2. Discrete-time models for a single
species

(Ruth Baker notes Chapter 1).

We now consider the case of a single species where the generations are discrete (no overlap-
ping). Keeping in place all the other assumptions from the continuous time case, our model
takes the form

Niv1 = [(Ny) = Neg(Ny), (2.1)

where Ny is the population density (biomass) at generation ¢, and £ = 0,1, 2....



2.1 Examples

Exponential growth

A simple example is

1 ’Tt_|_]_ = T;’\rt. (22)
This is a linear difference (discrete) equation and we follow the standard method and look for
a solution N; = a\f, where o and \ are constants. Substituting this into Equation (2.2), we
have:

aNTh = a )iy (2.3)
Hence, A = r. Furthermore, o« = Ny, the initial population density, which is given.
Therefore:
oo r>1
N,=7r"Ng—=<{ Ny r=1 . (2.4)
0 r<l

Here, Ny 1s the initial condition.

This is a bit like the corresponding continuous time model - it is unrealistic.



Discrete Logistic Growth Model

N
*F\'rt—i—l — f\!rt |:'r (l — ]f):| s r >0 K > (). (25)
A

A steady state, Ny, satisfies

i?\'rs - f(:\—s) = i?\rsg(*?\rs)' (26)

So, here, N¢ = 0. Ny = (1 — %)K are steady states. From a biological viewpoint, the second
steady state only makes sense if r > 1.



2.2 Cobwebbing
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2.3 Linear stability
To linearise about a steady state, we set
1'1\!'} — 1'1\!?5 + ??.t? (27)

where Ny is the steady state. and n; is small. Note that N, is time independent and satisfies

Ng = f(N;). Hence
Nist1 = Ny + 144 = f(Ng+ny) = F(N) + nef' (Ng) + O(n?). (2.8)
Using the definition of steady state, we have (ignoring higher order terms)
ner1 = [ (Ng)ng. (2.9)
where f'(N;) is a constant, independent of ¢, and thus
ny = [f'(N)] no. (2.10)

This means that N is linearly stable if | f'(N,)| < 1 and linearly unstable if | f/(N,)| > 1.

Let us view this through the context of cobwebbing.
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A bifurcation occurs at |f’(Ng)] = 1. This leads to two possibilities: f'(Ng) = 1 (tangent
bifurcation); f'(Ng) = —1 (pitchfork bifurcation).

For the pitchfork bifurcation: n,,; = —n,, hence we have a period 2 oscillation.



Summary

* Linear stability analysis
* Cobwebbing
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Summary of previous part

* Linear stability analysis
* Cobwebbing



2.3.1 Discrete time Logistic Model

Non-dimensionalising:

U1 = 1ue (1 —ug) = flug), (2.11)

where Ny = Ku,. Steady states: ugs = 0, % Linear stability: f/(us) = r — 2rus.

Therefore f'(0) = r, f’(%) =2-—r.

So, for 0 < r < 1, us = 0 is linearly stable, us = ’"T*l is lincarly unstable (and not biologically
realistic).

While, for 1 < r < 3, ug = 0 is linearly unstable, us = ’";1 is linearly stable (and biologically
realistic).
A bifurcation occurs at r = 1. N

Usg




What happens for r > 37

At r=3, f( %) = 2 — 71 = —1 so we expect an oscillatory solution. As r gets bigger than 3,
this non-zero steady state goes unstable (so, we have a bifurcation at r = 3).

Definition: The trajectory, or orbit, generated by uq is the set of points ug, uq, us, ...
We say that a point is periodic of period m (or m-periodic) if f™(ug) = wo, f*(ug) # wo,i =

1,2,3...,m — 1, where f™(u) means “perform the operation f m times”.

Therefore, for logistic growth, to investigate the period 2 solution, we set: w0 = f2(us) =
f(uig1), where

F2(uy) = rrug (1 — wp)][1 — ruy (1 — ug)].
The steady states for this equation satisty:

us = rrus (1 —ug)|[1 — rus (1 — ug)].

. This is a quartic. But, we know two solutions: ugs = 0, "":l. So, we can factorize and we are
left with a quadratic, whose solution is:
r+1 1 :
uF = —— 4+ —\/(r—1)2—4. (2.12)
2r 2r

These roots are real if (r —1)2 > 4, i.e. 7 > 3.

These are the values of u; that emerge from the pitchfork bifurcation at r = 3, with f(u]) =
ug, and f(uy) =ul (Exercise).



How do we find the linear stability of this periodic solution?

We determine the linear stability of the periodic solution in the same way as before: We define
A as

1™ (u
A= df"(u) luzu;, 2 = 0,0r 1,0or 2,...or m — 1

du
df (Q(u))

a du iz
= 7w ™Y,
u

m—ll .
A OT. (2.13)
du

= fl(ui-1)

where Q(u) = f™ !(u). Hence, by iteration, we have that the state is linearly stable if

m—1

T 7/(w)| < 1. (2.14)
=0



There exist a series 7. of values of r such that cycles bifurcate at these points with even orders.
The limit of these points is called the Feigenbaum number (3.828...).

For 7 greater than this limit point, but less than 4, we have a period 3 oscillation. This implies
chaos (Yorke and Li, 1975).






Note that for r > 4, this model is not realistic.

Uet= Ue

—> Wt

Weqy= F e () =)




Summary

* Periodic solutions
* Chaos

* The discrete logistic growth model is very different its continuous
counterpart!
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