpznq. �

16. The structure theorem for modules over PIDs and applications

With the work of the last two sections we can now formulate the structure theorem.

Theorem 16.1 (Structure Theorem for modules over PIDs). Suppose that R is a PID and
M is a finitely generated R-module. Then

(i) (Invariant factor form) There is a sequence ar � ¨ ¨ ¨ � a1 of elements23 of R with
ar  1 such that

M – pR{xa1yq ‘ ¨ ¨ ¨ ‘ pR{xaryq

and the sequence paiq
r
i“1 is unique up to associates.

(ii) (Primary form) There are some s, t P N0, irreducible elements p1, . . . , pt P R, and
e1, . . . , et P N, such that

M – Rs
‘ pR{xpe11 yq ‘ ¨ ¨ ¨ ‘ pR{xp

et
t yq.

Proof. The first part is just the combination of Theorems 14.1 & 15.1, and the fact that
every ideal in a PID is generated by one element.

For the second part, apply the first and then decompose each factor R{xay further: If
a “ 0 then R{xay – R.

If not then since a  1 and R is a UFD we have irreducible elements q1, . . . , ql P R
˚ with

qi  qj for i ‰ j and naturals c1, . . . , cl such that a „ qc11 ¨ ¨ ¨ q
cl
l .

Let h be a generator of xqcii , q
cj
j y for i ‰ j. Since R is a UFD, any prime factor of h

must be an associate of something in tqiu and tqju, but since qi  qj we have h „ 1 i..e
xqcii y ` xq

cj
j y “ R for all i ‰ j. Thus by the Chinese Remainder Theorem for modules we

have
R{xay – pR{xqc11 yq ‘ ¨ ¨ ¨ ‘ pR{xq

cl
l yq

as R-modules.
Hence all the factors in the invariant factor decomposition arising from modules of the

form R{xaiy with ai P R˚ can be decomposed into the desired form and the result is
proved. �

There is a uniqueness statement for the primary form of the structure theorem but we
do not pursue that here.

We have an immediate corollary.

23As usual 0 � 0 and so this sequence may end in a series of 0s.
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Theorem 16.2 (Structure of finitely generated commutative groups). Suppose that G is
a finitely generated commutative group. Then there are unique (non-zero) natural numbers
1 ‰ dr � dr´1 � ¨ ¨ ¨ � d1 and s P N0 such that

G – Zs ‘ pZ{d1Zq ‘ ¨ ¨ ¨ ‘ pZ{drZq.

Proof. G is a Z-module, so we may apply Theorem 16.1 to get the desired structure,
writing Z{NZ for Z{xNy and Zs for the s copies of Z{x0y in the given decomposition.
Then uniqueness follows from the fact that UpZq “ t´1, 1u. �

This result tells us a lot, for example if N is square-free then there is exactly one
commutative group of order N – the cyclic group of order N . To see this, suppose that G
has order N , then by the above G – Zs ‘ pZ{d1Zq ‘ ¨ ¨ ¨ ‘ pZ{drZq for some s P N0 and
dr � ¨ ¨ ¨ � d1. Since G is finite s “ 0 and N “ dr ¨ ¨ ¨ d1. Thus if r ą 1 then d2r � N and
hence dr “ 1, a contradiction. Hence r “ 1 and G is cyclic as claimed.

Theorem 16.3 (Jordan Normal Form). Suppose that V is a finite-dimensional vector
space over C and T : V Ñ V is linear. Then there is a basis for V such that the matrix
for T in this basis is

¨

˚

˚

˚

˝

Jpλ1, n1q 0n1ˆn2 ¨ ¨ ¨ 0n1ˆnt

0n2ˆn1

. . . . . .
...

...
. . . . . . 0nt´1ˆnt

0ntˆn1 ¨ ¨ ¨ 0ntˆnt´1 Jpλt, ntq

˛

‹

‹

‹

‚

where 0nˆm is the the all zeros matrix in MnˆmpCq, and Jpλ, nq is the nˆn matrix, called
a Jordan block,

¨

˚

˚

˚

˚

˚

˚

˝

λ 0 0 ¨ ¨ ¨ 0

1 λ
. . . . . .

...
...

. . . . . . . . . 0
...

. . . λ 0
0 ¨ ¨ ¨ ¨ ¨ ¨ 1 λ

˛

‹

‹

‹

‹

‹

‹

‚

.

The scalars λ1, . . . , λt are all the eigenvalues of T .

Proof. We regard V as a CrXs-module via the map CrXs Ñ EndpV q; p ÞÑ pv ÞÑ ppT qvq.
Since CrXs is a PID we may apply the primary form of the structure theorem to V . We
get irreducible polynomials p1, . . . , pt P CrXs and natural numbers n1, . . . , nt such that

φ : V Ñ pCrXsqs ‘ pCrXs{xp1pXqn1yq ‘ ¨ ¨ ¨ ‘ pCrXs{xptpXqntyq

is a CrXs-linear bijection. In particular, φ is a C-linear bijection but V is finite-dimensional
and CrXs is infinite dimensional so s “ 0. By the Fundamental Theorem of Arithmetic, ev-
ery non-constant polynomial in CrXs has a root in C, and so every non-constant polynomial
has a degree 1 factor and so the only irreducible polynomials in CrXs have degree 1. Thus
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there are λ1, . . . , λt P C such that xpipXq
niy “ xpX´λiq

niy; write Mi :“ CrXs{xpX´λiqniy

for the ith CrXs-module above. For each 1 ď i ď t let pei,jq
ni
j“1 be such that

φpei,jq “ p0M1 , . . . , 0Mi´1
, pX ´ λiq

j´1
` xpX ´ λiq

niy, 0Mi`1
, . . . , 0Mtq.

Then φpe1,1q, . . . , φpe1,n1q, φpe2,1q, . . . , φpet´1,nt´1q, φpet,1q, . . . , φpet,ntq is a basis for the C-
vector space M1 ‘ ¨ ¨ ¨ ‘Mt and since φ is a C-linear isomorphism, the sequence of vectors
e1,1, . . . , e1,n1 , e2,1, . . . , et´1,nt´1 , et,1, . . . , et,nt is a basis for V as a vector space over C.

Now we have

φpTei,jq “ Xφpei,jq “

#

φpei,j`1q ` λiφpei,jq if j ă ni

φpλiei,jq if j “ ni
.

Since φ is a C-linear bijection we conclude that T has the required form.
For the last part, certainly the λis are eigenvalues since Jpλ, nqp0, . . . , 0, 1qt “ λp0, . . . , 0, 1qt.

On the other hand pJpλ, nq ´ λIqn “ 0 and so the minimal polynomial for T divides
pX ´ λ1q

n1 ¨ ¨ ¨ pX ´ λtq
nt and hence all the roots of the minimal polynomial are in the set

λ1, . . . , λt. However every eigenvalue of T is a root of the minimal polynomial and so the
claim is proved. �

!4The λis in the theorem need not be distinct.
The fact that C is algebraically closed i.e. every polynomial with coefficients in C has

a root in C is vital to the Jordan normal form, but there is another simple form available
more generally.

Theorem 16.4 (Rational Canonical Form). Suppose that V is a finite-dimensional vector
space over F and T : V Ñ V is linear and not identically 0. Then there are monic
polynomials f1 � ¨ ¨ ¨ � fr of degree nt, . . . , n1 with f1 non-constant, and a basis for V such
that the matrix for T in this basis is

¨

˚

˚

˚

˝

Cpf1q 0n1ˆn2 ¨ ¨ ¨ 0n1ˆnr

0n2ˆn1

. . . . . .
...

...
. . . . . . 0nr´1ˆnr

0nrˆn1 ¨ ¨ ¨ 0nrˆnr´1 Cpfrq

˛

‹

‹

‹

‚

where 0nˆm is the the all zeros matrix in MnˆmpFq, and Cpfq is24 the nˆ n matrix, called
the companion matrix for the monic fpXq “ Xn ` an´1X

n´1 ` ¨ ¨ ¨ ` a1X ` a0,
¨

˚

˚

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´a0

1
. . .

... ´a1

0
. . . . . .

...
...

...
. . . . . . 0 ´an´2

0 ¨ ¨ ¨ 0 1 ´an´1

˛

‹

‹

‹

‹

‹

‹

‚

.

The minimal polynomial for T is fr and the characteristic polynomial is f1 ¨ ¨ ¨ fr.

24If n “ 1 then Cpfq “ p´a0q.
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Proof. We regard V as an FrXs-module via the map FrXs Ñ EndpV q; p ÞÑ pv ÞÑ ppT qvq.
Since FrXs is a PID we may apply the invariant factor form of the structure theorem to
V . Then we get polynomials f1 � ¨ ¨ ¨ � fr with f1  1 and

φ : V Ñ pFrXs{xf1yq ‘ ¨ ¨ ¨ ‘ pFrXs{xfryq

an FrXs-linear bijection. First none of the fis is 0 since then FrXs{xfiy – FrXs and this
is an infinite dimensional vector space while V is not, and φ is an F-linear bijection. Thus
we may put ni :“ deg fi and may suppose that each fi is monic (since multiplying by a
unit does not change the ideal).

For 1 ď i ď r we write Mi :“ FrXs{xfiy for the FrXs-module described above let pei,jq
ni
j“1

be such that

φpei,jq “ p0M1 , . . . , 0Mi´1
, Xj´1

` xfiy, 0Mi`1
, . . . , 0Mrq.

Then φpe1,1q, . . . , φpe1,n1q, φpe2,1q, . . . , φper´1,nr´1q, φper,1q, . . . , φper,nrq is a basis for the F-
vector space M1‘¨ ¨ ¨‘Mr and since φ is an F-linear isomorphism, the sequence of vectors
e1,1, . . . , e1,n1 , e2,1, . . . , er´1,nr´1 , er,1, . . . , er,nr is a basis for V as a vector space over F.

Now, we have

φpTei,jq “ Xφpei,jq “

#

φpei,j`1q if j ă ni
´a0φpei,1q ´ a1φpei,2q ´ ¨ ¨ ¨ ´ ani´1φpei,ni

q if j “ ni
.

Since φ is an F-linear bijection we conclude that T has the required form.
For the last part we first show that for a monic polynomial f the minimal polynomial of

Cpfq is f : By design fpCpfqq “ 0 and so the minimal polynomial divides f and we shall
be done if we can show the minimal polynomial has degree n. For 0 ď r ď n´ 1 the first
column of Cpfqr is p0, . . . , 0, 1, 0, . . . , 0qt where the 1 is in the pr ` 1qth position, thus the
matrices I, Cpfq, . . . , Cpfqn´1 are linearly independent over F and hence the degree of the
minimal polynomial is at least n.

Since fi � fr for all 1 ď i ď r we see that frpT q “ 0. On the other hand T is conjugate
to a matrix containing Cpfrq which we have seen has minimal polynomial fr and hence fr
is the minimal polynomial of T .

The characteristic polynomial is invariant under change of basis, and the characteristic
polynomial of Cpfq is f (it is degree n and divisible by the minimal polynomial), hence the
characteristic polynomial is the product of the characteristic polynomials of the companion
matrices in the rational canonical form. It follows that it is

śr
i“1 fi as required. �

The Rational Canonical Form is also sometimes called the Frobenius Normal Form.
As an example, suppose that n ě 2 and T is the nˆ n all 1s matrix:

¨

˝

1 ¨ ¨ ¨ 1
...

. . .
...

1 ¨ ¨ ¨ 1

˛

‚.

The image of T is one-dimensional and so by the rank-nullity theorem the kernel has
dimension n ´ 1. On the other hand n is an eigenvalue with eigenvector p1, . . . , 1qt and
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so T has a basis of eigenvectors and is diagonalisable hence the minimal polynomial is
XpX ´ nq and the characteristic polynomial is Xn´1pX ´ nq.

Suppose that f1 � ¨ ¨ ¨ � fr are monic polynomials with f1 non-constant i.e. of degree at
least 1. Then f1 ¨ ¨ ¨ fr “ Xn´1pX ´ nq and f1 “ XpX ´ nq. Thus f1 ¨ ¨ ¨ fr´1 “ Xn´2 and
so primality of X means that each fi is a non-zero power of X. It follows that fi “ X for
all 1 ď i ă r, and hence r “ n´ 1 so that T is similar to

¨

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 ¨ ¨ ¨ 0 0 0
0 ¨ ¨ ¨ 0 1 n

˛

‹

‹

‹

‹

‹

‚

.

17. Presentations

Suppose that R is a commutative unital ring and M is a module over R. M is finitely
generated if and only if there is a k P N and an R-linear surjection Rk ÑM . In particular, if
x1, . . . , xk is a generating set for M then there is a unique R-linear surjection ψ : Rk ÑM
such that ψpeiq “ xi for 1 ď i ď k and ei “ p0, . . . , 0, 1, 0, . . . , 0q with a 1 in the ith
position. We shall say that ψ is the R-linear surjection corresponding to the generating
set x1, . . . , xk.

Given a generating set x1, . . . , xk for M , by the First Isomorphism Theorem we have
M – Rk{ kerψ where ψ is the corresponding R-linear surjection. If kerψ is itself finitely
generated then we say that M is finitely presented.

!4This definition seems to depend on the particular generating set x1, . . . , xk chosen
rather than just on the module M , but we shall see in Proposition 17.1 that this dependence
is illusory.

!4There are finitely generated modules that are not finitely presented: Suppose that
R :“ FrX1, X2, . . . s, the ring of polynomials with countably many different variables25.
Then I :“ xX1, X2, . . . y is an ideal in R and R{I is a finitely generated R-module, but it
turns out it is not finitely presented.

While not every finitely generated module is finitely presented, if R is a PID then
Theorem 16.1 tells us that there is an R-linear isomorphism

ψ : pR{xa1yq ‘ ¨ ¨ ¨ ‘ pR{xaryq ÑM

and so putting

xi :“ ψp0R ` xa1y, . . . , 0R ` xai´1y, 1R ` xaiy, 0R ` xai`1y, . . . , 0R ` xaryq

for 1 ď i ď r we have that x1, . . . , xr generates M and, moreover, the kernel of the
corresponding R-linear surjection is xa1y‘¨ ¨ ¨‘xary which is generated by pa1, 0R, . . . , 0Rq,
. . . , p0R, . . . , 0R, arq. Thus every finitely generated module over a PID is finitely presented.

25We did not formally define this at the start of the course, but it behaves in a fairly natural way.
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Proposition 17.1. Suppose that R is a commutative unital ring, M is a finitely presented
R-module, and φ : Rm ÑM is a surjective R-linear map. Then kerφ is finitely generated.

Proof. Since M is finitely presented there is an R-linear surjection ψ : Rk ÑM with kerψ
finitely generated. We first choose an R-linear q such that the following diagram commutes

Rk ψ //

q

��

M

Rm

φ
==

To do this, note that since φ is surjective, for each 1 ď i ď k there is some fi P R
m

such that φpfiq “ ψpeiq where ei “ p0, . . . , 0, 1, 0, . . . , 0q P R
k has the 1 in the ith position.

Then put
qpλ1e1 ` ¨ ¨ ¨ ` λkekq :“ λ1f1 ` ¨ ¨ ¨ ` λkfk for λ1, . . . , λk P R.

This is a well-defined R-linear map since e1, . . . , ek is a basis for Rk, and it has the desired
property that φ ˝ q “ ψ.

Since φ ˝ q “ ψ we have x P kerψ if and only if qpxq P kerφ. First this tells us that q
induces an R-linear map rq : kerψ Ñ kerφ;x ÞÑ qpxq. Now consider the map

Ψ : kerφ{ Im rq Ñ Rm
{ Im q; y ` Im rq ÞÑ y ` Im q.

Ψ is a well-defined injection: Suppose y, y1 P kerφ. Then y ` Im q “ y1 ` Im q if and only
if y´ y1 “ qpxq for some x P Rk. Since y´ y1 P kerφ we have y´ y1 “ qpxq for some x P Rk

if and only if y ´ y1 “ qpx1q for some x1 P kerφ. Finally, y ´ y1 “ qpx1q for some x1 P kerφ
if and only if x´ x1 P Im rq.

Ψ is also a surjection: Suppose that y P Rm. Then there is some x P Rk such that
φpyq “ ψpxq, and hence φpy´qpxqq “ 0 and hence y´qpxq P kerφ and Ψpy´qpxq`Im rqq “
y ´ qpxq ` Im q “ y ` Im q.

Finally Ψ is R-linear, and hence an R-linear isomorphism and we have an R-linear
surjection

Rm
Ñ kerφ{ Im rq; y ÞÑ Ψ´1

py ` Im qq,

and kerφ{ Im rq is finitely generated by some set z1` Im rq, . . . , zr ` Im rq (where z1, . . . , zr P
kerφ). On the other hand kerψ is finitely generated by w1, . . . , wl and so Im rq is generated
by qpw1q, . . . , qpwlq. Thus kerφ is generated by z1, . . . , zr, qpw1q, . . . , qpwlq and the result
is proved. �

This argument can also be cast in terms of the Snake Lemma which is an important
result in future courses on commutative algebra.

18. Elementary operations and Smith normal form

Suppose that R is a commutative unital ring, and M is finitely presented over R. If
x1, . . . , xm is a generating set for M and r1, . . . , rn is a generating set for the the kernel of
the R-linear surjection corresponding to x1, . . . , xm then there is a matrix A P MmˆnpRq,
called the presentation matrix, defined by

ri “ pA1i, . . . , Amiq for all 1 ď i ď n.
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We have M – Rm{ARn by the first isomorphism theorem (since ARn is the kernel of the
surjection Rm Ñ M defined by the generating set x1, . . . , xm), and this module can be
understood through the matrix A. It is the purpose of this section to examine how we can
put A in a particularly nice form.

Then we put GLnpRq :“ UpMnpRqq and we say that two m ˆ n matrices A and B are
equivalent if there are S P GLmpRq and T P GLnpRq such that A “ SBT . Note, in
particular, if A and B are equivalent then they are presentation matrices for isomorphic
modules.

There are particular types of elements of GLnpRq whose left and right multiplication
correspond to row and column operations respectively. For A an m ˆ n matrix we write
c1, . . . , cm P R

n for the columns of A so A “ pct1, . . . , c
t
mq, and r1, . . . , rn P R

m for the rows
of A so that A “ pr1, . . . , rnq

t. Write Enpi, jq for the n ˆ n matrix with 0s everywhere
except for row i and column j where the entry is 1.

(i) (Transvections) Given 1 ď i, j ď n with i ‰ j and λ P R put Pnpi, j;λq “
I ` λEpi, jq. We write

A
cj ÞÑcj`λci
ÝÝÝÝÝÝÑ APnpi, j;λq.

to mean that the matrix A after the column operation replacing cj by cj`λci is the
matrix A post-multiplied by Pnpi, j;λq. This can be checked by direct calculation.

Similarly

A
ri ÞÑri`λrj
ÝÝÝÝÝÝÑ Pmpi, j;λqA

means that the matrix A after the row operation replacing ri by ri ` λrj is the
matrix A pre-multiplied by Pnpi, j;λq. Again this can be checked by direct calcu-
lation.

(ii) (Dilations) Given 1 ď i ď n and u P UpRq let Dnpi;uq :“ In ` pu ´ 1qEnpi, iq
so that Dnpi;uq is the matrix with 1s on the diagonal except for the ith element
which is u, and 0s elsewhere. As above we write

A
ci ÞÑuci
ÝÝÝÝÑ ADnpi;uq and A

ri ÞÑuri
ÝÝÝÝÑ Dmpi;uqA

to mean the matrix A with column ci replaced by uci etc.
(iii) (Interchanges) Given 1 ď i, j ď n let Snpi, jq “ In`Enpi, jq `Enpj, iq ´Enpi, iq ´

Enpj, jq. By

A
ciØcj
ÝÝÝÑ ASnpi, jq and A

riØrj
ÝÝÝÑ Smpi, jqA

to mean the matrix A with ci and cj swapped etc.

These three types of operations are the elementary column and row operations respec-
tively. The matrices are all invertible, since their pre- and post- multiplication corresponds
to row and column operations respectively, and these operations are easily seen to be in-
vertible. This invertibility is the reason for restricting dilates to elements of the group of
units.

In view of the invertibility of these matrices we see that applying these elementary row
and column operations to a matrix preserves equivalence of matrices.
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The subgroup of GLnpRq generated by the elementary row operations is denoted GEnpRq.
Of course GEnpRq ď GLnpRq, and for some rings it is a proper subgroup (Cohn in [Coh66]
gives an example of a PID where these groups are different), however for Euclidean domains
these two groups are the same. We shall not need this fact though it could be proved by
the approach below.

We say that an m ˆ n matrix A is in Smith normal form if there are elements
a1 � a2 � ¨ ¨ ¨ � amintn,mu such that

A “

¨

˚

˝

a1 0 ¨ ¨ ¨

0 a2
. . .

...
. . . . . .

˛

‹

‚

.

Note the divisibility condition so that, for example,

¨

˝

1 0 0 0
0 ´2 0 0
0 0 0 0

˛

‚ and

¨

˚

˚

˚

˚

˝

5 0 0
0 25 0
0 0 100
0 0 0
0 0 0

˛

‹

‹

‹

‹

‚

are both in Smith normal form over Z, however neither of the matrices
¨

˝

1 0 0
0 2 0
0 0 3

˛

‚ and

¨

˝

3 0 0
0 3 0
0 0 1

˛

‚

is in Smith normal form over Z, although they are both in Smith normal form over Q.
Suppose that R is a Euclidean domain with Euclidean function f and A is an m ˆ n

matrix with entries in R. Then there is an algorithm to find a matrix Ã that is equivalent
to A and which is in Smith normal form.

The main step is to show that A is equivalent to a matrix of the form

(18.1)

¨

˚

˚

˝

a1 0 ¨ ¨ ¨ 0
0
... A1

0

˛

‹

‹

‚

where Ã is an pm´1qˆpn´1q matrix with a1 � Ãij for all 1 ď i ď m´1 and 1 ď j ď n´1.
We can then proceed recursively since the application of any row and column operations
to Ã do not impact that first column or row of the matrix above.

Achieving the above is a two step process: first we establish the above without the
divisibility conclusion.

Extend the Euclidean function by putting fp0q “ 8, so that fp0q ą fpxq for all x P R˚,
and write fpAq for the smallest value of fpAijq for 1 ď i ď m and 1 ď j ď n. Finally for
a vector x P Rk write zpxq for the number of indices i such that xi “ 0.
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(i) Suppose fpA11q ‰ fpAq. Then we use interchanges to move the matrix entry with
smallest weight in the Euclidean function to the p1, 1q position in the matrix.

Specifically, let pi, jq be such that fpAijq ă fpA11q and apply the row operation

ri Ø r1 and the column operation cj Ø c1 to get an equivalent matrix Ã where

fpÃ11q ă fpA11q and fpÃq “ fpAq.
(ii) Suppose fpA11q “ fpAq and the top row or first column of the matrix has a non-

zero entry other than its first coordinate, say it is in column j (rows are similar).
Then
(a) if A11 � A1j we apply the column operation cj ÞÑ cj ´ pA1j{A11qc1 to get an

equivalent matrix rA with fp rA11q “ fpA11q, fp rAq “ fpAq, and zprc1q ` zprr1q ą
zpr1q ` zpc1q;

(b) if A11 ffl A1j then since fpA11q ď fpA1jq there is some q such that A1j “

qA11`r where fprq ă fpA11q, and we apply the column operation cj ÞÑ cj´qc1
to get an equivalent matrix Ã where fpÃq ď fpÃ1jq “ fprq ă fpA11q “ fpAq.

At each step of the iteration we produce an equivalent matrix rA such that either fp rAq ă

fpAq; or fp rAq “ fpAq and fp rA11q ă fpA11q; or fp rAq “ fpAq, fp rA11q “ fpA11q, zprc1q `
zprr1q ą zpc1q ` zpr1q.

Since zpcq ` zprq ď n`m´ 1 we see that the above algorithm must terminate at some
stage when A has the form (18.1) where fpa1q ď fpA1q. Now, if there is some pi, jq such
that a1 ffl Aij then j ‰ 1 since Ai1 “ 0 for all i ą 1 and so we can apply the column
operation c1 ÞÑ c1 ` cj. By the Euclidean property we have Aij “ qa1 ` r for some r with
fprq ă fpa1q hence we may apply the row operation ri ÞÑ ri ´ qr1 to get an equivalent

matrix rA with fp rAq ď fprq ă fpa1q “ fpAq.
Again, this process must terminate since the natural numbers are bounded below. The

resulting matrix has the from as described in (18.1). We can now repeat the algorithm on
A1. Eventually this process of passing to smaller matrices terminates since the number of
rows and columns decreases by 1 at each step.

The above shows that any matrix is equivalent to a matrix in Smith normal form.
However, it may not be the most efficient route. We are, of course, free to apply elementary
operations as we wish to put a matrix into Smith normal form – any sequence of applications
leads to an equivalent matrix since all elementary operations are in GLnpRq.

This argument can be used to give a proof of the structure theorem for modules over
EDs, and conversely the structure theorem can be used to give a non-constructive proof of
the existence of Smith Normal form. It does not, however, give an algorithm and that is
the benefit of the above.

18.1. Describing the structure of a commutative group using the SNF. Suppose
that G is a commutative group with generators g1, g2, g3, g4, g5 and relations

2g1 ` 6g2 ´ 8g3 “ 0, g1 ` g2 ` g4 “ 0, and 5g1 ` 5g4 ` 25g5 “ 0.
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This group is isomorphic to pZ{x10yq‘Z2, and to show this we use the Smith normal form.
First we put the relation matrix, R, into Smith normal form:

R :“

¨

˝

2 6 ´8 0 0
1 1 0 1 0
5 0 0 5 25

˛

‚

r1Ør2
ÝÝÝÝÑ

¨

˝

1 1 0 1 0
2 6 ´8 0 0
5 0 0 5 25

˛

‚

c2 ÞÑc2´c1
c4 ÞÑc4´c1
ÝÝÝÝÝÝÑ

¨

˝

1 0 0 0 0
2 4 ´8 ´2 0
5 ´5 0 0 25

˛

‚

r2 ÞÑr2´2r1
r3 ÞÑr3´5r1
ÝÝÝÝÝÝÑ

¨

˝

1 0 0 0 0
0 4 ´8 ´2 0
0 ´5 0 0 25

˛

‚

r2 ÞÑr2`r3
ÝÝÝÝÝÝÑ

¨

˝

1 0 0 0 0
0 ´1 ´8 ´2 25
0 ´5 0 0 25

˛

‚

r3 ÞÑr3´5r2
ÝÝÝÝÝÝÑ

¨

˝

1 0 0 0 0
0 ´1 ´8 ´2 25
0 0 40 10 ´100

˛

‚

c3 ÞÑc3´8c2
c4 ÞÑc4´2c2
c5 ÞÑc5`25c2
ÝÝÝÝÝÝÝÑ

¨

˝

1 0 0 0 0
0 ´1 0 0 0
0 0 40 10 ´100

˛

‚

c3Øc4
ÝÝÝÑ

¨

˝

1 0 0 0 0
0 ´1 0 0 0
0 0 10 40 ´100

˛

‚

c4 ÞÑc4´4c3
c5 ÞÑc5`10c3
ÝÝÝÝÝÝÝÑ

¨

˝

1 0 0 0 0
0 ´1 0 0 0
0 0 10 0 0

˛

‚.

Thus we have P P GL3pZq and Q P GL5pZq such that

P

¨

˝

2 6 ´8 0 0
1 1 0 1 0
5 0 0 5 25

˛

‚Q “

¨

˝

1 0 0 0 0
0 ´1 0 0 0
0 0 10 0 0

˛

‚.

We can compute the matrix Q by applying the column operations to the identity matrix:
¨

˚

˚

˚

˚

˝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

c2 ÞÑc2´c1
c4 ÞÑc4´c1
ÝÝÝÝÝÝÑ

¨

˚

˚

˚

˚

˝

1 ´1 0 ´1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

c3 ÞÑc3´8c2
c4 ÞÑc4´2c2
c5 ÞÑc5`25c2
ÝÝÝÝÝÝÝÑ

¨

˚

˚

˚

˚

˝

1 ´1 8 1 ´25
0 1 ´8 ´2 25
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

c3Øc4
ÝÝÝÑ

¨

˚

˚

˚

˚

˝

1 ´1 1 8 ´25
0 1 ´2 ´8 25
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

c4 ÞÑc4´4c3
c5 ÞÑc5`10c3
ÝÝÝÝÝÝÝÑ

¨

˚

˚

˚

˚

˝

1 ´1 1 4 ´15
0 1 ´2 0 5
0 0 0 1 0
0 0 1 ´4 10
0 0 0 0 1

˛

‹

‹

‹

‹

‚

.
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Similarly we can compute P :

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

r1Ør2
ÝÝÝÝÑ

¨

˝

0 1 0
1 0 0
0 0 1

˛

‚

r2 ÞÑr2´2r1
r3 ÞÑr3´5r1
ÝÝÝÝÝÝÑ

¨

˝

0 1 0
1 ´2 0
0 ´5 1

˛

‚

r2 ÞÑr2`r3
ÝÝÝÝÝÝÑ

¨

˝

0 1 0
1 ´7 1
0 ´5 1

˛

‚

r3 ÞÑr3´5r2
ÝÝÝÝÝÝÑ

¨

˝

0 1 0
1 ´7 1
´5 30 ´4

˛

‚.

This gives us a well-defined isomorphism

φ : GÑ pZ{x10yq ‘ Z2

z1g1 ` ¨ ¨ ¨ ` z5g5 ÞÑ pz1 ´ 2z2 ` z4, 4z1 ` z3 ´ 4z4,´15z1 ` 5z2 ` 10z4 ` z5q.

For a matrix A we write RowSpanpAq for the Z-module generated by the rows of A. To
see that φ is a well-defined injection note:

z1g1 ` ¨ ¨ ¨ ` z5g5 “ z11g1 ` ¨ ¨ ¨ ` z
1
5g5

ôpz1 ´ z
1
1, . . . , z5 ´ z

1
5q P RowSpanpRq

ôpz1 ´ z
1
1, . . . , z5 ´ z

1
5q P RowSpanpPRq

ôpz1 ´ z
1
1, . . . , z5 ´ z

1
5qQ P RowSpanpPRQq

ôpz1 ´ z
1
1, . . . , z5 ´ z

1
5qQ P tpu,´v, 10w, 0, 0q : u, v, w P Zu

ôφppz1 ´ z
1
1qg1 ` ¨ ¨ ¨ ` pz5 ´ z

1
5qg5q “ 0

ôφpz1g1 ` ¨ ¨ ¨ ` z5g5q “ φpz11g1 ` ¨ ¨ ¨ ` z
1
5g5q.

Definition of G

Since P P GL3pZq

Since Q P GL5pZq

Design of PRQ

Definition of φ

The map φ is also certainly Z-linear (in fact we have already used this to some extent
above). Moreover, since φ is well-defined and φpg5q “ p0, 0, 1q, φpg3q “ p0, 1, 0q, and
φpg1 ´ 4g3 ` 15g5q “ p1, 0, 0q we see that the image of φ contains a generating set for the
codomain and hence φ is a surjection. The claim that φ is an isomorphism is complete.

18.2. Computing the rational canonical form using the SNF. Suppose we wish to
compute the rational canonical form of the matrix

A “

¨

˝

1 ´1 1
0 0 1
0 1 0

˛

‚.
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We begin by putting the matrix XI ´A in Smith normal form over the Euclidean domain
QrXs:

¨

˝

X ´ 1 1 ´1
0 X ´1
0 ´1 X

˛

‚

c1Øc2
ÝÝÝÑ

¨

˝

1 X ´ 1 ´1
X 0 ´1
´1 0 X

˛

‚

c2 ÞÑc2´pX´1qc1
c3 ÞÑc3`c1

ÝÝÝÝÝÝÝÝÝÝÑ

¨

˝

1 0 0
X X ´X2 X ´ 1
´1 X ´ 1 X ´ 1

˛

‚

r2 ÞÑr2´Xr1
r3 ÞÑr3`r1
ÝÝÝÝÝÝÝÑ

¨

˝

1 0 0
0 X ´X2 X ´ 1
0 X ´ 1 X ´ 1

˛

‚

c2Øc3
ÝÝÝÑ

¨

˝

1 0 0
0 X ´ 1 X ´X2

0 X ´ 1 X ´ 1

˛

‚

c3 ÞÑc3`Xc2
ÝÝÝÝÝÝÝÑ

¨

˝

1 0 0
0 X ´ 1 0
0 X ´ 1 X2 ´ 1

˛

‚

r3 ÞÑr3´r2
ÝÝÝÝÝÝÑ

¨

˝

1 0 0
0 X ´ 1 0
0 0 X2 ´ 1

˛

‚.

As above we can identify the matrices P,Q P GL2pQrXsq such that
¨

˝

1 0 0
´X 1 0
X ` 1 ´1 1

˛

‚

¨

˝

X ´ 1 1 ´1
0 X ´1
0 ´1 X

˛

‚

¨

˝

0 0 1
1 1 1
0 1 X

˛

‚“

¨

˝

1 0 0
0 X ´ 1 0
0 0 X2 ´ 1

˛

‚.

This form can be used to identify the rational canonical form of A: the invariant polyno-
mials are read off the diagonal as X ´ 1 and X2 ´ 1 and A is similar to

¨

˝

1 0 0
0 0 1
0 1 0

˛

‚.
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