7. Infectious Disease Modelling

(Ruth Baker's Notes, Chapter 5, Section 5.1)

In this presentation:

Susceptible-Infected-Removed (SIR) model (Kermack-McKendrick)

7.1 The SIR model

Consider a disease for which the population can be placed into three compartments:

- the Susceptible compartment, S: individuals who can catch the disease;
- the Infective compartment, I: individuals who have and transmit the disease;
- the Removed compartment, R: individuals who got infected and are now either isolated themselves, have recovered and are immune to the disease, or have died due to the disease.

7.1.1 Assumptions

- The disease dynamics are on a short timescale so that there is no birth, and no death due to causes other than the disease.
- The disease has a negligible incubation period that is, when a person becomes infect ed, they immediately become infect ious
- There are no spatial effects. No immigration/emigration

Kermack-McKendrick Model, 1927

$$\frac{dS}{dt} = -rIS,$$

$$\frac{dI}{dt} = rIS - aI,$$

$$\frac{dR}{dt} = aI,$$
(7.1)
$$(7.2)$$

$$\frac{\mathrm{dI}}{\mathrm{dt}} = rIS - aI,\tag{7.2}$$

$$\frac{\mathrm{dR}}{\mathrm{dt}} = aI,\tag{7.3}$$

subject to

$$S(0) = S_0, \quad I(0) = I_0, \quad R(0) = 0.$$
 (7.4)

Further assumptions:

A.1 Law of Mass Action - there is uniform mixing between S and I:

$$S + I \longrightarrow I + I \tag{7.5}$$

with a rate r (constant), which is the rate at which the infection spreads from an Infected to a Susceptible

subject to

$$\frac{dS}{dt} = -rIS,$$

$$\frac{dI}{dt} = rIS - aI,$$

$$\frac{dR}{dt} = aI,$$
(7.1)

A.2 The removal rate from the Infected compartment to the Removed compartment

$$I \longrightarrow R$$
 (7.6)

is a constant (a).

A.3 There is no movement out of the Removed compartment.

A.4 Initially, the Susceptible population has size $S_0 > 0$, the Infected population has size $I_0 > 0$, and there is no Removed population.

Note that, as we would expect from the assumptions, adding the equations

$$\frac{\mathrm{d}}{\mathrm{d}t}(S+I+R) = 0 \implies S+I+R = S_0 + I_0 = \text{constant} = N.$$
 (7.7)

Summary

• Susceptible-Infected-Removed (SIR) model (Kermack-McKendrick)

End of Lecture 7-1

7. Infectious Disease Modelling

(Ruth Baker's Notes, Chapter 5, Section 5.1)

In the previous part:

Susceptible-Infected-Removed (SIR) model (Kermack-McKendrick)

Summary of this presentation:

• "The R number"!!!!

Kermack-McKendrick:

$$\frac{dS}{dt} = -rIS,$$

$$\frac{dI}{dt} = rIS - aI,$$

$$\frac{dR}{dt} = aI,$$
(7.1)
$$(7.2)$$

$$\frac{\mathrm{dI}}{\mathrm{dt}} = rIS - aI,\tag{7.2}$$

$$\frac{\mathrm{dR}}{\mathrm{dt}} = aI,\tag{7.3}$$

Follow the recipe:

Non-dimensionalise; find steady states; linear stability; phase planes.

BUT!! What questions are we trying to answer?

Does the infection grow?

How many people will get the disease?

How we do we control it?

"The R Number" (R_0)

$$\frac{\mathrm{dS}}{\mathrm{dt}} = -rIS,$$

subject to

$$S(0) = S_0, \quad I(0) = I_0, \quad R(0) = 0.$$
 (7.4)

$$\frac{dS}{dt} = -rIS,$$

$$\frac{dI}{dt} = rIS - aI,$$

$$\frac{\mathrm{dR}}{\mathrm{dt}} = aI,$$

From equations (7.1) - (7.2) we have that

$$\frac{dS}{dt} = -rIS \implies S \text{ is decreasing and therefore } S \le S_0. \tag{7.8}$$

$$\frac{\mathrm{dI}}{\mathrm{dt}} = I(rS - a) \le I(rS_0 - a) = rI(S_0 - \rho) \text{ where } \rho = \frac{a}{r}.$$
 (7.9)

Therefore, if $S_0 < a/r$ then $\frac{dI}{dt} \le 0, \forall t \ge 0$.

Definitions: The parameter ρ is called **relative removal rate**;

$$\sigma = \frac{1}{\rho}$$
 is the infection's **contact rate**

and $R_0 = \sigma S_0 = rS_0/a$ is the basic reproduction number

(it is dimensionless).

Note that, at
$$t = 0$$
:

$$a (r/a S - 1)I$$

$$\frac{dI}{dt} = a(\sigma S_0 - 1)I_0 = a(R_0 - 1)I_0.$$

$$\frac{\mathrm{dS}}{\mathrm{dt}} = -rIS,\tag{7.1}$$

$$\frac{\mathrm{dI}}{\mathrm{dt}} = rIS - aI,\tag{7.2}$$

$$\frac{\mathrm{dR}}{\mathrm{dt}} = aI, \tag{7.3}$$

and $R_0 = \sigma S_0 = rS_0/a$ is the basic reproduction number

Therefore, if $R_0 > 1$ then I initially increases

(this is an **epidemic** - epidemic means that $I(t) > I_0$ for some t > 0).

Now, R_0 is rS_0 multiplied by $\frac{1}{a}$.

...

The first term is the number of infections a single infected individual produces in a wholly susceptible population of size S_0 per unit time.

The second term is the average time an infected individual remains infected.

So, R_0 is the average number of secondary infections produced by one primary infected individual in a wholly susceptible population.

From our analysis, we see that if $R_0 > 1$ then an epidemic occurs.

Makes sense – if, on average, the number of secondary infections produced by an infected is greater than 1, then the disease will grow

$$R_0 = \sigma S_0 = rS_0/a$$

To control the disease:

Decrease the Susceptible population -- vaccination

Decrease r – the rate of spread – face, space, hands

Increase a – self-isolation

Summary

- We introduced R_o
- Showed that for $R_0 > 1$ is the condition for an epidemic

End of Lecture 7-2

7. Infectious Disease Modelling

(Ruth Baker's Notes, Chapter 5, Section 5.1)

In the previous part:

Introduced R_o

In this presentation:

- What is the maximum number of Infectives?
- How many people get the disease?

$$\frac{dS}{dt} = -rIS,$$

$$\frac{dI}{dt} = rIS - aI,$$

$$\frac{dR}{dt} = aI,$$
(7.1)
$$(7.2)$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = rIS - aI,\tag{7.2}$$

$$\frac{\mathrm{dR}}{\mathrm{dt}} = aI,\tag{7.3}$$

What will be the maximum number of Infectives?

From Equation (7.2), I has a turning point at $S = \rho$ and this is a maximum.

From equations (7.1) - (7.2):

Furthermore, integrating gives

$$\frac{\mathrm{dI}}{\mathrm{dS}} = -\frac{(rS - a)}{rS} = -1 + \frac{\rho}{S}.$$

$$I + S - \rho \ln S = I_0 + S_0 - \rho \ln S_0,$$

Therefore I increases for $S < \rho$ and decreases for $S > \rho$.

Hence:

$$I_{max} = \begin{cases} I_0 & S_0 \le \rho \\ I_0 + S_0 - \rho \ln S_0 + \rho \ln \rho - \rho & S_0 > \rho \end{cases}.$$

$$\frac{\mathrm{dS}}{\mathrm{d}t} = -rIS,\tag{7.1}$$

$$\frac{dS}{dt} = -rIS,$$

$$\frac{dI}{dt} = rIS - aI,$$

$$\frac{dR}{dt} = aI,$$
(7.1)
$$(7.2)$$

$$\frac{\mathrm{dR}}{\mathrm{d}t} = aI,\tag{7.3}$$

How many people will catch the disease?

Assumep<N

$$\frac{dS}{dt} = -rIS,$$

$$\frac{dI}{dt} = rIS - aI,$$

$$\frac{dR}{dt} = aI,$$
(7.1)
$$(7.2)$$

$$\frac{\mathrm{dI}}{\mathrm{dt}} = rIS - aI, \tag{7.2}$$

$$\frac{\mathrm{dR}}{\mathrm{dt}} = aI,\tag{7.3}$$

From the S-I phase plane, we know that $I\to 0$ as $t\to \infty$.

We also have, from equations (7.1) - (7.3) that

$$\frac{dS}{dR} = -\frac{S}{\rho}.$$
 Therefore, $S = S_o e^{-\frac{R}{\rho}} \ge S_o e^{-\frac{N}{\rho}} > 0$, and this is true for all t .

Note that S(t) + R(t) + I(t) = N and, since S(t) and I(t) can never go negative (for example, go to Equation (7.1), set S = 0 for contradiction).

So, it follows that $R(t) \leq N$ for all $t \geq 0$.

Hence, we have that S(t) is strictly bounded below by 0, and $\frac{dS}{dt} < 0$ for $I \neq 0$ so the limit as t tends to ∞ of S(t), namely, $S(\infty)$ exists and satisfies:

$$S(\infty) = S_o e^{-\frac{N - S(\infty)}{\rho}}.$$

7.2 Relaxing Some Assumptions

Suppose that the incubation period is not negligible. Then we need to introduce the "Exposed" compartment - people who have contacted the disease but do not yet pass it along. In this case we would have the so-called "SEIR" model:

$$S \longrightarrow E \longrightarrow I \longrightarrow R$$

Or, maybe there is no immunity so that after infection, you are susceptible again - we have the SIS model:

$$S \longrightarrow I \longrightarrow S$$

Or, maybe the population is not isolated, but each population S_i , I_i (in the case of an SIS system) in town ("node") i is connected to those in other towns:

$$\frac{dS_i}{dt} = -\beta S_i I_i + \sum_{j \neq i} \binom{m_i S_j - m_j S_i}{j \neq i} + \delta I_i$$

$$\frac{dI_i}{dt} = \beta S_i I_i + \sum_{j \neq i} \binom{\hat{m}_{ij} I_j - \hat{m}_{ji} I_i}{j \neq i} - \delta I_i$$

 m_{ij} is migration rate from j to i for Susceptibles, etc.

We can make the model increasingly complicated.

Within-host modelling, linking with population-level modelling \dots

Summary

- We studied how the disease spread (maximum infection)
- Disease dies out due to infection going to zero, leaving behind a non-zero susceptible population.

End of Lecture 7-3