3. Continuous-time models for
interacting species

(Ruth Baker notes Chapter 4).
We will consider two interacting species. This leads to a coupled system of 2 ordinary differ-
ential equations (ODEs).

Before going any further, let’s do a quick revision of the relevant concepts which we will need
from the Differential Equations I course.



3.1 Introduction

We will consider models of two species, u and v, whose dynamics can be described using the
system of coupled ordinary differential equations

% = f(u,v), (3.1)
dv
E - g(u:'l")a (32)

where f and ¢ are functions that model the interactions between the species.

Our “recipe” for analysing these models is to find their steady states, conduct a linear stability
analysis and sketch the phase plane.



3.1.1 Steady states

The steady states (also called stationary states or equilibrium points), (ug, vy), satisty
flug,vs) = 0 and g(ug,vs) = 0.

Note that these are the intersections of the null clines. Recall that the nullclines are the curves
in phase space ((u,v) space) where either

du __ Ldvu
dt—Dcn dt—D.



3.1.2 Linear stability analysis

Make a small perturbation from the steady state (us, vs):

-u.(t) = us + u and V(t) = vs + V. (‘3‘3)

Substituting into equations ( 3.1-3.2) and retaining only first order terms in u, v we have
4 _ | Flus+a,0s+0) (5.4
dt g(h‘.s +u, vg + ,U)
of ~
Ug, Ug D1 u
51 5 81‘.!'. (us ,US)
- u |
= (& & MR (3.6)
du v (us,vs)

As in the Differential Equations I course, we determine linear stability by consider the eigen-
values of the (constant) Jacobian matrix
(us,vs)
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3.2 Interacting Populations

There are 3 basic types of interaction:

1. The growth of one population decreases, the growth of the other population increases —
predator-prey.

2. The growth of both populations decreases — competition.

3. The growth of both populations increases — mutualism (symbiosis).



3.2.1 Predator-Prey

Lotka-Volterra model. Let N(#) be the density (biomass) of the prey and P(t) the density

(biomass) of the predators at time ¢.

Then:
dN
— iN'T — biNTP N
dt . |
g = cNP —dP,
dt

with a, b, ¢, d positive parameters and ¢ < b.

Here: a is linear birth rate, b is predation rate per predator, c is related to the conversion of

predation to predator growth rate, and d is linear death rate.

We will also have some initial conditions: N(0) = Ny, P(0) = Fy, where Ny, Py are non-

negative.



Non-dimensionalisation

Non-dimensionalising with v = ($)N, v = ()P, 7 = at and a = ¢:

% =u(l —v) := f(u,v), (3.10)
Ci—l =av(u—1) := g(u,v), (3.11)
dr

with «(0) = ug, v(0) = vo.



Linear stability analysis

Steady states: (u,v) = (0,0) and (u,v) = (1,1).

The Jacobian, .J, is given by

- 1 — v —Ug ‘
J = ( avs ol —1) ) ) (3.12)

- (1 0 ‘
J= ( 0 . ) : (3.13)

with eigenvalues 1, —a. Therefore the steady state (0,0) is an unstable saddle.

At (1,1) we have
7=(" 1 (3.14)
“\La 0 )7 -

with eigenvalues i,/ Therefore the steady state (1, 1) is a centre (not linearly stable).

At (0,0) we have



3.2.2 Analytic solution

Note that:

du  u(l —wv) u—1 1—v
2 = [ —=dv 3.15
dv  a(u—1)v / w ) Taw @ (3:15)
Hence
H = constant = au+v —alnu — Inwv. (3.16)

This can be rewritten as

(i_) (%)a =, (3.17)

from which we can deduce that the trajectories in the (u, v) plane take the form shown in the
figure below.
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Thus v and v exhibit temporal oscillations, which are out of phase.

FEg. Hare-lynx 1845-1935 (Hudson Bay).



End of Lecture 3-1



Summary of previous lecture

* Brief revision of key material from Differential Equations 1 that is
needed for this course (phase planes — linear stability analysis, null
clines)

* Lotka-Volterra predator-prey model



3.3 A more realistic predator-prey model

The Lotka-Volterra model assumes that growth of prey goes to infinity as the prey population
goes to infinity, and also that predation goes to infinity as the prey population goes to infinity.

A more realistic model (proposed for aphids-ladybirds) takes the form:

dN N kNP

— rN(1 = _ ) 3.18
a - NP N (3.18)
dP i aP

— SP(1 — _ 3.19
= (1=, (319)

where N(t) is the aphid density (prey), P(t) is the ladybird density (predator), ¢ is time, and
r, K.k, D,S, «a are positive parameters.

dN

i
dt

aN — bNP,

cNP —dP,



After non-dimensionalisation (Exercise):

g: = u(l —u)— daji:, (3.20)
g—:_ — (1 — %) (3.21)
where a, b, d are positive constants.
3.3.1 Steady States and Linear Stability Analysis
Steady states: (ug,vs) = (0,0).
Non-trivial steady states: (ug,vg) satisfy
ailg :
vy = ug where (1 —uy)= FE— (3.22)
and hence |
u= ~(at+d—1)+/(a+d—1)2+4d|, (3.23)

is the only positive steady state.



The Jacobian at (ug, vy) is

or o1
g ( i ) (3.24)
ou v (us,vs)
The eigenvalues, A\, satisfy
of dg\ Ofdg o (9f 99 dfdg Ifdg\
(*—a)(*—%)—aa—o M\ oa o) M \uae " avon) T
(3.25)
Hence
v+ /o — 18
N_oal+3=0 — rA=2 ;" 7 (3.26)
where ) )
au au
v+ —s oy B=bfug— — (=1, 3.97
a g + (115 + d)? | (u (s + )2 (u )) ( )
Note that
_ au? ug(l —ug)  (us+d) —ug +u>  d+ (ug)?
f=1-=t =1 U=t ° 2 = > 0. 3.28
' (ug + d)? (ug +d) g +d d + ug ( )



Thus, if a < 0 we have cither a stable node (a? — 43 > 0) or stable focus (a? — 43 < 0) at
the steady state (ug, vg). If @ > 0 we have an unstable steady state at (ug, vs) (either node or
spiral).



3.3.2 Limit cycle dynamics

Poincaré-Benedixon Theorem: Let R be a closed bounded region consisting of non-
singular points of a 2x2 system: ‘é—’t‘ = X(x) such that some positive half-path H of the
system lies entirely in R. Then, either H is itself a closed path, or it approaches a closed path,

or it terminates at an equilibrium point.
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In this model, therefore, for a > 0, we have limit cycle dynamics (See J. D. Murray, Mathe-
matical Biology Volume I (Chapter 3.4) for more details).

This means that the predator and prey population densities oscillate out-of-phase.
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Summary

* We considered a more realistic model for predator-prey dynamics
* Limit cycles



End of Lecture 3-2



Summary of Previous Lecture

* We considered a more realistic model for predator-prey dynamics
* Limit cycles



In this lecture we will consider

* Competition
* Mutualism (Symbiosis)



3.4 Competition

Lotka-Volterra competition model:

le - ]\"Tl irVQ

— Ny (1= —b 3.29
dt R ( K2 Kl) | (3.29)
ng AT ) ]\"TQ Nl )
E 72]\'2 (l — E — leE) , (330)

where Ky, Ky, 11, 19, bia, bsy are positive constants.

We will have initial conditions Ny(0) = N, No(0) = N7.




dimensionalicos gy = N o No 4 _r o _ 1 Ky . _p Ki
Non-dimensionalise: U-l—Kl,ug—KQ.T—?lt,,O—Tl,alg—blzKl,Cle—bglKg.

du

d—’.f'l = wu(l —uy — agous) = fi(ug, uz), (3.31)
du _ ‘
—2 = pug(l — ug — agquy) := fo(uy, us). (3.32)

dr



3.4.1 Steady States and Linear Stability Analysis

The steady states are

(0 tin) = (0,0),  (uptiz) = (1,0), (uy0ru90) = (0.1), (3.33)
and {
(’tr:l_s, 'U-Q‘S) = —(l — (¥12, 1— ():21): (33—1)
o I — appag

if apo < 1 and a9y < 1 orags > 1 and ag; > 1.

The Jacobian (community matrix) is

1 — 2u; — aqgous —vpotly ‘
J = _ . 3.35
( — paroq g p(1 = 2us — aoyuy) ( )



Steady state (uy s, u25) = (0,0).

1—\A 0 e
J,\I:( . p_)\) (3.36)

So, we see that A =1, p.

Therefore (0,0) is an unstable node.



Steady state (uj,uz) = (1,0).

J- )= ( SLeA S ) (3.37)

So, we see that A = —1, p(1 — agy).

Therefore (1,0) is a stable node if cg; > 1 and a saddle point if a9y < 1.

Steady state (u.. uas) = (0,1).

. 1 — 19 — A 0 .
J-A= ( Cpom —po ) (3.38)

So, we see that A = —p, 1 — aqs.

Therefore (0, 1) is a stable node if a9 > 1 and a saddle point if aqa < 1.



1
l—ajza2

Steady state (u ., u2) =

(1 — a2, 1 — ).

J -\ = 1 91 — 1—A Oqg(a'lg — 1)
1 — aq2a901 0021(0521 - 1) ,O(Oi21 - 1) —A )

Existence and stability depends on a5 and aoay.

(3.39)
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Ecological implications:

1. In case (1) app < 1 ==> blg% < 1 while agy > 1 ==> 1}212 > 1, so uy (that is, Ny) is
the better competitor (competitive exclusion).

2. In case (1) we cannot climinate N; by culling alone. We must also increase ago, that is,
Increase blg%.



Acid-Mediated Invasion Hypothesis

* A bi-product of the glycolytic pathway is lactic acid — this lowers the
extracellular pH so that it favours tumour cell proliferation AND it is
toxic to normal cells.

Robef:f A Gatenby

* R.A. Gatenby and E.T. Gawslinski, A reaction-diffusion model of cancer invasion, Cancer Research, 56,
5745-5753 (1996)



3.5 Mutualism (Symbiosis)

We consider a very similar ordinary differential equation model for two species, but this time
with positive interactions,

le . ; 4“1\"'—1 ANQ
i r1iV1 ( e =+ D12 Kl) ( )
dxg - ; j\"TQ fvj_
— = 1Ny (1-— ! . 3.41
dt e ( Ky }21[&’2) ' (3:41)

where Ky, Ky, 11, 79, bia, by are positive constants. The model can be non-dimensionalised
to give

d
% = ur(l = uy + angug) == fi(ug, ug), (3.42)
du _ |

® = pus(l — 1y + gy ) i= foluy, us). (3.43)

dr
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Summary

* Considered a model for competition
e Considered a model for mutualism (symbiosis)



End of Lecture 3-3



