ASO: Mathematical Modelling in Biology

Philip Maini



We will follow Ruth Baker’s Lecture Notes, but please read the course synopsis carefully:
Chapter 2. Section 3.5 and Section 5.2 in those Lecture Notes are no longer in the course.

Enzyme-Substrate kinetics and the Hodgkin-Huxley model and excitable kinetics
have been added to the course.



AIMS

Introduce you to the art of mathematical modelling in biology, chemistry, ecology, epidemiol-
ogy and medicine.

Use techniques you have already learnt in applied mathematics (ordinary differential equations,
discrete equations) to analyse these models.

Introduce you to new analysis techniques.

Lay the foundation for future courses, such as Part B Further Mathematical Biology, and Part
C Mathematical Physiology.



Continuous-time models for a single
species

(Ruth Baker notes Chapter 3.)



1.1 Introduction

We start with the conservation law:

rate of increase of population = birth rate — death rate (1.1)

+ rate of immigration — rate of emigration.

We make the following assumptions:

A.1. The system 1s closed - no immigration, no emigration.

A.2. There is no spatial dependence (Part B: Further Mathematical Biology)

A.3. Time is continuous - overlapping generations.

We can therefore represent the population by N(t), where ¢ € [0, 00) is time, and N(¢) € [0, 00)
1s population density (or biomass).

Equation (1.1) can be written:

IN
Y — f(N) = Ng(N), (1.2)
dt

ot

where g(N) is defined to be the intrinsic growth rate (per capita growth rate).



Examples

Eg 1. Malthus Model (1798)

g(N)=b—d (1.3)
where b is the constant (non-negative) per capita birth rate, and d is the constant (non-
negative) per capita death rate. Therefore, Equation (1.2) becomes

dN
dt

= rN (1.4)

where r = b — d. Assume initial condition N(0) = Ny. Hence the solution is N(#) = Nye"".

This model then predicts that populations either grow to oo, decay to zero or, in the very
special case r = 0, remain constant.

Not very realistic.



Eg 2. Verhulst (logistic growth) Model (1836)

Assume that as N increases, the intrinsic growth rate decreases due to overcrowding, lack of
food, competition, etc. The simplest such growth rate is:

o(N) = (1~ ) (15)

where r (positive constant) is linear growth rate, and K (positive constant) is the carrying
capacity. Substituting this into Equation (1.2) leads to the logistic growth model:

N N
dt = ?:\(l — [{,

). (1.6)

Exercise: Show that the solution to the logistic growth model is N(#) = #{f_l)
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Logistic growth 1s a very good fit for bacterial growth, rats. yeast ...



1.2 Steady States and Linear Stability

Definition: The steady states of % = f(N) are the constants Ny such that f(Ng) = 0.

So, for example. in the logistic growth model, there are 2 steady states: Ny =0, Ny, = K.
Definition: Stability: Roughly speaking “if every initial state sufficiently close to the steady
state Ny continues to be permanently close to 1t, then Ny 1s stable”. There are lots of different

types of stability.



1.2.1 Linear (or Local) Stability

dN T
= (V). (1.7)

Steady states of Equation (1.7): f(N)=0 = N = N,.
Set N(t) = N, +n(t), where |n(t)| < |N,|.
Now Taylor expand f(N):

F(N) = f(N,4+n) = f(N,) + f(N)n + h.ot (1.8)

where dash is derivative with respect to N. Substituting this expansion into Equation (1.7)
and noting the definition of steady state, we have (neglecting higher order terms) the linear
system:
dn - FimT
- =f(Ngn = n(t) = nge! Vo)

where nj is the size of the initial perturbation from the steady state.

(1.9)

Therefore, it f'(N,) > 0, then n(f) grows so the system moves away from the steady state.
We say that the steady state is linearly unstable.

On the other hand, if f'(N,) < 0, then n(t) goes to zero, so the system moves towards
the steady state. We say that the steady state is linearly stable, and ﬁ is called the
recovery time - the time taken for a perturbation to decrease by a factor of e, as predicted by
linear analysis. Hence, it is a measure of the time taken for the population to recover from a

perturbation.

What if f/(N,) = 07



Exercise: Show that the steady state Ny = 0 for the logistic model is linearly unstable, and
that the steady state N, = K 1s linearly stable.

N.B. N, = K 1s, in fact, stable in (0, c0).




Summary

* Deriving a model
e Steady states
* Linear stability analysis



End of Lecture 1-1



Summary of Previous Lecture

* Deriving a model
e Steady states
* Linear stability analysis



1.3 Non-dimensionalisation and Hysteresis

1.3.1 The Spruce Budworm Model

Introduced by Don Ludwig in 1978, this model proposes that the dynamics of the budworm
can be modelled via logistic growth and predation. The model takes the form:

AN N BN?
=rgN(1—- — p(N), N)=——=—. 1.10
=N (1= ) —pV), (V) = (1.10)

Here, N(t) is the budworm density (or biomass) at time ¢, the parameters rg and Kp are,

respectively the linear growth rate and carrying capacity, and p(N) is predation due to birds.
A and B are also positive parameters.
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Non-dimensionalisation

Equation (1.10) has four parameters: rg (dimensions, 1/time), Kg (dimensions, biomass), B
(dimensions, biomass x 1/time), and A (dimensions, biomass).

Let
N = N*u, t=1t*r, (1.11)
where N* has units of biomass, and t* has units of time, with N* and ¢* constant. Then v and

t are non-dimensional (dimensionless) and satisty the equation (using the fact that % = %t%)

N* du . ~ N*u B(N*)%u? .
. — yaN*ull-= _ a . 1.12
. d’r B u ( [{B ) A2 i (L}\..-*)Q_U_Q 3 ( )
. du o (1 N*u) Bt* N*u? (1.13)
el rpl u K5 A2 + (N’*)ng‘ e
Now, if we set:
- A ?'Bfl I{B I'(B :
N*=A,  t'==, C=rptt = .. === L.14
_ B’ 1 B B q N+ 1 ( )
we have p 5
1 _ 1 1 s
—=ru (l i E) — 1 = fwra), (1.15)

Now we only have 2 parameters!

Exercise: Check that » and ¢ are dimensionless, and that N* and ¢* have the correct dimen-

S1011S.



Steady states

The steady states are given by the solutions of

ou u? _
ru|l— 4 1 = 0. (1.16)

Clearly ug = 0 is a steady state. We proceed graphically to consider the other steady states
which are given by the intersection of the graphs

U

. 1.17
1+ u? (1.17)

filu) = (1—2) and  fa(u) =
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Y bi furcation
~ d&&afuw\

An S‘L'&'ole
A = q, — = = Liunstable

Bifurcation: Point at which the stability of a solution changes.

Crucially we see what is called a hysteresis loop: As we change a parameter, we go through
a sequence of steady states of the system. When we reverse the change in parameter, we come
back to the state at which we started, but in a different sequence.



Biological Insights

The biological insight from this analysis is that we cannot eliminate the budworm (zero steady
state is unstable) but if we reduce either 7 or ¢ then we force the budworm into a small steady
state.

Recall:

r =124 there we could reduce 7 (sterile insect release).

B
q= ‘%" so we could reduce K by spraying the trees.



1.4 Harvesting

We want Mazimum Sustaniable Yield (MSY).

Suppose the population grows logistically. That is:

N/ N |
=N (l— K). (1.18)

Non-zero steady state is N = K. Suppose we perturb it, so that N = K + n, where |n| is
small. Then, ignoring higher order terms:

dn

= = n=n(0)e"". (1.19)

Hence, the logistic growth model predicts a recovery time of 1/r for the non-zero steady state.



1.4.1 Constant Effort

In this case,

AN N
=rN|(1- — EN = f(N; E), 1.20
=N (1-5) f(N:E), (120)

where E is a positive constant (the effort we put in to harvest).

The yield, Y(FE) is EN and we want to maximise Y but make sure that the steady state still

recovers (MSY'). The steady states, N, are such that f(N,; E/) = 0. Therefore, the non-zero
steady state is

_BE)K E
Ny(B) = B (1 _ —) K. (1.21)
. .
and hence P
Y,(E) = EN,(E) = (1 _ —') KE. (1.22)
-

Note: Must take £ < r,

Note that this means that one yield can be obtained from two different efforts.

To maximise the yield, we take £ = 3.
T

ence the maximum vield, Y. o 1s B and 1s achieved for the steady state value N, = &
H tl yield, Y f | | d for the steady stat lue N IQ‘



Now, for effort £ < r, there are two steady states N (F) and, linearising by setting N =

Ng(FE) + n (n small), we find:

dn .
= f'(Ng: Eyn = (E —r)n. (1.23)
Hence, the recovery time for effort E, Tgr(FE) = ﬁ Therefore, comparing this to the “natu-

ral” recovery time, that is, when there is no harvesting, we have:

L (1.24)

Note that, at MSY, this ratio is 2.

As we typically measure Y, we rewrite everything in terms of Y. Hence, Equation (1.24)

becomes:

Tr(Y) 2

TR(O) N 1+ {1_}’/}??1@55"

(1.2

!J

)
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We see that the MSY corresponds to the point A. If we get things slightly wrong, we may end
up at the point C. This corresponds to the branch 7_ and therefore it will take the population
longer to recover. Hence N will be lower than we think so we increase E so that the yield Y
is constant. Hence we progress on the /_ branch.



1.4.2 Constant Yield

Exercise.



Summary

* Non-dimensionalisation

* Parameter spaces and bifurcation diagrams
* Hysteresis

* Harvesting



End of Lecture 1-2



