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1 Course Outline

- Definition of a derivative of a function from Rn to Rm; examples; elementary prop-
erties; partial derivatives; the chain rule; the gradient of a function from Rn to R;
Jacobian. Continuous partial derivatives imply differentiability. Mean Value Theo-
rems. [3 lectures]

- The Inverse Function Theorem and the Implicit Function Theorem (proofs are non-
examinable). [2 lectures]

- The definition of a submanifold of Rn. Its tangent and normal space at a point, exam-
ples, including two-dimensional surfaces in R3. [2 lectures]

- Lagrange multipliers. [1 lecture]

2 Notation

- B(v, r) = {w ∈ V : ‖v − w‖ < r} denotes the open ball of radius r centred at v ∈ V ,
where V is a normed vector space.

- B̄(v, r) = {w ∈ V : ‖v − w‖ ≤ r} denotes the closed ball of radius r centred at v ∈ V ,
where V is a normed vector space. If r > 0 then the closed ball B̄(v, r) is the closure
of B(v, r) (this is not necessarily true in a general metric space.)

- L(V,W) denotes the space of linear maps from V to W, where V and W are vector
spaces.

- B(V,W) denotes the space of bounded linear maps from V to W, where V and W are
normed vector spaces.

- IV denotes the identity element of B(V,V). If V = Rn then we write In instead of IRn .
We also write In for the n × n identity matrix.

- ‖T‖∞ denotes the operator norm of T ∈ B(V,W) (see Example 3.7).
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- 0V denotes the zero vector (or origin) of a normed vector space V . (Where there is no
possibility for confusion, we may simply write 0.)

- 0n denotes the zero vector (or origin) of Rn. (Where there is no possibility for confu-
sion, we may simply write 0.)

- Matm,n(R) denotes the space of m × n matrices (i.e. matrices with m rows and n
columns) with entries in R. When n = m we sometimes write Matn(R) instead of
Matn,n(R).

- 0n,m denotes the origin in Matn,m(R).

- In denotes the identity map from Rn to itself, (and the identity matrix in Matn(R)).

- O(‖x‖) denotes any function f : U → W where U is a neighbourhood of the origin
0V in a normed vector space V , taking values in a normed vector space W, such that
‖( f (x)/‖x‖)‖ is bounded as ‖x‖ → 0.

- o(‖x‖) denotes denotes any function f : U → W where U is a neighbourhood of the
origin 0V in a normed vector space V , taking values in a normed vector space W, such
that ‖( f (x)/‖x‖)‖ → 0 as ‖x‖ → 0.

- C1(U,Rm) denotes the space of continuously differentiable functions from an open
set U ⊆ Rn taking values in Rm.

- Ck(U,W) denotes the space of k-times continuously differentiable functions from an
open subset U of a normed vector space V taking values in a normed vector space W.

- a diffeomorphism is a bijective continuously differentiable function whose inverse is
also continuously differentiable.
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3 Linear maps and continuity

3.1 Normed vector spaces

Before discussing the notion of differentiability for functions of many (real) variables, we
begin by reviewing the relationship between the conditions of continuity and linearity for
functions, in the natural context where both notions are defined, namely that of normed
vector spaces. Almost everything1 in this section was already treated in the lectures and
problem sets for the Metric Spaces part of A2 in Michaelmas.

Definition 3.1. A normed vector space (V, ‖.‖) is a pair consisting of a real2 vector space V
and a function ‖.‖ : V → R which satisfies

1. ‖v‖ ≥ 0 with equality if and only if v = 0. (Positivity.)

2. For λ ∈ R and v ∈ V we have ‖λ.v‖ = |λ|.‖v‖. (Homogeneity.)

3. ‖v + w‖ ≤ ‖v‖ + ‖w‖ for all v,w ∈ V . (Triangle inequality.)

Note that (2) implies that ‖0‖ = 0 and thus by (3) we must have

0 = ‖0‖ ≤ ‖v‖ + ‖ − v‖ = 2‖v‖.

Hence (2) and (3) in fact imply the inequality in (1), however the implication ‖v‖ = 0 =⇒

v = 0 does not follow from (2) and (3). A normed vector space is automatically a metric
space, where the distance between v1, v2 ∈ V is defined to be ‖v1 − v2‖.

We will normally write ‖.‖ for the norm on an arbitrary vector space, as it will be clear
from context which vector space is in question. When there might be ambiguity3, such as
when we consider more than one norm on the same vector space, we will decorate the norm
with a subscript, e.g. ‖.‖V or ‖.‖1.

Recall that if V is a normed vector space and v ∈ V we say that a subset U ⊆ V is a
neighbourhood of v if there is some r > 0 such that the open ball B(a, r) of radius r centred
at a is contained in U. We say U is open if it is a neighbourhood of each of its points, that
is, for every x ∈ U there is some rx > 0 such that B(x, rx) ⊆ U.

Example 3.2. If V is one-dimensional, it is easy to understand all possible norms on V .
Indeed if we pick e1 ∈ V\{0}, then for any v ∈ V there is a unique λ ∈ R such that
v = λ.e1. Now if f : V → R≥0 is homogeneous, so that f (t.v) = |t|. f (v) for all t ∈ R, then
f (v) = |λ|. f (e1). Since it is easy to check that the absolute-value function t 7→ |t| on R is a
norm, it follows from the formula f (v) = |λ| f (e1) that f is a norm on V provided f is not
identically zero. Since any norm on V necessarily satisfies the homogeneity condition, it

1The operator norm ‖T‖∞ in Example 3.7 and Corollary 3.15 are the exceptions I believe.
2In fact one just needs a field with a sensible notion of “absolute value” – for example the complex numbers

equipped with the modulus function.
3If you find an ambiguity I have missed, please let me know.
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follows that any norm ‖.‖ on V has the form ‖v‖ = c.|λ| for c > 0 a positive real number
(where, as above, v = λ.e1).

If dim(V) > 1 – indeed even for dim(V) = 2 – one cannot give such an explicit clas-
sification of all possible norms4, but we will shortly see that, for finite dimensional vector
spaces, all norms are equivalent in a sense which immediately implies they all yield the
same notion of convergence, continuity, and uniform continuity.

Example 3.3. Let V = Rn. Then there are many norms which are natural to consider.
Perhaps the three most commonly used ones are the following: For v = (v1, . . . , vn) ∈ Rn,
we set

‖v‖∞ = max
1≤i≤n

|xi|,

‖v‖1 =

n∑
i=1

|xi|

‖v‖2 =

 n∑
i=1

x2
i

1/2

These norms are all equivalent in the following sense:

Definition 3.4. If ‖.‖a and ‖.‖b are two norms on a vector space V , we say that they are
equivalent if there exist constants C1,C2 > 0 such that C1‖v‖a ≤ ‖v‖b ≤ C2‖v‖a.

Note that if ‖.‖a and ‖.‖b are equivalent norms on a vector space V , then not only do
they give the same notions of convergence and continuity, but also of completeness (i.e. V
is complete as a metric space for the norm ‖.‖a if and only if it is complete as a metric space
for the norm ‖.‖b.

Example 3.5. Consider the norms ‖.‖1 and ‖.‖2 on Rn defined above. We claim that they
are equivalent. Indeed if x = (x1, . . . , xn), then clearly

‖x‖22 =

n∑
i=1

|xi|
2 ≤

n∑
i=1

|xi|
2 + 2

∑
i< j

|xi|.|x j| =
( n∑

i=1

|xi|
)2

= ‖x‖21.

so that ‖x‖2 ≤ ‖x‖1. On the other hand, applying Cauchy-Schwarz to the vectors u1 =

(1, 1 . . . , 1) and u2 = (|x1|, . . . , |xn|), we see that

‖x‖1 =

n∑
i=1

|xi| =

n∑
i=1

1.|xi| ≤ n1/2.‖x‖2,

4Giving a norm ‖.‖ on Rn is equivalent to giving the set B‖.‖ = {v ∈ V : ‖v‖ ≤ 1} of vectors in its closed
unit ball. Such a set B‖.‖ must be closed and bounded (both with respect to the Euclidean metric), convex, and
preserved by the map x 7→ −x, but otherwise can be arbitrary.
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3.2 Bounded linear maps

Definition 3.6. If V and W are vector spaces, we write L(V,W) for the vector space of all
linear maps from V to W.

Definition 3.7. If (V, ‖.‖V ) and (W, ‖.‖W) are normed vector spaces, we say a linear map
T : V → W is bounded if takes bounded subsets5 of V to bounded subsets of W. In a
normed vector space V , a subset X ⊆ V is bounded if and only if there is an R > 0 such
that X ⊆ B̄(0V ,R). Thus T will take bounded sets to bounded sets precisely if, for each
R > 0 there is some CR > 0 such that T (B̄(0V ,R)) ⊆ B̄(0W ,CR), i.e. ‖T (v)‖ ≤ CR whenever
‖v‖ ≤ R. But since ‖T (v/R)‖ = R−1‖T (v)‖, it suffices to check this for R = 1.

Thus6 T is bounded if there is a constant C > 0 such that ‖T (v)‖ ≤ C for all v ∈ B̄(0, 1).
If T is bounded we set

‖T‖∞ = sup{‖T (v)‖ : v ∈ V, ‖v‖ ≤ 1}.

Notice that the homogeneity of the norm shows that the condition that ‖T (v)‖ ≤ C for
all v ∈ B̄(0, 1) is equivalent to the condition that ‖T (v)‖ ≤ C‖v‖ for all v ∈ V , since if v , 0
then v/‖v‖ ∈ B̄(0, 1).

We will write B(V,W) for the subspace of L(V,W) consisting of bounded linear maps
from V to W. (Check you see this is indeed a linear subspace.) It is a normed vector
space, with the norm, known as the operator norm given by T 7→ ‖T‖∞ Using standard
facts about suprema, you can check that this norm is submultiplicative, in the sense that
if U,V and W are normed vector spaces, S : U → V and, as above T : V → W, then
‖T ◦ S ‖∞ ≤ ‖T‖∞.‖S ‖∞.

Remark 3.8. In Metric Spaces, you studied the space B(X) of real-valued bounded func-
tions on a set X (and, for a metric space X, the space of bounded, real-valued, continuous
functions Cb(X)). In that setting, a function is said to be bounded if its image is a bounded
set. The image of a non-zero linear map α : V → W between normed vector spaces is never
bounded, thus the usages are not, at first sight, consistent.

This apparent inconsistency is not, however, impossible to resolve7: Since it is compat-
ible with scaling, a linear map α is completely determined by its values on BV = B̄(0v, 1),
indeed if v , 0 then u = v/‖v‖ ∈ B̄(0, 1) and α(v) = ‖v‖α(u). Thus we get an injec-
tive map r : B(V,W) → C(BV ,W), from B(V,W) to the space of continuous functions
on BV taking values in W. Here r(α) is just the restriction of α to the closed ball BV .
By definition, it gives an isometric embedding of B(V,W), equipped with the operator
norm, into Cb(BV ,W), where the latter space is equipped with the usual supremum norm:
‖ f ‖∞ = sup{‖ f (x)‖ : x ∈ BV }.

Lemma 3.9. A linear map T : V → W between normed vector spaces is bounded if and
only if it is continuous.

5A subset Y of a metric space (X, d) is bounded if sup{d(x, y) : x, y ∈ Y} is finite. Equivalently, Y is contained
in some closed ball of X.

6This is the standard definition you will see in most textbooks.
7It, of course, is perfectly acceptable to just remember the apparent inconsistency in usage.
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Proof. If T is bounded, so that we may find a C > 0 such that ‖T (v)‖ ≤ C.‖v‖, then

‖T (v1) − T (v2)‖ = ‖T (v1 − v2)‖ ≤ C.‖v1 − v2‖,

so that T is in fact Lipschitz continuous. For the converse, if T is continuous, it is certainly
continuous at 0, hence there is a δ > 0 such that ‖T (u)‖ < 1 for all u ∈ V with ‖v‖ < δ. But
if v ∈ V\{0} then v1 = δ

2‖v‖ .v ∈ B(0, δ) and hence ‖T (v1)‖ ≤ 1, so that ‖T (v)‖ ≤ 2.δ−1‖v‖.
Since this inequality also clearly holds for v = 0 it follows T is bounded as required. �

Definition 3.10. We say that α ∈ B(V,W) is a topological isomorphism of normed vector
spaces if it has a bounded linear inverse (The linearity of the inverse is automatic, but the
boundedness is not.) More precisely, α ∈ B(V,W) is a topologial isomorphism if there is
a β ∈ B(W,V) such that α ◦ β = IW and β ◦ α = IV . Two normed vector spaces V and W
are said to be topologically isomorphic if there is an isomorphism of normed vector spaces
α : V → W from V to W, that is, a linear isomorphism which is also a homeomorphism
between V and W as metric spaces.

Remark 3.11. If V is a vector space with two norms ‖.‖a and ‖.‖b, then ‖.‖a and ‖.‖b are
equivalent if and only if the identity map is a topological isomorphism from (V, ‖.‖a) to
(V, ‖.‖b).

*Remark 3.12. Let V = C([0, 1]) be the space of continuous functions on the interval [0, 1]
and let W = C1

0([0, 1]) be the space of continuously differentiable functions on the same
interval (with one-sided derivatives at the end-points) which vanish at the origin. View both
V and W as normed vector spaces using the supremum norm. Then we have a linear map
T : V → W, where if f ∈ C([0, 1]),

T ( f )(x) =

∫ x

0
f (t)dt.

The fundamental theorem of calculus shows that T ( f ) is indeed in C1
0([0, 1]) if f ∈ C([0, 1]),

and the triangle equality for integrals shows that ‖T ( f )‖ ≤
∫ 1

0 | f (t)|dt ≤ ‖ f ‖∞, so that
T ∈ B(V,W). While T is invertible with inverse D : W → V , where D(g) = g′ for all g ∈ W,
it is easy to see that D is unbounded. Thus while T is a linear isomorphism, it is not a
topological isomorphism.

This difference between integration and differentiation is closely related to the ideas
discussed in Picard’s Theorem in Differential Equations 1.

Example 3.13. For the vector space L(Rn,Rm) it can be useful to have a more explicit
norm than the operator norm. Using the standard basis, we may identify L(Rn,Rm) with
Matm,n(R), and hence with Rmn equipped with the ‖.‖2-norm. Then if v ∈ Rn, and A = (ai j),
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we have (using the ‖.‖2 also for Rn and Rm)

‖A(v)‖22 =

m∑
i=1

(
n∑

j=1

ai jv j)2

≤

m∑
i=1

 n∑
j=1

a2
i j


 n∑

j=1

v2
j


=

∑
i, j

a2
i j


 n∑

j=1

v2
j


= ‖A‖22.‖v‖

2
2.

where in the second line we use the Cauchy-Schwarz inequality. Thus we see that the norm
‖.‖2 on L(Rn,Rm) gives an upper bound for the operator norm. One can also check, again
using Cauchy-Schwarz for example, that the norm ‖.‖2 is submultiplicative. This norm on
the space of linear maps between inner product spaces is sometimes known as the Hilbert-
Schmidt norm. The associated inner product is 〈A, B〉 = tr(A.Bt).

3.3 Finite dimensional normed vector spaces

Lemma 3.14. Any two norms on a finite-dimensional vector space are equivalent.

Proof. If (V, ‖.‖V ) is any finite-dimensional normed vector space, then if B = {v1 . . . , vn}

is a basis of V , it gives a linear isomorphism α : Rn → V , where if x = (λ1, . . . , λn) we
define α(x) =

∑n
i=1 λivi. If we set ‖x‖ = ‖α(x)‖V then α is a linear isometry from (Rn, ‖.‖)

to (V, ‖.‖V ). Thus we may assume that V = Rn. Moreover since equivalence of norms is an
equivalence relation, it suffices to show that if ‖.‖ is any norm on Rn, then ‖.‖ is equivalent
to ‖.‖1, where as usual if x = (λ1, . . . , λn) then ‖x‖1 =

∑n
i=1 |λi|.

Now let {e1, . . . , en} be the standard basis of Rn, and set M1 = max{‖ei‖ : 1 ≤ i ≤ n}.
Then if x ∈ Rn and we write x =

∑n
i=1 λiei, we have

‖x‖ = ‖

n∑
i=1

λiei‖ ≤

n∑
i=1

|λi|.‖ei‖ ≤ M1.‖x‖1

Hence to show that ‖.‖1 and ‖.‖ are equivalent, it remains to show that there is some M2 > 0
such that M2‖x‖1 ≤ ‖x‖ for all x ∈ Rn. For this, first note that x 7→ ‖x‖ is Lipschitz
continuous on (Rn, ‖.‖1): indeed by the reverse triangle inequality∣∣∣‖x‖ − ‖y‖∣∣∣ ≤ ‖x − y‖ ≤ M‖x − y‖1.

Now for any x , 0, if M2‖x‖1 ≤ ‖x‖ then M2 ≤ ‖(x/‖x‖1)‖, and clearly ‖(x/‖x‖1)‖1 = 1.
Thus to show that M2 exists it suffices to show that ‖.‖ is bounded away from 0 on S = {x ∈
Rn : ‖x‖1 = 1}. But S is a closed bounded subset of (Rn, ‖.‖1), and so is compact. Since ‖.‖
is continuous, it follows that ‖.‖ attains its minimum value on S . Thus we may pick v ∈ S
such that ‖v‖ ≤ ‖x‖ for all x ∈ S . But since ‖.‖1 is a norm, 0 < S , and hence, as ‖.‖ is a
norm, ‖v‖ > 0. It follows we may take M2 = ‖v‖. �
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Corollary 3.15. Suppose that V and W are normed vector spaces and that V is finite-
dimensional. Then B(V,W) = L(V,W), that is, every linear map α : V → W is bounded.

Proof. By the proof of the previous Lemma, we see that we can assume V = (Rn, ‖.‖1).
Then if {e1, . . . , en} denotes the standard basis of Rn, and we set M = max{‖α(ei)‖ : 1 ≤ i ≤
n}, then if x =

∑n
i=1 xiei ∈ R

n, we have

‖α(x)‖ = ‖

n∑
i=1

xiα(ei)‖ ≤
n∑

i=1

|xi|‖α(ei)‖ ≤ M‖x‖1,

and hence ‖α‖∞ ≤ M, that is, α is bounded as required. �

Corollary 3.16. Let V be a normed vector space and let U be a finite dimensional subspace.
Then U is a closed subset of V .

Proof. If dim(U) = k, then Corollary 3.15 show that U is topologically isomorphic to
(Rk, ‖.‖1). But by the Bolzano-Weierstrass theorem (Rk, ‖.‖1) is complete, hence so is U. As
a complete subspace of a metric space it must be closed (see the proof of Lemma 6.2.1 in
[B] – a closed subset of a complete metric space is complete, but a complete subspace of a
metric space is always closed whether or not the the ambient space is complete). �

Remark 3.17. The upshot of the previous discussion is that, for the purposes of this course,
we do not lose any generality by assuming our normed vector spaces are of the form Rn

equipped with the ‖.‖2 norm associated to the standard dot product (and thus the spaces
of linear maps between them can be viewed as matrices equipped with either the operator
norm or the Hilbert-Schmidt norm). However, the results of this section shows that we are
free to use whichever norm is convenient (e.g. in the proof of the previous corollary, the
‖.‖1 norm is the simplest to consider) and that, even if we state results for (Rn, ‖.‖2), they
hold for any finite-dimensional normed vector space.

Indeed part of our goal in this course is to show the advantages of being able to choose
good “local” coordinates when studying differentiable functions, by analogy with the way
in which we study linear maps by finding a basis with respect to which they are as simple
as possible (e.g. diagonalisable) we will take care however to point out when the concepts
we study require a choice of basis for our vector space or not.

4 The derivative in higher dimensions

4.1 The definition

We now consider how the notion of differentiability can be extended to Rm-valued functions
on open subsets of Rn. When n = 1 this is straight-forward: the ordinary definition still
makes sense, since if U ⊂ R is open and f : U → Rm, we can define

D f (x) = f ′(x) = lim
t→x

f (t) − f (x)
t − x

, (4.1)
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when, of course, this limit exists. Note that if we write f in terms of its components,
f = ( f1, . . . , fm), then f ′(x) = ( f ′1(x), . . . , f ′m(x)), i.e. by taking components we can reduce
to the one-variable case.8

To extend the notion of differentiability to the case where n > 1, it is useful to review
the heuristics which motivate the definition in the one-variable case: There are a number
of natural interpretations of the (one-variable) derivative: In dynamics, the derivative arises
from the notion of instantaneous speed or velocity, while in geometry, the derivative at a
point a gives the slope of the tangent line to the graph of f at the point (a, f (a)). Since our
conception of time is resolutely one-dimensional, it is this latter geometric interpretation of
the derivative which leads more readily to a notion of differentiability in many dimension.
To see how this works, consider the following rephrasing of the standard definition of the
derivative:

Lemma 4.1. Let U ⊆ R be an open set and suppose that f : U → R is a function. If a ∈ U,
so that for some r > 0 we have (a − r, a + r) ⊆ U, then f is differentiable at a (in the sense
of (4.1)) if and only if there is a real number α such that

f (x) = f (a) + α.(x − a) + |x − a|ε(x), (4.2)

where ε(x)→ 0 = ε(a) as x→ a. If it exists, α is unique, and α = f ′(a) = D f (a).

Proof. If x , a, then |x − a| , 0 and hence, for such x, (4.2) determines ε(x) uniquely.
Moreover, rearranging, we find that, for such x, we have

|ε(x)| =
∣∣∣∣∣ f (x) − f (a)

x − a
− α

∣∣∣∣∣ ,
thus the condition that ε(x)→ 0 as x→ a is equivalent to limx→a

f (x)− f (a)
x−a = α, proving the

Lemma. �

Remark 4.2.

1. Notice that, phrased this way, the definition of the derivative is to require Taylor’s
theorem to hold to first order: the statement of Lemma 4.1 is a rigorous formulation
of assertion that the function La(x) = f (a) + f ′(a).(x − a) is, by definition, the “best
linear approximation” to f (x) at the point a, or, in more geometric terms, its graph
gives the tangent line to the graph of f at (a, f (a). If L1(x) = f (a) + α1(x − a) and
L2(x) = f (a) +α2(x− a) are two linear functions9 passing through the point (a, f (a)),
then |L1(x) − L2(x)| = |α1 − α2|.|x − a|. Thus if | f (x) − L1(x)| = |ε(x)|.|x − a|, where
|ε(x)| → 0 as x → a then L1(x) approximates f (x) near a better than any other linear
function: if L2 , L1 then C = |α1 − α2| > 0 and | f (x) − L2(x)|, for x close to a, will
be approximately C.|x − a|.

8On the other hand, the expression in (4.1) makes sense for any function f : R → V taking values in a
normed vector space V , whether or not it is finite dimensional – ultimately at least, we should seek a notion of
differentiability which is coordinate-free.

9“Affine-linear” might be a more suitable term – their graphs are lines not necessarily passing through the
origin.
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2. This formulation of the derivative is also the easiest to use when proving the chain
rule. We will see this later when discussing the chain rule in the multivariable case,
but a quick check of the standard one-variable proofs of the chain rule should confirm
that they all (more or less explicitly depending on the author) harnesses the formula-
tion of Definition 4.1.

3. Finally, and for us, most importantly, this definition has the advantage that it im-
mediately generalizes to many variables: The standard one-variable definition of the
derivative of a function f at a point a considers the ratio of the difference f (x)− f (a)
with x − a. Apart from the case of R2 viewed as C, however, we cannot consider the
ratio of two vectors. On the other hand, as soon as we equip a vector space with a
norm, we can compare different approximations to a given function.

We can now give the definition of the derivative in higher dimensions: Motivated by
Lemma 4.1, we require that, if f : U → Rm is a function defined on an open subset U of
Rn, then for f to be differentiable at x = a, it should have a “best first-order approximation”
near a, that is, there should be a linear map T : Rn → Rm such that f (a) + T (x−a) estimates
f (x) better than any other such affine-linear function. Formally, the definition is as follows:

Definition 4.3. Suppose that m and n are positive integers. If U ⊆ Rn is an open set,
and f : U → Rm. Then we say that f is differentiable at a ∈ U if there is a linear map
T : Rn → Rm such that

f (x) = f (a) + T (x − a) + ‖x − a‖ε(x)

where ε(x) → ε(a) = 0 as x → a. If such a map T exists it is unique, and we denote it as
D f (a) or D fa: since D f (a) is a linear map, we will often apply it to a vector v ∈ Rn, and
the notation D f (a)(v) is less compact that D fa(v). It is known as the total derivative10 of f
at a. We say that f is differentiable on U if it is differentiable at every a ∈ U. In that case,
we obtain a function D f : U → L(Rn,Rm).

Remark 4.4.

1 The definition of the derivative is sometimes written using the “little o” notation in
terms of the vector h = x − a, that is, as f (a + h) = f (a) + T (h) + o(‖h‖).

2 One can prove the uniqueness of the linear map D fa directly, and the problem set
asks you to do this. The uniqueness of D fa can also be deduced, however, as we
will shortly see, by understanding its relationship to the notion of partial derivatives
which you have already met in mulitvariable calculus.

3 If U is an open subset of Rn and f : U → Rm, then if f = ( f1, . . . , fm), you can check
that f is differentiable at a ∈ U if and only if each fi is, and D fa =

∑m
i=1 D fi,a.ei, that

is, if v ∈ Rn, we have D fa(v) =
∑m

i=1 D fi,a(v).ei. This can be checked directly, and is
in essence a very special case of the multi-variable version of the Chain Rule.

10As opposed to the partial derivatives.
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4 The notion of differentiability is independent of the norms used on Rn and Rk, since,
by Lemma 3.14, all norms are equivalent, and in particular give the same notion of
convergence. In fact the definition of differentiability makes sense for any function
f : V → W provided V and W are normed vector spaces.

[*Since norms on an infinite-dimensional space need not be equivalent however, in
the infinite-dimensional setting, the notion of differentiability may depend on the
norm. Moreover, in the infinite-dimensional setting, the total derivative D fa is re-
quired to be a bounded linear map, a condition which, by Corollary 3.15, is automatic
in the finite-dimensional setting.]

5 If f : U → Rm is differentiable on U, then it defines a function D f : U → L(Rn,Rm).
Viewed as a function “taking values in (linear) functions” it appears to be a more
complicated object than the original function f . However, L(Rn,Rm) is just a n.m-
dimensional normed vector space, and hence by picking a basis for it, we can view
D f as a map from U to Rn.m. Thus, at least in principle, D f is no more complicated
an object than f . We discuss this in more detail in Section 4.6.

As in the one-variable case, if f is differentiable at a point a, then it is continuous there:

Lemma 4.5. Let U be an open subset of Rn and f : U → Rm be a function. Suppose that f
is differentiable at a ∈ U. Then there are constants C, r > 0 so that, for all x ∈ B(a, r),

‖ f (x) − f (a)‖ ≤ C.‖x − a‖.

In particular, f is continuous at a.

Proof. Since f is differentiable at a, there is a function ε : U → Rm such that

f (x) = f (a) + D fa(x − a) + ‖x − a‖ε(x), ∀x ∈ U, (4.3)

where ε(x)→ 0 = ε(a) as x→ a. In particular, we have

‖ f (x) − f (a)‖ = ‖D fa(x − a) + ‖x − a‖.ε(x)‖

≤ (‖D fa‖∞ + ‖ε(x)‖) .‖x − a‖,
(4.4)

where we write ‖D fa‖∞ for the operator norm of D fa as in Example 3.7. Since ε(x)→ 0 as
x → a there is some s > 0 such that for x with ‖x − a‖ < s we have ‖ε1(x)‖ < 1. It follows
that we may take r = s and C = ‖D fa‖ + 1. �

Example 4.6. Constant functions c : Rn → Rk are clearly differentiable, with derivative 0,
since if c is constant c(x) = c(a). If T : Rn → Rk is linear, that is T ∈ L(Rn,Rk), then, for
any a ∈ Rn we have D fa = T , since

T (x) = T (a) + T (x − a),

(and thus the error term ε(x).‖x‖ is identically zero). Thus if f = T is linear, D f : Rn →

L(Rn,Rk) is the constant function x 7→ T .
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If U is an open subset of Rn and f , g : U → Rk are differentiable at a point a ∈ U then it
is easy to see that f +g, is also, and D( f +g)a = D fa +Dga.. In particular, if f (x) = T (x)+b,
where T ∈ L(Rn,Rk) and b ∈ Rk, then f is differentiable with D fa = T for all a ∈ Rn.

Example 4.7. If ‖.‖ is a norm on Rn, we may view it as a function ‖.‖ : Rn → R. This
function is not differentiable at the origin: Indeed suppose that T is a linear map. Then
ε(h) = ‖h‖−1(‖h‖ − T (h)) = 1 − T (h/‖h‖), and since T (h/‖h‖) is independent of ‖h‖, if
ε(h)→ 0 as ‖h‖ → 0 we must have T (h/‖h‖) = 1. But since T (−h/‖ − h‖) = −T (h/‖h‖) this
is impossible.

The question of whether a norm is differentiable at other points in Rn may depend on
the norm – consider for example the norms ‖.‖1, ‖.‖2 and ‖.‖∞.

4.2 Partial derivatives and the total derivative

We now relate the notion of the total derivative to the notion of partial derivatives which
were introduced in Prelims multivariable calculus:

Definition 4.8. If U is an open subset of Rn and f : U → Rm then, for any v ∈ Rn consider
the function fa,v(t) = f (a + tv), which, since U is open, is defined for all sufficiently small
real numbers t. Define the directional derivative of f in the direction v at a ∈ U is defined
to be

∂v f (a) =
d
dt

(
fa,v(t)

)
t=0 = lim

t→0

f (a + tv) − f (a)
t

,

if this limit exists. Note that if v1 = s.v for some s ∈ R>0, then letting t1 = s.t, we have

∂v1 f (a) = ∂s.v f (a) = lim
t→0

f (a + t.s.v) − f (a)
t

= s. lim
t1→0

f (a + t1.v) − f (a)
t1

= s.∂v f (a).

Thus if we scale the direction vector v, the directional derivative scales correspondingly. It
follows that directional derivatives are completely determined by direction vectors v with
unit length.

For each j ∈ {1, 2, . . . , n} we define the j-th partial derivative of f , which we denote by
∂ j f (a) or ∂ f /∂x j(a), to be the directional derivative of f for the direction vector v = e j, so
that

∂ j f (a) =
∂ f
∂x j

(a) := ∂e j( f )(a) = lim
t→0

f (a1, . . . , a j + t, . . . , an) − f (a1, . . . , an)
t

,

(again, when this limit exists).

Now suppose that f is differentiable at a with total derivative T = D fa. It follows from
the definitions that

f (a + t.v) − f (a)
t

= T (v) ± ε(t.v)‖v‖ → T (v), as t → 0.

13



Thus the directional derivatives of f at a all exist and are equal to T (v). In particular, if
x = (x1, . . . , xn) and we write f (x) = ( f1(x), . . . , fm(x)) (so that the fi are the components of
f ) then

T (e j) = ∂e j f (a) = ∂ j f (a) =


∂ j f1(a)
∂ j f2(a)

...

∂ j fm(a)


Thus we see that, if T = D fa exists, then its matrix with respect to the standard bases of Rn

and Rm has columns given by ∂ j f (a), and hence is

(
∂ fi
∂x j

)
x=a

=


D f1(a)
D f2(a)
...

D fm(a)

 .
Definition 4.9. As in multi-variable calculus, the above matrix is called the Jacobian matrix
of the partial derivatives of f at a. It follows therefore follows immediately from the fact
that the partial derivatives are unique (if they exist) that the total derivative, if it exists, is
also unique. For later use, we note that the determinant det(D fa) = det(∂ j fi(a)), is called
the Jacobian determinant. It is often denoted J f (a).

The condition that the total derivative actually exists, however, is not equivalent to the
existence of all the partial derivatives: The following example shows that a function need
not be continuous at a point where all of its partial derivatives exist, whereas, as we have
seen, a function is automatically continuous at a point where the total derivative exists.

Example 4.10. Let Ω be the open subset {(x1, x2) ∈ R2 : x4
1 < x2 < x2

1} and let χ = 1Ω be
the indicator function of Ω, so that χ(x1, x2) = 1 if (x1, x2) ∈ Ω and χ(x1, x2) = 0 otherwise.
The problem sheet asks you check that if v ∈ R2\{0}, the directional derivative ∂vχ(0) exists
and is equal to 0. Thus all the directional derivatives of χ exist at the origin, but χ fails to
be continuous at the origin.

If the previous function χ feels artificial, it is worth noting that the function f : R2 → R

in Figure 1 given by

f (x1, x2) =

{
(x1x2

2)/(x2
1 + x4

2), (x1, x2) , (0, 0),
0, (x1, x2) = (0, 0)

is such that all of the directional derivatives ∂v f (0) exists for all non-zero v ∈ R2, but the
total derivative D f0 does not exist.

In two variables, complex analysis gives us many examples of functions f : U → R2 on
open subsets U of R2 whose total derivative exists on all of U.

14



Figure 1: Graph of f (x, y) = xy2/(x2 + y4). All its directional derivatives exist at 02 but it is
not differentiable there.

Example 4.11. If U is an open subset of C and f : U → C is holomorphic, then, identifying
C with R2 via z 7→ (<(z),=(z)), we may view f as a function from R2 to itself, which, for
clarity, we write as F. Since complex multiplication is R-linear, F is differentiable in the
real sense: explicitly, if f ′(z) = a + ib then

DF(x,y) =

(
a −b
b a

)
The Cauchy-Riemann equations follow immediately from this – they express the fact that
the linear map given by the derivative is complex-linear rather than just real-linear, and so
is given by multiplication by a complex number.

Example 4.10 shows that the existence of all the partial derivatives for the function
χ : R2 → R at the origin 0 is not sufficient to ensure that χ is continuous at that point. Since
Lemma 4.5 shows that the existence of the total derivative at a point implies continuity at
that point, χ cannot be differentiable at the origin. The function f : R2 → R in the same
Example is continuous at the origin, but nevertheless, even though all of its directional
derivatives exist at the origin, it is not differentiable there. (The first problem sheet asks
you to check this).

The next result shows that however that the existence and continuity of the partial
derivatives give a sufficient condition for the total derivative to exist.
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Theorem 4.12. Suppose U ⊆ Rn is an open subset and that f : U → Rm is a function whose
partial derivatives exist near a ∈ U and are continuous at a. Then the total derivative D fa
exists. With respect to the standard bases, the matrix of D fa is therefore given by the
Jacobian matrix of partial derivative.

Proof. Working component by component, it is enough to prove the result for f taking
values in R. Thus we suppose that f : U → R and that there is an r > 0 with B(a, r) ⊆ U,
such that for each i ∈ {1, . . . , n} and x ∈ B(a, r), the partial derivatives ∂i f (x) of f exist, and
moreover each ∂i f (x) is continuous at x = a. Now if it exists, we know that the matrix of
the total derivative D fa with respect to the standard basis {e1, . . . , en}must be the row vector
(∂1 f (a), . . . , ∂n f (a)), viewed as an element of the dual space (Rn)∗.

We write a = (a1, . . . , an). Let ε : B(0, r) → Rn be given by ε(0) = 0 and, for h =

(h1, . . . , hn) , 0, by

ε(h) = ‖h‖−1( f (a + h) − f (a) − ∂1 f (a).h1 − . . . − ∂n f (a).hn
)
. (4.5)

Thus by definition, f is differentiable at a if we can show that ε(h)→ 0 as h→ 0.
To show this, let a0(h) = a and, for 1 ≤ k ≤ n, let ak(h) = ak−1(h) + hkek. Then we have

a telescoping sum

f (a + h) − f (a) =

n∑
j=1

(
f (a j(h)) − f (a j−1(h))

)
. (4.6)

For k = 1, using the formulation of the derivative of Lemma 4.1, we see that f (a1) −
f (a) = ∂1 f (a).h1+|h1|ε1(h1) , where ε1(h1)→ 0 = ε1(0) as h1 → 0. Now suppose that k ≥ 2.
For t ∈ R sufficiently small, we can set gk(t) = f (ak−1(h) + tek). Then gk is differentiable
with derivative ∂k f (ak−1 + t.ek) and so the by the single-variable mean-value theorem, there
is some θk ∈ (0, 1) such that

f (ak(h)) − f (ak−1(h)) = gk(hk) − gk(0) = g′k(θk.hk).hk = ∂k f
(
ak−1(h) + θk.hk

)
.hk.

and hence (4.6) becomes

f (a + h) − f (a) = ∂1 f (a).h1 + ε1(h1).h1 +

n∑
j=2

∂k f
(
ak−1(h) + θk.hk

)
.hk

and hence

ε(h) = ε1(h1).
|h1|

‖h‖
+

n∑
j=2

(
∂k f

(
ak−1(h) + θkhk

)
− ∂k f (a)

)
.

hk

‖h‖

But now if {δk : 1 ≤ k ≤ n} denotes the basis of (Rn)∗ dual to the standard basis, hk = δk(h),
so that |hk| = |δk(h)| ≤ ‖δk‖∞.‖h‖, and hence, for any k ∈ {1, . . . , n} the ratio |hk|/‖h‖ is
bounded as h→ 0. Similarly

‖ak−1(h) + θkhkek − a‖ ≤

 k∑
i=1

|hi|‖ei‖

 ≤
 k∑

i=1

‖δi‖∞‖ei‖

 ‖h‖,
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hence ak−1(h) + θkhkek → a as h→ 0. It follows by the continuity of the partial derivatives
∂k f at a for each k (and the fact that ε1(h1) → 0 as h → 0) that ε(h) → 0 as h → 0 as
required. �

Remark 4.13. Note that in fact the proof didn’t use the full strength of the hypothesis of
the theorem – we assumed the existence and continuity of all of the partial derivatives of
f at a, but it sufficed to know the continuity for all but one of them to conclude that f is
real-differentiable at a (as one might suspect considering the case n = 1 of course!) In
practice however, this weaker hypothesis is rarely useful.

Definition 4.14. If U is an open subset of Rn and f : U → Rm, then we say that f is
continuously differentiable if11 D f : U → L(Rn,Rm) is continuous. This is equivalent to
requiring the continuity of all of the partial derivatives ∂ j fi, where f = ( f1, . . . , fm) and
1 ≤ j ≤ n, 1 ≤ i ≤ m. Let C1(U,Rm) for the vector space of continuously differentiable
functions on U taking values in Rm.

*Remark 4.15. If f : U → Rk and a ∈ U, we say that f is strongly differentiable at a if
there is a linear map T ∈ L(Rn,Rk) and an r > 0 such that

f (x) − f (y) = T (x − y) + o(‖x − y‖), ∀x, y ∈ B(a, r).

If all of the partial derivatives of f : U → Rk exist in a neighbourhood of a ∈ U and are
continuous at a, the technique of Theorem 4.12 shows that f is strongly differentiable at a:
Let h = y − x =

∑n
i=1 hiei, and in place of the ak consider xk = xk−1 + hkek, where x0 = x.

Obviously, taking y = a shows that, if it exists, the linear map T must be D fa, but in general,
a function which is differentiable at a point need not be strongly differentiable at that point
– see Remark 5.4.

4.3 The Chain Rule

One of the fundamental properties of the differentiablity is that it is preserved under com-
position, just like continuity. The single variable version of this result is both a basic com-
putational tool, and also the key to one version of the Fundamental Theorem of Calculus.
We now establish its higher-dimensional analogue.

Theorem 4.16. Let U be an open subset of Rn and let f : U → Rm be a differentiable
function. Suppose further that g : V → Rp where V is open in Rm and f (U) ⊆ V . Then
if a ∈ U and f is differentiable at a, and moreover g is differentiable at f (a), then the
composition h = g ◦ f is differentiable at a and its derivative is given by:

Dha = Dg f (a) ◦ D fa.
11Since L(Rn,Rm) is a normed vector space, it makes sense to ask if D f is continuous.
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Proof. Since f is differentiable at a, there is a function ε1 : U → Rm such that

f (x) = f (a) + D fa(x − a) + ‖x − a‖ε1(x), ∀x ∈ U, (4.7)

where ε1(x) → 0 = ε1(a) as x → a. Similarly, as g is differentiable at b = f (a), there is a
function ε2 : V → Rp such that

g(y) = g(b) + Dgb(y − b) + ‖y − b‖ε2(y), ∀y ∈ V, (4.8)

and ε2(y) → 0 = ε2(b) as y → b = f (a). It follows that applying g to (4.3) and using (4.8)
we have

h(x) = g ◦ f (x)

= g
(
f (a) + D fa(x − a) + ‖x − a‖ε1(x)

)
= h(a) + Dgb ◦ D fa(x − a) + Dgb (‖x − a‖ε1(x))) + ‖ f (x) − f (a)‖.ε2( f (x))

= h(a) + Dgb ◦ D fa(x − a) + ‖x − a‖.η(x),

where the final equality defines η(x − a) for all x , a and we set η(a) = 0. In order to show
that Dgb ◦ D fa is the derivative of h at a, it therefore suffices to show that η(x) → 0 as
x→ a. Now for x , a, we have

η(x) = Dgb(ε1(x)) +
‖ f (x) − f (a)‖
‖x − a‖

.ε2( f (x)),

and, by Lemma 4.5, we may find an r,C > 0 such that, for all x ∈ B(a, r) we have ‖ f (x) −
f (a)‖ ≤ C‖x − a‖. Thus for all x ∈ B(a, r) we have

‖η(x)‖ = ‖Dgb(ε1(x)) +
‖ f (x) − f (a)‖
‖x − a‖

ε2( f (x))‖

≤ ‖Dgb(ε1(x))‖ + C.‖ε2( f (x))‖.

Hence, since Dgb and f are continuous, it follows directly from the definitions that ‖η(x)‖ →
0 as x→ a as required.

�

4.4 Real-valued functions of many variables on an inner product space

Let E be a normed finite-dimensional vector space. (If you prefer you can take E to be Rn,
the reason we do not do that here is to try and make clearer what structures are being used
where).

If U ⊆ E is an open subset and f : E → R is differentiable on U, then its derivative D f
takes values in E∗ = L(E,R). If the norm on E comes from an inner product (v,w) 7→ v · w
however, we can use it to identify E and E∗ via the map δ : E → E∗, where δ(a)(v) = a · v
for all a, v ∈ E.
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Definition 4.17. If f : U → R is differentiable on U then we define ∇ f : U → E to be the
gradient vector field of f , where ∇ f (a) = δ−1(D fa). Thus ∇ f (a) is characterized by the
property that

D fa(v) = ∇ f (a) · v, ∀v ∈ E.

Example 4.18. If we take E = Rn, with the standard dot product, then we may view D fa
as a row vector, with entries ∂i f (a). The vector field ∇ f (a) is then just the corresponding
column vector.

∇ f (a) points in the direction of greatest change for f . More precisely, if v ∈ E is a
direction vector with norm 1, the directional derivative at a of f in the direction v is

∂v f (a) = D fa(v) = ∇ f (a) · v.

By the Cauchy-Schwarz inequality, |∇ f (a) · v| ≤ ‖∇ f (a)‖.‖v‖ = ‖∇ f (a)‖, with equality if
and only if v and ∇ f (a) are in the same direction. Thus the magnitude of the directional
derivative of f at a is maximized when v is in the direction of ∇ f (a).

Another important observation about the gradient vector field is that it is a normal vector
to the level sets of f , that is, in a suitable sense, it is perpendicular to the level sets of f : If
γ : (−1, 1) → Rn is a curve such that f (γ(t)) = c for some constant c ∈ R, and p = γ(0),
the gradient ∇ fp is perpendicular to γ′(0), the “velocity vector” of γ at p, because, for all
t ∈ (−1, 1) we have g(t) = f (γ(t)) = c, hence by Theorem 4.16:

0 =
dg
dt t=0

= D fγ(0)(γ′(0)) = ∇ f (p).γ′(0) = 0.

We will explore this in more detail when we discuss tangent spaces.

4.5 Mean Value Theorems

For functions of a single variable, the Mean Value Theorem asserts that, if f : U → R is
differentiable on an open subset U of R and [a, b] ⊂ U, then ( f (b) − f (a))/(b − a), the
slope of the chord between (a, f (a)) and (b, f (b)), is equal to f ′(c) for some c ∈ (a, b). In
higher dimensions, as we have noted before, we can only divide by scalars, and so to obtain
a statement which at least is syntactically correct, we can rewrite this as f (b) − f (a) =

f ′(c).(b − a). There is however a more fundamental issue here: Namely the condition that
c lies “between a and b”, that is, c ∈ (a, b), is not a meaningful one in dimensions greater
than 1: two points in an open subset U of Rn do not bound any region in U.

In practice therefore, there are two ways of dealing with this: The first is to restrict to
one-dimensional contexts in various way, while the second is to replace the requirement of
an equality with an inequality, bounding ‖ f (b) − f (a)‖.

Definition 4.19. Let V be a vector space. If a, b ∈ V we write ~a, b� for the line segment
joining them, that is, ~a, b� = {ta+ (1− t).b : 0 ≤ t ≤ 1}. The function γa,b(t) = (1− t)a.+ t.b
is a path from a to b with image ~a, b�. A concatenation of finitely many such paths is called
a piecewise-linear path. (See the Metric Spaces notes for more details.)
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Proposition 4.20. Let U ⊂ Rn be an open subset of Rn and let f : U → R be a differentiable
function. If a, b ∈ U, and the segment ~a, b� ⊆ U, then there exists an ξ ∈ ~a, b�, ξ < {a, b},
such that

f (b) − f (a) = D fξ(b − a).

Proof. Let γa,b : [0, 1] → U be defined by γa,b(t) = (1 − t).a + t.b as above, and set g(t) =

f (γa,b(t)). By the one-variable mean-value theorem, there is some s ∈ (0, 1) such that
g(1) − g(0) = g′(s). Now by the chain rule,

γ′(s) = D fγa,b(s)γ
′
a,b(s),

and since γ′a,b(t) = b − a while g(1) = f (b) and g(0) = f (a), setting ξ = γa,b(s) the result
follows immediately. �

Any easy application of this result is the following:

Proposition 4.21. Suppose that U is a connected open subset of Rn and f : U → Rm. Then
if D fx = 0 for all x ∈ U the function f is constant.

Proof. Since U is open and connected in Rn, it is path connected, and in fact any two points
can be joined by piecewise-linear path. But if [a, b] ⊆ U is a line segment, Proposition 4.20
and the hypothesis D f = 0 on U shows that f (b) = f (a). It follows immediately that f
must be constant on U as required. �

If f : U → W is differentiable but takes values in a vector space of dimension greater
than 1, we must take the components of f with respect to a basis of W and analyse them
separately, or make do with an inequality rather than an equality. In practice the inequality
is often the more useful of these choices, and we given such a result next. Before we state
it, recall that a subset U ⊆ Rn is said to be convex if, for each a, b ∈ U the line segment
~a, b� ⊆ U.

Theorem 4.22. (Mean Value Inequality.) Let U ⊆ Rn be an open convex subset of Rn and
suppose that f : U → Rm is differentiable. Suppose that a, b ∈ V are such that ~a, b� ⊂ U.
Then there is some c ∈ ~a, b�\{a, b} such that

‖ f (b) − f (a)‖ ≤ ‖D fc(b − a)‖.

In particular, if U is convex and ‖D fx‖∞ ≤ K for all x ∈ U then ‖ f (x) − f (y)‖ ≤ K.‖x − y‖
for all x, y ∈ U, that is, f is Lipchitz continuous with constant K.

Proof. Fix a, b ∈ U, and define g : U → R by g(x) =
(
f (x) − f (a)

)
·
(
f (b) − f (a)

)
, for any

x ∈ U. Then g(b) = ‖ f (b) − f (a)‖2 and g(a) = 0. Since the dot product is bilinear, the map
x 7→ ( f (b)− f (a))·x is linear, hence the chain rule shows that Dgx(v) = ( f (b)− f (a))·D fx(v),
(for any v ∈ Rn).

Now by Proposition 4.20 we have ‖ f (b) − f (a)‖2 = g(b) − g(a) = Dgc(b − a) for some
c ∈ ~a, b�\{a, b}, and hence using the Cauchy-Schwarz inequality we see that

‖ f (b) − f (a)‖2 = ‖( f (b) − f (a)) · D fξ(b − a)‖ ≤ ‖ f (b) − f (a)‖.‖D fξ(b − a)‖.
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Thus we see that ‖ f (b) − f (a)‖ ≤ ‖D fξ(b − a)‖ as required. For the final part, note that if U
is convex then the above applies to all a, b ∈ U and by the definition of the operator norm,

‖D fξ(b − a)‖ ≤ ‖D fξ‖∞‖b − a‖ ≤ K.‖b − a‖,

hence the result follows.
�

4.6 *Higher order derivatives

We briefly wish to discuss the notion of higher derivatives for multivariate functions. There
are two ways of thinking about these: If U is an open subset of Rn and f : U → Rm, then
the partial derivatives ∂ j fi of the components of f (so f = ( f1, . . . , fm)) are real-valued
functions on U. We can thus consider all of their partial derivatives ∂ j1∂ j2 fi. If these all
exist and are continuous, we say that f is twice continuously differentiable. More generally
we have:

Definition 4.23. If f : U → Rm and f = ( f1, . . . , fm), we define that higher partial deriva-
tives of f inductively as follows: If k = 1 these are just the partial derivatives ∂ j fi,
(1 ≤ j ≤ n, 1 ≤ i ≤ m). For k > 1, by induction we have defined the partial deriva-
tives of order k − 1, and write them as ∂β fi where β ∈ {1, 2, . . . , n}k−1. The k-th partial
derivatives of f are indexed by pairs (α, i) where α ∈ {1, 2, . . . , n}k and i ∈ {1, 2, . . . ,m}, and
if α = ( j1, j2, . . . , jn then β = ( j2, . . . , jn) ∈ {1, 2, . . . , n}k−1 and we set

∂α fi := ∂ j1(∂β fi)

= ∂ j1∂ j2 . . . ∂ jk fi.

We say that f is k-times continuously differentiable, and write f ∈ Ck(U,Rm), if the
partial derivatives ∂α fi exist for all α ∈ {1, . . . , n}k and i ∈ {1, . . . ,m}. We say that f is
smooth or infinitely differentiable if the partial derivatives of all orders k ≥ 1 exist, and
write C∞(U,Rm) for the space of smooth functions on U taking values in Rm.

Remark 4.24. Theorem 4.12 shows that the f ∈ C1(U,Rm) if and only if the total derivative
exists and is continuous. Now the total derivative D f : U → L(Rn,Rm), is a function on U
taking values in the finite-dimensional vector space L(Rn,Rm). Associating to a linear map
its matrix with respect to the standard bases of Rn and Rm, this which, and then identifying
the space of m × n matrices with Rnm (e.g. by reading the matrix row by row, left to right,
first row to last row). It thus makes sense to ask if D f is differentiable, and since, viewed as
a function from U to Rnm, the components of D f are precisely the (first) partial derivatives
of f , Theorem 4.12 again shows that D f is continuously differentiable if and only if all the
second partial derivatives exist and are continuous. Our definition of the spaces Ck(U,Rm)
can thus be reformulated in terms of total derivatives rather than partial derivatives.
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The only difficulty in defining the higher derivatives in terms of the total derivative is
that the target space for the higher derivatives looks rather complicated at first sight: If we
let L1(Rn,Rm) = L(Rn,Rm) and define, inductively,

Lk(Rn,Rm) = L(Rn,Lk−1(Rn,Rn)),

then inductively we see that the k-th total derivative Dk f of our function f , if it exists, is
a function on U taking values in Lk(Rn,Rm). Although the spaces Lk(Rn,Rm) may seem
difficult to work with at first sight, it one just keeps calm it is straight-forward to check
by induction that the standard bases of Rn and Rm equip each of the spaces Lk(Rn,Rm)
with bases with respect to which D f k has components given exactly by the partial deriva-
tives ∂α fi. Once you check this, the following Proposition follows by induction on k from
Theorem 4.12 – the previous remark explains the case k = 2, and the general case is similar.

Proposition 4.25. Let f : U → Rm. Then f ∈ Ck(U,Rm) if and only if the higher total
derivative

D f k : U → Lk(Rn,Rm)

exists and is continuous. Moreover f is smooth if and only if all of the higher total deriva-
tives D f k exist.

Remark 4.26. One way to de-mystify the spaces Lk(Rn,Rm) is as follows: For simplicity
we consider only the case k = 2. Suppose θ ∈ L2(Rn,Rm). Then if v1 ∈ R

n, θ(v1) ∈
L(Rn,Rm), that is, θ(v1) is a linear map from Rn to Rm. Thus if we take another vector
v2 ∈ R

n, then θ(v1)(v2) is just a vector in Rm. Hence we can view θ as a map from Θ : Rn ×

Rn → Rm, where Θ(v1, v2) := θ(v1)(v2).
The function Θ is bilinear, that is, it is linear in each of v1 and v2: The linearity with

respect to v1 is because θ is a linear map from Rn to L(Rn,Rm), the linearity with respect
to v2 follows because θ(v1) is by definition a linear map from Rn to Rm. With a little more
work you can check that in fact the spaceL2(Rn,Rm) is isomorphic to the space Bil(Rn,Rm)
of bilinear maps12 on Rn taking values in Rm. The situation for general k is similar (and
again can be established by induction on k): The space Lk(Rn,Rm) is isomorphic to the
space of k-multi-linear maps on Rn taking values in Rm.

Example 4.27. The simplest case of the above is when U is an open subset of R2 and
f : U → R. By the previous discussion, the second derivative D2 f (a) can be viewed as a
bilinear form D2 fa : Rn × Rn → R. If {e1, . . . , en} denotes the standard basis of Rn, we can
associate a matrix Ha = (hi j) to D2 f (a) via associating to D2 f (a) in the usual fashion:

hi j = D2 f (a)(ei, e j).

One can recover D2 f (a) from Ha: viewing Rn as a space column vectors as usual, we have
D2 f (a)(v1, v2) = vT

1 Hav2. It is straight-forward to check that hi j = ∂i∂ j f .
12that is, maps which take as input, a pair of vectors in Rn, and is linear in each of them.
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4.6.1 Symmetry of mixed partial derivatives

We now wish to show that, provided they result in a continuous function, the order in which
the partial derivatives are taken does not matter, that is, if f : U → Rm, and a ∈ U, then for
any j1, j2 ∈ {1, . . . , n} we have

∂ j1∂ j2 f (a) = ∂ j2∂ j1 f (a)

provided both second partial derivatives are continuous at a. To prove this we need the
following:

Definition 4.28. Let f : U → R be a function defined on an open set U ⊂ Rn. Then if
s ∈ R\{0} and j ∈ {1, . . . , n} let ∆s

j( f ) be the function given by

∆s
j( f )(x1, . . . , xn) =

f (x + s.e j) − f (x)
s

,

Note that if f is differentiable at x then ∂ j f (x) = lims→0 ∆s
j( f )(x).

It is straight-forward to check that, for any s, t ∈ R\{0}, and any j1, j2 ∈ {1, 2, . . . , n} we
have

∆s
j1 ◦ ∆t

j2( f ))(x) = ∆t
j2(∆s

j1( f ))(x).

Indeed a routine calculation shows that both sides are equal to

f (x + s.e j1 + t.e j2) − f (x + s.e j1) − f (x + t.e j2) + f (x)
st

.

Thus the difference operators f 7→ ∆s
j1

( f ) and f 7→ ∆t
j2

( f ) commute with each other.
Moreover, since they are linear, they commute with partial differentiation: For all j1, j2 ∈
{1, . . . , n} we have

∂ j2∆
s
j1( f )(x) = ∆s

j1(∂ j2 f )(x). (4.9)

We wish to use this fact to deduce that the corresponding partial differential operators
also commute, but because of the limits involved, this will not be automatic, and we will
need to impose the additional hypotheses that the relevant second partial derivatives of f
are continuous functions.

Proposition 4.29. Suppose that f : U → Rm is such that all its second partial derivatives
exist on U. Then for any i, j ∈ {1, . . . , n} we have

∂i∂ j f (a) = ∂ j∂i f (a)

at all points a ∈ U where ∂i∂ j f and ∂ j∂i f are continuous.

Proof. Taking components we may immediately reduce to the case m = 1. Fix a ∈ U.
Since U is open, there are ε, δ > 0 such that ∆s

i ( f ) and ∆t
j( f ) are defined on B(a, ε) for all
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s, t with |s|, |t| < δ. Now using (4.9) and the fact that the difference operator ∆s
i becomes ∂i

in the limit as s→ 0 we see that

∂i∂ j f (a) = lim
s→0

∆s
i (∂ j f )(a) = lim

s→0
∂ j

(
∆s

i ( f (a))
)

= lim
s→0

lim
t→0

(
∆t

j ◦ ∆s
i ( f )

)
(a) = lim

s→0
lim
t→0

(
∆s

i ◦ ∆t
j( f )

)
(a)

(where in the final equality we use the fact that the difference operators commute). But now
using the one-variable mean value theorem for the function gi(y) = ∆t

j( f )(a + y.ei)we see
that

∆s
i ∆

t
j( f )(a) =

gi(s) − gi(0)
s

= g′i(s1) = ∂i∆
t
j f (a + s1ei),

where s1 lies between 0 and s. But using (4.9) we have ∂i∆
t
j( f )(a+ s1.ei) = ∆t

j∂i f (a+ s1.ei),
and hence again using the one-variable mean value theorem, but now for h j(y) = ∂i f (a +

s1ei + y.e j), we see that

∆t
j∂i f (a + s1ei) = h′j(t1) = ∂ j∂i f (x + s1ei + t1.e j),

where t1 lies between 0 and t (note however that t1 depends both on t and s1). But now

∂i∂ j f (a) = lim
s→0

lim
t→0

∂ j∂i f (a + s1ei + t1.e j) = ∂ j∂i f (a),

by the continuity of the second partial derivative ∂ j∂i f and the fact that (s1, t1) → 0 as
(s, t)→ 0. Thus the partial derivatives ∂i∂ j f and ∂ j∂i f are equal as required.

�

Example 4.30. The requirement that the second partial derivatives are continuous cannot
be omitted. Indeed if we let f : R2 → R be given by

f (x1, x2) =

 x1x2.
x2

1−x2
2

x2
1+x2

2
= x1x2(x1 − x2)(x1 + x2)/(x2

1 + x2
2) (x1, x2) , (0, 0)

0, (x1, x2) = (0, 0).

The you can check that ∂1∂2 f (02) = −1 while ∂2∂1 f (02) = +1.

Remark 4.31. Using induction and the previous Proposition, it follows that if f : U →
Rm is k-times continuosuly differentiable, then if α = ( j1, . . . , jk) ∈ {1, . . . , n}k, and β =

( jσ(1), . . . , jσ(k)) is any re-ordering of the terms of α (so σ ∈ S k the symmetric group) the
∂α f = ∂β f .

Example 4.32. Let � = ∂2
1 − ∂

2
2 be the (one-dimensional) wave operator. Provided we are

only interested in acting on twice-continuously differentiable functions u = u(x1, x2) so that
∂1∂2(u) = ∂2∂1(u), we can factorize � as

� = (∂1 − ∂2)(∂2 + ∂1).

This leads to the classical D’Alembert solution of the one-dimensional wave equation.
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Remark 4.33. Returning to Example 4.27, we see now that, viewing D2 f (a) as a bilinear
form, it has matrix (∂i j f )i j, which, by Theorem 4.29, is a symmetric. Thus D2 f (a) can be
viewed as a symmetric bilinear form. In fact the higher derivatives Dk f (if they exist) are
symmetric k-multi-linear functions, which gives a coordinate free way of expressing the
symmetry of the higher partial derivatives.

5 The Inverse and Implicit Function Theorems

We begin with a result on the set of invertible linear maps.

Lemma 5.1. Let Ω ⊂ L(Rn,Rn) be the set of invertible linear maps from Rn to itself. The
we have

1. The set Ω is open.

2. The inverse map ι : Ω→ Ω given by ι(α) = α−1 is continuous.

Proof. Using the standard basis, we may identifyL(Rn,Rn) with Matn(R) the space of n×n
matrices over R. A linear map α is invertible if and only if its matrix A satisfies det(A) , 0.
The function det is a polynomial function of the entries of A, hence it is continuous, thus
the set of matrices corresponding to invertible linear maps is open as required.

If A is a matrix we may use Cramer’s rule to calculate the matrix of its inverse: Recall
that if A = (ai j), then we write Ci j for the (n − 1) × (n − 1) given by removing the i-
th row and j-th column from A. If we write adj(A) = (ci j) where ci j = det(C ji), then
A.adj(A) = det(A).Id, and hence A−1 = (det(A))−1adj(A). Since the determinant of a matrix
is a polynomial function of its entries, the entries of adj(A) are polynomials in the entries of
A, it follows that the map A 7→ A−1 is continuous as required. �

Remark 5.2. The first problem sheet gives another approach to the previous Lemma.

5.1 The Inverse Function Theorem

The following theorem is known as the Inverse Function Theorem. A complete proof is
given in the Appendices.

Theorem 5.3. Let E ⊂ Rn be an open set, f : E → Rn a differentiable function, and let
a ∈ E. Suppose that D fa is invertible and that D f is continuous at x = a. Then there are
open neighbourhoods U and V of a and b = f (a) respectively, such that f is a bijection
between U and V . Moreover if g : V → U is the inverse of f then g is differentiable with

Dgy = (D fg(y))−1,

so that Dg is continuous at y whenever D f is continuous at x = g(y). In particular, Dg is
continuous at f (a).
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Proof. (Outline – proof not examinable.) By replacing f by x 7→ D f (a)−1( f (x + a)− f (a)),
we may assume that a = f (a) = 0 and D f (a) = In. Let ϕ : E → Rn be given by ϕ(x) =

f (x)−x. Then clearly ϕ is differentiable and Dϕ is continuous at 0n with Dϕ(0) = 0n,n. Thus
there is an r > 0 such that ‖Dϕ(x)‖ < 1/2 for all x ∈ B̄(0, r). Now since f (x) = x + ϕ(x),
and hence f (x) = y if and only if φy(x) = x, where φy(x) = y − φ(x). But using the Mean
Value Inequality, one can show that for y ∈ B(0, r/2) the function φy is a contraction on
B̄(0, r), and hence there is a unique x ∈ B̄(0, r) with f (x) = y for any y ∈ B̄(0, r/2). Define
g : B̄(0, r/2)→ B̄(0, r) by setting g(y) to be the unique point in B̄(0, r) with f (g(y)) = y.

Again using the Mean Value Inequality one can check that g is actually continuous,
and, restricting the domain appropriately, that g is in fact continuously differentiable: By
the chain rule we know that if y = f (x) then Dg(y) = D f (g(y))−1, and then right-hand side
we know to be a continuous function of y. What one needs to show, therefore, is that the
candidate D f −1

g(y) is indeed the total derivative of g at y – once one checks this, the continuity
of the Dg follows from the continuity of D f and the inversion map.

�

Remark 5.4. A few comments about the theorem:

• Checking the condition that D fa is invertible is straight-forward: It is equivalent to
the non-vanishing of the determinant J f (a) = det(D fa) of the Jacobian matrix of D fa.

• Let U,V be open subsets of Rn. We say that a continuously differentiable function
f : U → V is a diffeomorphism if it is bijective, and its inverse g : V → U is con-
tinuously differentiable. (Warning: other references may only require f and g be
differentiable, still others that f be infinitely differentiable). The inverse function
theorem can then be stated as follows: Let f : E → Rn be a continuously differen-
tiable function on an open subset E ⊂ Rn. If D f (a) is invertible, then there is an open
neighbourhood U ⊂ E of a on which f is a diffeomorphism.

• The formula for the derivative of g is forced on us by the chain rule – if g is dif-
ferentiable, the chain rule applied to the composite Id = f ◦ g, shows that Id =

D f (g(y)) ◦ Dg(y) and so Dg(y) = D f (g(y))−1.

• It is not sufficient, even if just wanted f to have a continuous inverse, for the f
to be differentiable with f ′(a) invertible: Consider the example f : R → R, where
f (x) = x + 2x2 sin(1/x) (extended by continuity to x = 0, so f (0) = 0). Then
computing directly from the definition, we find f ′(0) = 1 (which is invertible), but f
is not injective in any neighborhood of 0.

[*For those who read Remark 4.15, the function f is differentiable but not strongly
differentiable at x = 0.]

• If f : U → Rn is continuously differentiable with D fx invertible for all x ∈ U, then
although f (U) is open in Rn (as we shall see below) f need not give a diffeomorphism
between U and f (U). Indeed f need not be injective. This happens already in two
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dimensions: Suppose that U = R2\{0} and f : U → R2 is given by f (x1, x2) =

(x2
1 − x2

2, 2x1x2). Then f (U) = U, and we have

D f(x1,x2) =

(
2x1 −2x2
2x2 2x1

)
.

Since det(D f(x1,x2)) = 4(x2
1 + x2

2) we see that D f(x1,x2) is invertible on all of R2\{0}.
But clearly f (x1, x2) = f (−x1,−x2), so that f is not injective on U. If however we
assume in addition that f : U → Rn is injective, then it is indeed a diffeomorphism
from U to f (U) – see below.

• The hypotheses of the theorem are not necessary for f to have a continuous inverse
– the function f : R → R given by f (x) = x3 is continuous and has a continuous
inverse x 7→ x1/3, however f ′(0) = 0 so the inverse function theorem does not apply
(and indeed the inverse function is not differentiable at 0).

Finally we want to note a consequence of the theorem which is global.

Definition 5.5. Let (X, d) and (Y, ρ) be metric spaces. A continuous function g : X → Y is
said to be an open mapping if, for any open set U ⊂ X, its image g(U) is open in Y . Notice
that a continuous bijection is a homeomorphism precisely if it is an open mapping.

Corollary 5.6. Let U ⊂ Rn be an open set, and f : U → Rn be a continuously differentiable
function such that D fx is invertible for every x ∈ U. Then f is an open mapping.

Proof. Let V be an open subset of Rn contained in E. We want to show that f (V) is open.
Pick b ∈ f (V). We need to show that f (V) contains some open ball centered at b. Now
b = f (a) for some a ∈ O, and the inverse function theorem applies to f|V : V → Rn and
a ∈ V . Hence there are open sets V1,V2 with a ∈ V1 ⊂ V and f (a) = b ∈ V2 such that f is
a bijection between V1 and V2. But then there is a δ > 0 such that B(b, δ) ⊂ V2 = f (V1) ⊂
f (V), and we are done. �

Remark 5.7. In fact the proof of this theorem used only the first part of the inverse function
theorem – the fact that the inverse of f on U is continuously differentiable was not needed.

Another consequence of the inverse function theorem is the following:

Corollary 5.8. Let E ⊂ Rn be an open subset and let f : E → Rn be continuously dif-
ferentiable, such that f is injective and D f (x) is invertible for all x ∈ E. Then f is a
diffeomorphism between E and f (E).

Proof. By assumption, given y ∈ f (E) there is a unique x ∈ E with f (x) = y, so that we can
define h : f (E) → E by setting h(y) to be this point x. But then g is continuously differen-
tiable by the inverse function theorem, since at any point y ∈ f (E), if x = g(y) there are open
sets U,V containing x and y respectively, such that f|U : U → V is a diffeomorphism. But
then g|V is continuously differentiable, and so g is continuously differentiable at y ∈ V . �
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5.2 *Variants of the Inverse Function Theorem.

One can in fact weaken the hypotheses of the Inverse Function Theorem somewhat in a
number of ways: if U is an open subset of Rn and f : U → Rn has D fx invertible for all
x ∈ U, then f is locally invertible with differentiable inverse: More explicitly, for any a ∈ U
there are open sets U1,V1 with a ∈ U1 ⊆ U and f (a) ∈ U2 such that f restricts to a bijection
from U1 to U2 and if g = f −1

|U1
: U2 → U1, then g is differentiable with derivative D f −1

g(y)
for all y ∈ U2. Indeed by the chain rule, it follows that invertibility of D fx for all x ∈ U is
equivalent to the local invertibility of f .

One can also prove a local result imposing a condition on f only at the point a ∈ U:
namely that f is strongly differentiable at a (see Remark 4.15), that is for any ε > 0 there
is some open neighbourhood N of a such that for all x, y ∈ N we have f (x) − f (y) =

D fa(x − y) + η(x, y) where ‖η(x, y)‖ ≤ ε‖x − y‖. If one assumes only that f : U → Rn is
strongly differentiable at a, then there are open neighbourhoods U and V of a and f (a) such
that f restricts to give a homeomorphism between U to V , and moreover its inverse g is
(strongly) differentiable at y ∈ V precisely when f is (strongly) differentiable at g(y).

More importantly, especially for applications in the study of partial differential equa-
tions, the inverse function theorem holds for continuously differentiable functions on open
subsets of any complete normed vector space, whether or not it is finite dimensional. In this
context, the derivative must be a continuous linear map (that is, a bounded linear map – see
Section 3). Thus the condition that the derivative at a point be invertible has to demand in-
stead that the inverse linear map exists and is bounded, but then the whole theorem (and its
proof) go through just as above. In fact, it is the case (though we do not quite have the tools
to show it) that in a complete normed vector space (the ones in which the inverse function
theorem holds) if a linear map is invertible then its inverse is automatically continuous.

5.3 The Implicit Function Theorem

The goal of our study of differentiable functions is to try to extend to such functions, in as
much as this makes sense, results from linear algebra. To try and make this analogy between
results in the linear and non-linear setting a little more concrete, consider the notion of
coordinates on a vector space: If E is an n-dimensional vector space, then picking a basis
B = {v1, . . . , vn} of E gives us coordinates for the vectors in E: to each vector v we associate
to it the coordinates (c1, . . . , cn) ∈ Rn where v =

∑n
i=1 civi. Equivalently, the basis defines

an invertible linear map θ : E → Rn given by sending B to the standard basis of Rn. Thus
giving such a map is equivalent to giving a (linear) coordinate systems on E. In the setting
of differentiable functions, diffeomorphisms play the same role: if U is an open subset of E
and f : U → Rn is a diffeomorphism, then we can use the components of f to parametrize
the points in U.

Example 5.9. Suppose that E is 2-dimensional with basis {v1, v2}. The function g : R2 → E
given by g : (r, s) 7→ r cos(s).v1 + r sin(s).v2 has Jacobian determinant Jg = r, so that if
U = E\{t.v1 : t ≥ 0} and f : U → (0,∞) × (0, 2π) is given by g( f (x, y)) = (x, y), then f is a
diffeomorphism on U, and the components of f give polar coordinates on U.
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The domain U is chosen to ensure that f is injective, so that we do indeed get a diffeo-
morphism between an open subset of E and R2. In fact, because Jg , 0 on all of R2\{0},
one can modify the definitions suitably so as to allow f to have range (0.∞) × [0, 2π). At
the origin however, we do not have C1 coordinates, as D f0 is singular so that f is not a
diffeomorphism at 0. Notice that polar coordinates fail to reflect whether a function is con-
tinuously differentiable at 0: the function v 7→ ‖v‖ is not differentiable at (x, y) = (0, 0) ∈ E
(see Example 4.7) while the function on R2 given by (r, s) 7→ r certainly is.

The Inverse Function Theorem ensures that if U is open in E and f : U → Rn is con-
tinuously differentiable, then if D fp is invertible, at least near p, f is a diffeomorphism. In
other words, if the derivative D fp gives (linear) coordinates on E, then, the components of
f provide a (non-linear) parameterization of neighbourhood of p.

Definition 5.10. Suppose that p ∈ Rn. A system of local coordinates at p is a diffeomor-
phism ψ : (V, 0n)→ (U, p) where U is an open set p ∈ U and V is an open subset containing
0n ∈ R

n and ψ(0n) = p. It is sometimes convenient to write ψ = p + φ so that φ(0n) = 0n.
The coordinates (x1, . . . , xn) of Rn at 0 then give a system of coordinates (t1, . . . , tn) at p,
where, for y ∈ U, we set ti(y) = xi ◦ψ

−1(y), for i ∈ {1, . . . , n}. If f : U → Rk is any function,
then by the chain rule, f ◦ ψ is continuously differentiable if f is, and similarly, if function
g : V → Rk is continuously differentiable, then so is g ◦ ψ−1, since the Inverse Function
Theorem shows ψ−1 is continuously differentiable.

Thus ψ∗ : C1(U,Rk) → C1(V,Rk) given by ψ∗( f ) = f ◦ ψ is an isomorphism of vec-
tor spaces, with inverse (ψ−1)∗ where (ψ−1)∗(g) = g ◦ ψ−1. In terms of the coordinates
(t1, . . . , tn) this say that any continuously differentiable function f : U → Rk can be viewed
as a continuously differentiable function of the coordinates (t1, . . . , tn).

In this section we will use the Inverse Function Theorem to show that, for functions
f ∈ C1(U,Rk), structural information about the linear map D fp at a point p ∈ U can often
be extended to give information about the behaviour of f near p. Recall that one strategy
in the study of linear maps is to try and find the “simplest” form of a matrix representing a
given linear map. Though it is not always phrased that way, this is one way of stating the
rank-nullity theorem: if V and W are vector spaces, and α : V → W is a linear map, then
one can find bases of V and W with respect to which α has matrix A where if 0r,s denotes
the 0-matrix of size r × s, and Ik the k × k identity matrix, then

A =

(
0k,n Ik

0m−k,n 0m−k,k

)
dim(V) = n + k, dim(W) = m.

In the case where α is surjective, this becomes A = (0k,n|Ik), and we obtain two nice conse-
quences:

1. Using the coordinates given by our choice of bases, the map α takes a particularly
simple form: it just projects along the first n coordinates, that is, it is given by
(x1, . . . , xn+k) 7→ (xn+1, . . . , xn+k).
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2. The kernel ker(α) thus has basis given by the first n vectors in our basis, so that our
basis also gives us a coordinate system, or parametrization, of the subspace ker(α).

The Implicit Function Theorem is a non-linear version of this result, though the price
for extending to the differentiable setting is that it will only hold locally. Before we state
and prove it, however, it is instructive to see how the strategy we will use in our proof works
in the linear case:

Lemma 5.11. Suppose that E is a finite-dimensional vector space and α : E → Rk is a
surjective linear map. Then there is a basis B of E such that the matrix of α with respect to
B and the standard basis of Rk is (0n−k,k, Ik)

Proof. As usual we write {e1, . . . , ek} for the standard basis of Rk. Pick a basis {v1, . . . , vn}

of ker(α), and extend it to a basis B1 = {v1, . . . , vn+k} of E. Let {x1, . . . , xn+k} be the dual
basis of E∗ associated to B1, so that if v ∈ E then v =

∑n+k
i=1 xi(v).vi. Define β : E → E

by β(v) =
∑n

i=1 xi(v).vi +
∑k

i=1 αi(v).vn+i, where α(v) =
∑k

i=1 αi(v).ei. We claim that β is an
isomorphism.

To see that β is injective, suppose that β(v) = 0. Then clearly αi(v) = 0 for each i,
1 ≤ i ≤ k, hence v ∈ ker(α). But then by definition, v =

∑n
i=1 xi(v).vi, and so β(v) = v and

hence v = 0. To see that β is surjective, note that if v =
∑n+k

i=1 λivi, then, since α is surjective,
there is some v1 ∈ V with α(v1) = (λn+1, . . . , λn+k). But now we may write v1 =

∑n+k
i=1 aivi,

and letting v2 =
∑n

i=1(λi − ai)vi ∈ ker(α) it follows that β(v1 + v2) = v.
Thus we can apply β−1 to our basis B1 to obtain a new basis B = {w1, . . . ,wn+k}, where

wi = β−1(vi). Since β(vi) = vi for 1 ≤ i ≤ n, clearly wi = vi for 1 ≤ i ≤ n, and so
{w1, . . . ,wn} is a basis of ker(α). Now consider {wn+1, . . . ,wn+k}. By definition

β(wn+i) =

n∑
j=1

x j(wn+i)v j +

k∑
s=1

αs(wn+i)vn+s = vn+i,

hence αs(wn+i) = δs,i (that is, equals 1 when s = i and 0 otherwise) and hence α(wn+i) = ei.
It follows that α has matrix (0k,n−k|Ik) with respect to the basis B as required. �

We are now ready to state and prove the Implicit Function Theorem:

Theorem 5.12. (Implicit Function Theorem) Let E be a finite-dimensional normed vector
space and let U be an open subset of E. If f : U → Rk lies in C1(U,Rk), and p ∈ U∩ f −1(0k)
such that D fp : V → Rk is surjective, then there is an open neighbourhood V of 0E , a
diffeomorphism ψ : V → V1 where V1 is an open subset of U, and a basis B = {v1, . . . , vn+k}

of V

1. ψ(0E) = p and f ◦ ψ(x1, . . . , xn+k) = (xn+1, . . . , xn+k) where (x1, . . . , xn+k) are the
coordinates on V given by B.

2. The level-set f −1(0) ∩ V1 is precisely the image of ψ restricted to E1 ∩ V where
E1 = span{e1, . . . , en}, that is ψ gives a parametrization of f −1(0) ∩ V1 so that if
q ∈ f −1(0) ∩ V1 then q = ψ(x1, . . . , xn, 0k) for some (x1, . . . , xn, 0k) ∈ E1 ∩ V .
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Proof. (Non-examinable.) Let α = D fp : E → Rk. By the previous Lemma we may pick a
basis B of E with respect to which the matrix of α is just (0k,n, Ik). Let (x1, . . . , xn+k) denote
the coordinates of E with respect to the basis B, so that if v ∈ E then v =

∑n+k
i=1 xi(v).vi, and

consider G : U → V given by

G(v) =

n∑
i=1

(xi(v) − xi(p)).vi +

k∑
i=1

fi(v).vn+i, (v ∈ U)

where f (v) =
∑k

i=1 fi(v).ei, that is, the fi are the components of f : U → Rk. Thus G(p) =

0E , and the Jacobian matrix of DGp with respect to the basis B is

DGp =

(
In 0n

0k,n Ik

)
= In+k.

But now we may use the Inverse Function Theorem to see that G restricts to a diffeomor-
phism on some open neighbourhood V1 ⊆ U of p. Let V = G(V1), so that V is an open
neighbourhood of G(p) = 0E . Then setting ψ = (G|V1)−1 it follows ψ : V → V1 is a diffeo-
morphism. But now v =

∑n+k
i=1 xi(v)vi ∈ V , then

n+k∑
i=1

xi(v).vi = G(ψ(v)) =

n∑
i=1

(xi(ψ(v)) − xi(p)).vi +

k∑
i=1

fi(ψ(v)).vn+i

from which (1) and (2) follow immediately. �

Remark 5.13. Note that the proof shows a little more than in the statement of the theorem:
Let En = span{v1, . . . , vn} and Ek = span{vn+1, . . . , vn}. Then E = En ⊕ Ek and we can write
any v ∈ E uniquely as v = vn + vk, where vn ∈ En and vk ∈ Ek.

Then it is clear from the definition of G that if φ = ψ− p (so that φ(0) = 0) then if u ∈ En

we have φ(u) = u + φ(u)k, that is, we may view φ as the graph of the function u 7→ φ(u)k

from a neighbourhood of 0 ∈ En to Ek. Hence the parametrization of f −1(0) near p actually
exhibits f −1(0) as the graph of a function.

Remark 5.14. Another way to think of this result is as a differentiable analogue of the
following linear algebra fact: If {v1, . . . , vk} are linearly independent vectors in a finite-
dimensional vector space E, then we may extend it to a basis {v1, . . . , vk, . . . , vn} of E. If
U ⊂ E is an open set with f : U → Rk, then if D fp has maximal rank, i.e. rank k, then its
components { f1, f2, . . . , fk} can be extended to a system of local coordinates near p.

In practice the vector space E may be identified with Rn+k, i.e. it may already have
a preferred choice of basis/coordinates. If α : E → Rk is a linear map, then identifying E
with Rn+k using our preferred choice of coordinates, let A the matrix of αwith respect to the
standard bases. At least in small examples, it is often easier to produce a set of k columns
of A which are linearly independent (showing A has rank k) than it is to produce a basis for
E with respect to which α takes the form (0n,k|Ik), i.e. producing an invertible matrix P such
that PAP−1 = (0n,k|Ik).
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In that context it can be useful to use the following variant of the Implicit Function
Theorem. To state it we need some more notation: By reordering, we suppose that the
last k columns of A are linearly independent. Now we may view Rn+k = Rn ⊕ Rk

n, where
Rk

n = span{en+1, . . . , en+k}, and we will write (x, y) for a vector in Rn+k where x ∈ Rn

and y ∈ Rk
n. If α : Rn+k → Rk, then we may also decompose into α = αn ⊕ αk where

αn : Rn → Rk and αk : Rk
n → R

k are given by αn(x) = α(x, 0) and αk(y) = α(0, y), so
that α(x, y) = αn(x) + αk(y). In terms of matrices, αn has matrix An given by the first n
columns of A, the matrix of α and αk has matrix Ak given by the last k columns of A, that
is, A = (An|Ak). The analogue of Lemma 5.11 is then:

Lemma 5.15. Let α : Rn+k → Rk be a linear map, and let α = αn ⊕ αk be it decomposition
according to the direct sum Rn+k = Rn ⊕ Rk

n as above. Then if αk is invertible, there is a
linear map θ : Rn → Rk

n such that ker(α) = {(x, θ(x)) : x ∈ Rn}.

Proof. If α has matrix A with respect to the standard bases, then A = (An|Ak) where αn has
matrix An and αk has matrix Ak. We use essentially the same argument as in Lemma 5.11:
Let β : Rn+k → Rn+k be the linear map with matrix (with respect to the standard basis)

B =

(
In 0
An Ak

)
In other words, β(x, y) = (x, αn(x) + αk(y)). Now since the diagonal blocks In and Ak are
invertible, it follows B (and hence β) is invertible, indeed it is easy to calculate its inverse
explicitly:

B−1 =

(
In 0

−A−1
k An A−1

k

)
Thus if θ : Rn → Rk

n is the linear map −αk ◦αn, we have β−1(x, y) = (x, θ(x) +α−1
k (y)). Then

(x, y) ∈ ker(α) if and only if β(x, y) = (x, 0), if and only if

(x, y) = β−1(x, 0) = (x, θ(x) + α−1
k (0)) = (x, θ(x)),

so that ker(α) = {(x, θ(x)) : x ∈ Rn} = graph(θ). �

Theorem 5.16. Suppose that U is an open subset of Rn+k, and f : U → Rk is continuously
differentiable. If p = (x0, y0) ∈ U is such that f (x0, y0) = 0 and D fp,k is invertible, where
D fp = D fp,n ⊕ D fp,k is the decomposition of D fp as above, then there is a continuously
differentiable function ψ : V1 → V , where V ⊆ U is an open neighbourhood of p, and V1
is an open neighbourhood of 0n+k, such that if ψ(x, y) = (ψn(x, y), ψk(x, y)) then ψn(x, y) =

x+x0, and if (x, y) ∈ V , then f (x, y) = 0 if and only if (x, y) = (x, ψk(x−x0, 0)). Equivalently,
if g(x) = ψk(x− x0, 0), then g is continuously differentiable, and if (x, y) ∈ V then f (x, y) = 0
if and only if y = g(x). Moreover, the derivative of g is given by

Dgx = −D f −1
(x,g(x)),k ◦ D f(x,g(x)),n.
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Proof. (Non-examinable:) The proof follows the same strategy as the proof of Theorem
5.12. Let G : U → Rn+k be given by

G(x, y) = (x − x0, f (x, y)) = (x − x0, fn(x, y) + fk(x, y))

(thus strictly speaking we should write G(x, y) =
(
x − x0, in( f (x, y))

)
where in : Rk → Rn+k

is the inclusion identifying Rk with Rk
n) so that G(p) = G(x0, y0) = 0n+k. Then, for any

q = (x, y) ∈ U decomposing D fq = D fq,n⊕D fq,k according to the direct sum decomposition
Rn+k = Rn ⊕ Rk

n, we have

DGq =

(
In 0

D fq,n D fq,k

)
Thus G ∈ C1(U,Rn+k), since f ∈ C1(U,Rk). Moreover, since D fp,k is invertible, it follows
that DGp is invertible. It follows from the Inverse Function Theorem that there is an open
set V1 ⊆ U with p ∈ V1 such that G|V1 : V1 → V = G(V1) is a diffeomorphism. It follows
that if ψ : V1 → V is given by (G|V1)−1, the ψ is continuously differentiable, and, from the
definition of G we must have ψ(x, y) = (ψn(x, y), ψk(x, y)) = (x + x0, ψk(x, y)).

Finally, if (x, y) ∈ V1, then f (x, y) = 0 if and only if G(x, y) = (x, 0), hence

(x, y) = ψ ◦G(x, y) = ψ(x − x0, 0) = (x, ψk(x − x0, 0)).

Thus the theorem is proved except for the expression for the derivative of g(x) = ψk(x −
x0, 0). But this follows by invertible the matrix of DGq above, or by noting 0 = f (x, g(x)),
which implies by the chain rule that

0 =
(

D f(x,g(x)),n D f(x,g(x)),k
) ( In

Dgx

)
.

and hence D f(x,g(x)),n + D f(x,g(x)),kDgx = 0, so that Dgx = −D f −1
(x,g(x)),kD f(x,g(x)),n. �

Remark 5.17. This version of the Implicit Function Theorem explains the reason for the
name: One can view it as saying that, provided the submatrix D f(x0,y0),k is invertible, the
system non-linear of equations fi(x, y) = 0 for i = 1, 2, . . . , k, can be solved. In other words,
system ( fi(x, y)) = 0k implicitly makes the y-variables functions of the x-variables by these
equations, and the theorem shows that, at least near (x0, y0) the function g(x) makes this
explicit.

In this sense, the theorem gives a rigorous justification for the calculus technique of
“implicit differentiation” – compare that technique to the calculation of Dg at the end of the
above proof.

Example 5.18. In this example, we will write z for a general vector inR4 and write z = (x, y)
where x ∈ R2, y ∈ R2. Let f : R4 → R2 be given by

f (x1, x2, y1, y2) = (x2
1 − x2

2 + y2
1 + 2y2

2, x
2
1 + x2

2 − y2
1 − y2

2),
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and consider the level set M = f −1{(1, 2)} of f , so that

M =

{
z = (x1, x2, y1, y2) ∈ R4 :

x2
1 − x2

2 + y2
1 + 2y2

2 = 1
x2

1 + x2
2 − y2

1 − y2
2 = 2

}
.

The total derivative D fz has Jacobian matrix

D fz = (D f1,x|D f2,y) =

(
2x1 −2x2 2y1 4y2
2x1 2x2 −2y1 −2y2

)
, (5.1)

Thus considering 2 × 2 submatrices, we see that D f has rank 0 only at z = 04, and rank 1 if
z lies on the coordinate axes (i.e. all but one of x1, x2, y1, y2 equal to zero), or if x1 = y2 = 0.
Everywhere else D fz has maximal rank. Now if x ∈ M we have 2x2

1 + y2
2 = 3, hence M

does not intersect the plane {z ∈ R4 : x1 = y2 = 0}. Similarly it is easy to see that M
does not intersect the coordinate axes, and hence D f has maximal rank on all of M. (In the
terminology of the next section, this means that M is a 2-dimensional submanifold of R4.)

We now consider how to parametrize M. Using Theorem 5.16, and noting that the final
two columns form an invertible matrix provided y1y2 , 0, we see that in a neighbourhood
of a point p = (a, b, c, d) ∈ M for which c.d , 0, the condition that f (x1, x2, y1, y1) = (1, 2),
i.e. implicitly defines a function g in a neighbourhood of (a, b) such that

f (x1, x2, y1, y2) = (1, 2) ⇐⇒ (y1, y2) = g(x1, x2),

that is, locally near p, the level set M is the graph of a function.
The theorem however does not produce the parameterizing function g = (g1, g2). How-

ever, it does allow us to calculate the derivative Dgx: If z = (x, g(x)) we have Dgx =

−D f −1
2,g(x)D f1,x, where, as in (5.1) we write D fz = (D f1,x|D f2,y). Explicitly this becomes:

Dgx =

(
∂1g1 ∂2g1
∂1g2 ∂2g2

)
= −(4g1g2)−1

(
−2g2 −4g2
2g1 2g1

)
.

(
2x1 −2x2
2x1 2x2

)
= (4g1g2)−1

(
12x1g2 4x2g2
−8x1g1 0

)
.

=

(
3x1/g1 x2/g1
−2x1/g2 0

)
.

Indeed one can view the Implicit Function Theorem (or indeed the Inverse Function The-
orem) as asserting the unique solution to a system of differential equations. Of course in
general we may not be able to readily solve these equations explicitly, but this example is
simple enough that we can:

To start, note that ∂2g2 = 0, so g2 is independent of x2, while g2.∂1g2 = −2x1 so
that the only equation governing g2 is ∂1g2 = 2x1/g2. Indeed we already noted that on

M, 2x2
1 + y2

2 = 3, that is, 2x2
1 + g2

2 = 3, hence g2(x1, x2) = ±

√
3 − 2x2

1, where the sign
will be determined by the sign of d, the corresponding coefficient of p. Note that we have
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∂1(
√

3 − 2x2
1) = −2x1/

√
3 − 2x2

1 as expected. Having determined g2, it is not so difficult
to determine g1, using, for example, the first component of f :

g1(x1, x2) = ±

√
1 − x2

1 + x2
2 − 2.(3 − 2x2

1) = ±

√
3x2

1 + x2
2 − 5,

where again, the sign is determined by that of the corresponding coefficient of p (which is
c in this case). Note again that ∂1g1 = 3x1/g1 and ∂2g1 = x2/g1. Thus we have

(g1(x), g2(x)) =

(
±

√
3x2

1 + x2
2 − 5, ±

√
3 − 2x2

1

)
*Remark 5.19. In the setting of infinite dimensional complete normed vector spaces, the
Inverse Function Theorem can be used to prove a version of the Implicit Function Theo-
rem. Such a result can be used to prove a version of Picard’s Theorem on existence and
uniqueness of solutions to differential equations. See [R] for more details.

6 Submanifolds of Rn

6.1 Definition and basic properties

The goal of this section is to apply the inverse and implicit function theorems to geome-
try. The theorems allow us to show the equivalence of two natural definitions of a smooth
surface in R3, and, more generally, define the notion of a submanifold of Rn.

Example 6.1. Let S = {x ∈ R3 : x2
1 + x2

2 + x2
3 = 1} is the standard unit sphere. It is smooth

(in a sense that we have yet to make precise) and we can describe the points which lie on it
in (at least) two ways. The first is implicit in the definition – a point p = (x1.x2.x3) lies in S
if the function f (x1, x2, x3) = x2

1 + x2
2 + x2

3 evaluates to 1 on p, that is, S is a level set of the
function f .

The second way to describe points on S is via a parametrization: for example, the map
φ : [−1, 1] × [−π, π) → R3 given by (t, θ) 7→ (cos(θ).

√
1 − t2, sin(θ).

√
1 − t2, t) has S as its

image, thus we can use the parameters (t, θ) to study S . Note that our parametrizing map φ
is not injective, though it is on much of its domain. In general we will usually only be able
to obtain parametrizations of a surface locally, that is, given a point p on our surface S , we
will show that there is a diffeomorphism from an open subset U of R2 to an open subset V
of our surface containing p.

On the other hand, if we only wish to obtain parametrizations for open subsets of a
surface, we can often use the Implicit Function Theorem to turn the condition f (x1, x2, x3) =

0 into an equation for one of the variables in terms of the others. For example, if H3 = {x ∈

R3 : x3 > 0}, then on H3 ∩ S we may write S as the graph of h(x1, x2) =

√
1 − x2

1 − x2
2, that

is, in H3 we have x ∈ S if and only if S ∈ graph(h) = {(x1, x2, h(x1, x2)) : (x1, x2) ∈ V},
where V = {(x1, x2) ∈ R2 : x2

1 + x2
2 < 1}.
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Definition 6.2. Let M ⊆ Rn be a closed subset. We say that M is a k-dimensional subman-
ifold of Rn if, for every point p ∈ M, there is an open subset U of Rn containing p and a
smooth13 function f : U → Rn−k such that M ∩ U = f −1(0), and at each p ∈ M ∩ U the
derivative D fp has maximal rank, that is rank(D fp) = n − k.

We say that M is Ck if we can choose f ∈ Ck(U,Rn−k) where k ∈ N ∪ {∞}. If k = ∞ we
say M is a smooth submanifold of Rn.

Informally, this definition says that, locally (i.e. near any given point of M) the sub-
manifold is given as the level-set of n − k smooth functions (the components of f ) which
are not “tangent to each other” – this last requirement being captured by the rank condition.

The Implicit Function Theorem allows us to relate this definition to the second method
of understanding surfaces discussed above, namely, via parametrizations. In the next theo-
rem, for k ≤ n we view Rk as a subspace of Rn spanned by {e1, . . . , ek}.

Theorem 6.3. Let M be a k-dimensional submanifold of Rn, and let p ∈ M. Then there is
an open subset V of Rn containing p, and a diffeomorphism ψ : U → V such that M ∩ V =

ψ(U ∩ Rk). In particular, ψ|U∩Rk : U ∩ Rk → M ∩ V gives a parametrization of M ∩ V .

Proof. By definition, there is an open set V1 containing p and a function f : V → Rn−k

such that V1 ∩ M = {x ∈ V : f (x) = 0n−k}, and rank(D fx) = n − k for all x ∈ V1. But
then Theorem 5.12 shows that there is a diffeomorphism ψ : U → V ⊆ V1, where U an
open neighbourhood of 0n and V1 ⊆ V is an open neighbourhood of p, such that in the
coordinate system (t1, . . . , tn) given by ti = xi ◦ ψ

−1, the function f is given by (tk+1, . . . , tn)
(that is, for v ∈ V1, we have f (v) = (tk+1(v), . . . , tn(v))). Moreover, the functions (t1, . . . , tk)
parameterise the submanifold M on the open subset M ∩ V of M: if (t1, . . . , tk, 0, . . . , 0) ∈
Rk ∩ U, and we set φ(t1, . . . , tk) = ψ(t1, . . . , tk, 0, . . . , 0) then φ(t1, . . . , tk) ∈ M ∩ V and if
u ∈ M ∩ V then u = φ(t1, . . . , tk) for ti = xi ◦ ψ

−1.
�

Remark 6.4. As discussed in Remark 5.13, our proof of Implicit Function Theorem in fact
shows that, at least locally, a submanifold can be viewed as the graph of a C1 function, or
in terms of our more explicit version of the Implicit Function Theorem. if we pick some
(n− k)× (n− k) of the Jacobian matrix of D fx0 which is invertible, then in a neighbourhood
of x0 the equation f (x) = 0 allows us to express the corresponding coordinates as functions
of the remaining k coordinates.

Example 6.5. Suppose that f : R2 → R is given by f (x1, x2) = x1x2. Then D f(x1,x2) =

(x2, x1) and hence rank(D f(x1,x2) = 1 unless (x1, x2) = (0, 0). Then for all c , 0, the level-
sets f −1(c) are smooth 1-submanifolds of R2, but f −1(0) = {(x, 0) : x ∈ R} ∪ {(0, y) : y ∈ R},
which is not smooth at the origin (0, 0), exactly the point where D f fails to have maximal
rank.

On the other hand, if f : U → R is any continuously differentiable function on an open
subset of Rn, its graph Γ( f ) = {(x, f (x)) : x ∈ U} ⊂ Rn+1 = Rn × R is always a smooth

13At least continuously differentiable, but many texts automatically assume infinitely differentiable.
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n-submanifold of Rn+1: We will write a vector in Rn+1 as (x, y) where x ∈ Rn and y ∈ R.
The graph Γ( f ) is the 0 level-set of g : U × R → R given by g(x, y)) = f (x) − y. Then
Dg(x,y) has Jacobian matrix (∂1 f (x), . . . , ∂n f (x),−1), and since matrix clearly always has
rank 1, the level set g−1(0) = Γ( f ) is a smooth n-submanifold of Rn+1. A similar argument
shows that the graph of any C1-function f : U → Rm on an open subset U of Rn is a smooth
n-submanifold of Rn+m.

Example 6.6. Suppose that n ∈ R3 is a unit vector and C = {x = (x1, x2, x3) ∈ R3 :
x2

1 + x2
2 − x2

3 = 0, n · x = d}. Then C is a level set of the function f : R3 → R2, where
f (x1, x2, x3) = (x2

1 + x2
2 − x2

3, n1x1 + n2x2 + n3x3): indeed C = f −1({(0, d)}). We have

D fx =

(
2x1 2x2 −2x3
n1 n2 n3

)
Then D f has rank 2 off the line R.(n1, n2,−n3). If d = 0 then clearly 0 ∈ C and D f0 has
rank 1, so we will suppose that d , 0. But then it is easy to check the line R.(n1, n2,−n3)
does not intersect the surface f1(x) = 0, and hence D f has rank 2 at every point of C, and
so C is a 1-dimensional submanifold of R3.

Suppose we wish to parameterize the curve C. The Implicit Function Theorem in the
form of Theorem 5.16 shows that, at least locally we can write it as the graph of any one
of our coordinates x1, x2, x3. In fact, by rotating around the x3-axis, we may assume that
n = (n1, 0, n3), and hence we may write n = (cos(φ), 0, sin(φ)) for some θ ∈ R. Then C is
given by the system of equations:

x2
2 = x2

3 − x2
1 = (x3 − x1)(x3 + x1),

cos(φ)x1 + sin(φ)x3 = d.

If cos(φ) = 0, it is easy to see that C is just one of the circles C±d = {(x1, x2,±d) : x2
1 + x2

2 =

d2}, so assume cos(φ) , 0. Moreover, if cos(φ) = sin(φ) then C is clearly a parabola with
parametrization s 7→ (d1 + (s/2d1)2, s, d1− (s/2d1)2), where d1 = d/

√
2. Otherwise, writing

` = d/ cos(φ), we have x1 = ` − tan(φ)x3, and hence our equations become

x2
2 = ((1 + tan(φ))x3 − `)((1 − tan(φ))x3 + `) = (1 − tan(φ)2)x2

3 + 2` tan(φ).x3 − `
2

Since ` = d/ cos(φ) , 0, then the quadratic on the left is non-negative on Iφ = R\(−2, 2)
when tan(φ) < 1 and non-negative on Iφ = [2, 2] when tan(φ) > 1. and hence writing
t = tan(φ) we obtain a parameterization:

C = {(` − t.s,±
√

(1 − t2).s2 + 2t`.s − `2, s) : s ∈ Iφ}

= {(1 − t.s,±
√

(1 − t2)s2 + 2t.s − 1, s) : s ∈ `.Iφ}.

Thus we obtain ellipses or hyperbolas for tan(φ) > 1 and tan(φ) < 1 respectively. The signs
which occur, as before, are determined, for example, by choosing a point p ∈ C around
which we wish to obtain a local parameterization.
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Of course the Implicit Function Theorem can also be applied starting with different local
coordinates at a point p ∈ C: Indeed it might, given the nature of f , be more sensible to start
with the cylindrical polar coordinates ρ(r, θ, z) = (r cos(θ), r sin(θ), z): In these coordinates
the level-set C becomes {p ∈ R3 : r2 − z2 = 0, r cos(θ) cos(φ) + z sin(φ) = d}, where
p = ρ(r, θ, z) = (r(p), θ(p), z(p)).

Note that the derivative of f = ( f1, f2) with respect to these coordinates is

D f(r,θ,z) =

(
2r 0 −2z

cos(θ) cos(φ) −r sin(θ) cos(φ) sin(φ)

)
.

and so has rank 2 provided r , 0 and θ , nπ (when cos(φ) , 0),
The level set f1(p) = 0 is thus parameterized by (s1, s2) 7→ (s1 cos(s2), s1 sin(s2), s1) ∈

R3, or equivalently14 (s1, s2) 7→ ρ(s1, s2, s1), for (s1, s2) ∈ R2. Since the case cos(φ) = 0 is
equally easy to handle in this setting, we assume cos(φ) , 0, and again set ` = d/ cos(θ).
We then find that C can be parameterized by s ∈ R via

s 7→ ρ(r(s), θ(s), z(s)) = ρ(
`

tan(φ) + cos(s)
, s,

`

(tan(φ) + cos(s))
).

Thus recovering the polar form for the equations of a parabola, ellipse or hyperbola. One
can also determine the differential equation the function g(s) = (r(s), z(s)) must satisfy, as
we did in Example 5.1, which can be solved in this case by separation of variables.

6.2 Tangent spaces and normal vectors

We now wish to define the notion of tangent vectors and normal vectors at a point in a
submanifold of Rn.

Definition 6.7. Let M be a subset of Rn and let p ∈ M. A curve through p on M is a
continuously differentiable function γ : (−r, r) → Rn, where r > 0, such that the image of
γ lies in M and γ(0) = p. The derivative of γ′(0) of γ at t = 0 is a tangent vector to M at
p ∈ M. The set of all tangent vectors to M at p is denoted TpM. If a vector w ∈ Rn satisfies
w · v = 0 for all v ∈ TpM we say that w is a normal vector to M at p. We will write the set
of normal vectors to M at p as TpM⊥.

The following two Lemmas are easy consequences of the Chain Rule. Roughly speak-
ing, it says that if M is a level-set of a function f , then the tangent space of M at a point p
is contained in the zero level-set of the derivative D fp of f at p, i.e. the “linearisation” of f
at p. In the case of a submanifold, they will actually be equal.

Lemma 6.8. Let f : U → Rn−k, be differentiable and set S = {x ∈ U : f (x) = 0}. Then

TpS ⊆ ker(D fp).
14If z < 0 then this shifts s2 by π from the normal convention of r > 0.
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Proof. This is immediate from the chain rule: If γ : (−r, r)→ U is a curve with image in M
and γ(0) = p, then f (γ(t)) = 0 and so by the chain rule we have

0 = D fγ(0)(γ′(0)) = D fp(γ′(0)).

It follows immediately that TpM ⊆ ker(D fp) as required. �

Lemma 6.9. Let M and N be a subset of Rn and suppose that p ∈ M. If ψ : U → V is a
diffeomorphism (that is, ψ ∈ C1(U,Rn)) such that ψ(M ∩ U) = N ∩ V , then if q = ψ(p)

Dψp(TpM) = TqN.

Proof. If v ∈ TpM then by definition we can find a curve γ : (−r, r)→ Rn whose image lies
in M with γ(0) = p and γ′(0) = v. Since U is open, γ−1(U) is open in (−1, 1), and since it
contains 0, it follows there is some s > 0 with γ(−s, s) ⊆ U. Replacing γ with its restriction
to (−s, s) we may thus assume that the image of γ lies in U. But then ψ ◦ γ is a curve in
N, and the chain rule shows that Dψp(v) = (ψ ◦ γ)′(0), so that Dψ(v) ∈ TqN. It follows
Dψp(TpM) ⊆ TqN.

Since ψ is a diffeomorphism, we can apply the above to ψ−1, hence Dψ−1
q (TqN) ⊆ TpM.

Since Dψ−1
q = (Dψp)−1 the result follows. �

In general, if M is the level-sets of an arbitrary differentiable function, the inclusion in
the previous Lemma can be strict. However, when M is a submanifold of Rn locally defined
by the vanishing of f , then TpM = ker(D fp).

Example 6.10. Now case where M = {x ∈ Rn : xl = 0,∀l > k} and p = 0n. Then M is
defined by the vanishing of f (x) = (xk+1, . . . , xn}. Then it is clear that D f0 has kernel given
by spanR{e1, . . . , ek}. On the other hand, if v = (v1, . . . , vk, 0, . . . , 0), then γ(t) = t.v lies in
M, and γ′(0) = v, hence we see that v ∈ T0M if and only if D f0(v) = 0.

The above example along with the Implicit Function Theorem shows the following:

Proposition 6.11. Let M be a k-dimensional submanifold of Rn and let p ∈ M. Then if U
is an open subset of Rn such that M ∩ U = f −1(0), where f : U → Rn−k is continuously
differentiable with D fx of maximal rank for all x ∈ U. Then we have

TpM = ker(D fp).

In particular, TpM is a k-dimensional vector subspace.

Proof. We have already shown the containment TpM ⊆ ker(D fp) in Lemma 6.8, so it
remains to establish the reverse inclusion. In the case where f = (xk+1, . . . , xn) this was
shown in the previous Example, but the Implicit Function Theorem shows us that, for any
point p ∈ M, we can find a diffeomorphism ψ : V → U from an open neighhourhood V
of 0n to an open neighbourhood U of p taking N ∩ V to M ∩ U where N = {x ∈ U :
(xk+1, . . . , xn) = 0n−k}. The result then follows from Lemma 6.9. �
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Using the notion of gradient vector fields, we can also describe the normal space TpM⊥

of a k-dimensional submanifold:

Proposition 6.12. Suppose that M is a k-dimensional submanifold and p ∈ M. If U is an
open neighbourhood of p such that M ∩ U is given by f −1(0) where f : U → Rn−k is a
continuously differentiable function, then if f = ( f1, . . . , fn−k) we have

TpM⊥ = spanR{∇ f1(p), . . . ,∇ fn−k(p)}.

In particular TpM⊥ is a vector space of dimension n − k.

Proof. By Proposition 6.11, the tangent space TpM = ker(D fp) is a k-dimensional sub-
space of Rn. Let f = ( f1, . . . , fn−k) and let N = spanR{∇ f1(p), . . . ,∇ fn−k(p)}, an (n − k)-
dimensional subspace. Now the rows of the Jacobian matrix of D fp are given by ∇ fi(p)T ,
so that

D fp(v) =

n−k∑
i=1

(∇ fi(p) · v)ei

It follows that v ∈ TpM if and only if v ∈ N⊥. Thus TpM = N⊥ and hence N = TpM⊥ as
required. �

Example 6.13. Let S = {(x1, x2, x3) ∈ R3 : x2
1+2x2

2−7x2
3 = 1}. Then if f (x) = x2

1+2x2
2−7x2

3,
the surface S is a level-set of f . Since ∇ f (x) = (2x1, 4x2,−14x3), the function f has
maximal rank (i.e. rank 1) everywhere except 0, and since 0 < S , it follows that S is
a 2-dimensional submanifold of R3. The tangent and normal spaces to S at a point a =

(a1, a2, a3) is then

TaS = {v = (v1, v2, v3) ∈ R3 : 2a1.v1 + 4a2.v2 − 14a3.v3 = 0},

TpS ⊥ = {λ.(2a1, 4a2,−14a3) : λ ∈ R}

Example 6.14. Let On(R) = {X ∈ Matn(R) : X.XT = In} be the orthogonal group, the
group of linear isometries of Rn (equipped with the ‖.‖2-norm). We claim this is a smooth
submanifold of Matn(R) of dimension n(n − 1)/2.

Now the definition of On(R) shows that it is a level-set of the function q(X) = X.XT ,
which has entries which are degree two polynomials in the entries of X. Thus q(X) is clearly
continuously differentiable, and moreover DqX(H) = X.HT + H.XT , since

q(X + H) = (X + H).(X + H)T = q(X) + H.XT + X.HT + H.HT ,

and ‖H.HT ‖∞ ≤ ‖H‖∞.‖HT ‖∞ so that ‖H‖−1
∞ H.HT → 0 as H → 0 (since clearly HT → 0 as

H → 0).
Now (X.XT )T = X.XT , so the image of q lies in the linear subspace S (Rn) of symmetric

matrices in Matn(R), which is a subspace of dimension n(n + 1)/2. Thus it will follows that
On(R) is a submanifold of dimension n(n − 1)/2 if we can show that DqX is a surjective
linear map from Matn(R) to S . But if C ∈ S then (CX)T = XT .C = X−1.C, so that

DqX(
1
2

(C.X)) =
1
2

(C.X.XT + X.(C.X)T ) =
1
2

(C.In + In.C) = C,
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so that Dq is surjective as required.
The group On(R) is thus what is known as a Lie group. Its tangent space at the identity

In is denoted by on(R). Explicitly this is ker(DqIn) = {H ∈ Matn(R) : H + HT = 0}. It
carries a kind of non-associative product, called a Lie bracket: If H1,H2 ∈ on(R) then you
can check that [H1,H2] = H1H2 − H2H1 ∈ on(R). The Lie algebra structure gives a kind
of “infinitesimal” or deriviative of the group structure on On(R). This is studied in detail in
courses in Part C.

6.3 *Abstract Manifolds

Suppose that M is a k-dimensional submanifold of Rn. If V is an open neighbourhood of a
point p ∈ M, then there is an open subset of Rn with V = M ∩ U. Shrinking V and U is
necessary, we can find a diffeomorphism ψ : B(0, r) → U such that ψ(V ∩ (Rk ⊕ 0n−k)) =

M ∩ U. If we write ψ−1(x) = (t1, . . . , tn), then if f : M ∩ U → R is any function, we may
define f̃ : U → R by

f̃ (x) = f ◦ (ψ(t1, . . . , tk, 0, . . . , 0)).

If x ∈ M∩U then (̃ f )(x) = f (x), so that f̃ extends f to a function on U an open subset of Rn.
We then say that f is C1 at x ∈ M ∩ U if f̃ is. Using the chain rule, one can check that this
definition is independent of the choice of diffeomorphism ψ. In effect, f is differentiable at
x ∈ M ∩U if it is differentiable as a function of the parameters (t1, . . . , tk). Thus the crucial
fact is that we can equip M, at least locally, with “C1-coordinates”.

There is a notion of an abstract differentiable k-dimensional manifold: This is a topo-
logical space M, equipped with a collection of “charts” {φi : Ui → Vi : i ∈ I}, where the
collection {Vi : i ∈ I} forms an open cover of M (that is, M =

⋃
i∈I Vi and each Vi is an open

subset of M) the Ui are open subsets of Rk, and the φi are homeomorphisms. The charts
allow us to say when a function f : M → R is continuously differentiable: if x ∈ M, we
say f is differentiable at x ∈ M if f ◦ ψi is differentiable at ψ−1

i (x), where i ∈ I is such that
x ∈ Vi. In order for this definition to be consistent, the charts must satisfy a compatibility
condition: if x ∈ Vi ∩ V j lies in the image of two charts ψi and ψ j we need f ◦ ψi to be
differentiable at ψ−1

i (x) if and only if f ◦ ψ j is C1 at ψ−1
j (x). But by the chain rule, this

follows if ψ−1
j ◦ ψi : Ui ∩U j → Ui ∩U j is diffeomorphism, and this is exactly the compati-

bility condition which is imposed. Abstract differentiable manifolds are studied in the Part
C course "Differentiable Manifolds".

7 Lagrange multipliers

Suppose U is an open subset of Rn and g : U → R is differentiable. We wish to study local
extrema of g – unconstrained at first, and then on submanifold M ∩ U ⊂ Rn.

Lemma 7.1. Suppose that p ∈ U is a local minimum of g, so that there is an r > 0 such
that if x ∈ B(p, r) ⊆ U, then g(x) ≥ g(p). Then Dgp = 0.
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Proof. It is convenient to use the gradient vector field ∇g. Suppose for the sake of contra-
diction that Dgp , 0. Then ∇g(p) , 0 and we may set u = ∇g(p)/‖∇g(p)‖, so that u is the
vector of unit length in the direction of ∇g(p). Then the curve γ : (−r, r) → Rn given by
γ(t) = p + t.u has image in U, so that we may define G(t) = g(γ(t)). By the chain rule, we
have

G′(0) = Dg(γ(0))(γ′(0)) = Dgp(u) = ∇g(p) · u = ‖∇g(p)‖ > 0.

Thus, by Lemma 4.1, we have

G(t) = G(0) + G′(0).t + ε(t).|t| = G(0) + t.
(
G′(0) ± ε(t)

)
,

where the first equality defines ε(t) for t , 0 and ε(t) → 0 = ε(0) as t → 0. Thus since
G′(0) > 0 it follows that for all sufficiently small negative t we must have G(t) < G(0) =

g(p), contradicting the fact that g(p) is a local minimum. �

We now wish to study the problem of minimizing g : UR given constraints on x ∈ U.
Before formulating the general result, consider the problem of trying to minimize a function
g : R3 → R on a surface S = {x ∈ R3 : f (x) = 0}. In the unconstrained setting, as we just
saw, if a point a ∈ R3 is a local minimum for g we must have ∇g(a) = 0: This need not be
the case in the constrained setting.

Example 7.2. Let f (x) = x2
1 + x2

2 + x2
3 −1, and let S = {x ∈ R3 : f (x) = 0}. Suppose that we

wish to mimimize g(x) = x3 on S . Clearly Dgx = (0, 0, 1) never vanishes, but it is easy to
check that p = (0, 0,−1) minimizes g on S . Notice that, since D fx = 2(x1, x2, x3), we have
2∇g(p) + ∇ f (p) = 0, so that ∇g(p) is normal to the surface S at the extreme point p ∈ S .

This example is not a coincidence: if we consider the proof of the previous lemma,
the strategy relies on the fact that perturbing p in the direction −∇g(p) should decrease the
value of g. Now if we are to stay on S , then we cannot necessarily move along a curve
in the direction of ∇(g). However, unless ∇g(p) is perpendicular to TpS , we may write
∇g(p) = v + n where v ∈ TpS and n ∈ TpS ⊥, with v , 0. We can check that if we perturb
in the direction of −v, then g decreases:

To make this precise, since v ∈ TpS , we can find a curve γ : (−r, r) → S such that γ is
continuously differentiable, γ(0) = p, and γ′(0) = v. Then if G(t) = g(γ(t)), we have

G′(t) = Dg(γ(0))(γ′(0)) = Dg(p)(v) = ∇g(p) · v = ‖v‖ > 0,

hence, as in the proof of Lemma 7.1, for all sufficiently small negative t, we have g(γ(t)) <
g(p), and so p cannot be a local minimum of g on S . It follows that at such a local minimum,
we must have ∇g(p) ∈ TpS ⊥. But we know that TpS ⊥ is spanned by ∇ f (p) where S = {x ∈
R3 : f (x) = 0}, so that the condition that ∇g(p) ∈ TpS ⊥ is equivalent to the existence of
scalars λ0, λ1 ∈ R such that

λ0Dg(p) + λ1D f (p) = 0.

The scalars λ0, λ1 are known as Lagrange multipliers. The following theorem shows that
this analysis works in general:
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Theorem 7.3. Let U be an open subset of Rn, and let g : U → R be continuously dif-
ferentiable. If M is a k-submanifold of Rn, and x0 ∈ U is a local minimum on M, then
∇g(p) ∈ Tx0 M⊥. Equivalently, if V is an open neighbourhood of x0 and f : V → Rn−k

continuously differentiable with M ∩ V = f −1(0), and components f = ( f1, . . . , fn−k), there
are scalars λ0, . . . , λn−k ∈ R, with λ0 , 0 such that

λ0Dg(x0) +

n−k∑
i=1

λiD fi(x0) = 0. (7.1)

Proof. As above, if g(x0) is a local minimum on M, and M is given by the vanishing of
f near x0, then by Proposition 6.12, Tx0 M⊥ has basis {∇ f1(x0), . . . ,∇ fn−k(x0)}, so that
∇g(x0) ∈ Tx0 M⊥ if and only if (7.1) holds for some scalars λi, 0 ≤ i ≤ n − k with λ0 , 0.

Thus it remains to check that at a local minimum on M, we have ∇g(x0) ∈ Tx0 M⊥.
Suppose for the sake of a contradiction this is not the case. Then we may write ∇g(x0) =

v + n, where v ∈ Tx0 M and n ∈ Tx0 M⊥, where v , 0. Then we may find a continuously
differentiable curve γ : (−r, r)→ Rn whose image is in M, with γ(0) = x0 and γ′(0) = v.

Then let G(t) = g(γ(t)). By the chain rule,

G′(0) = Dgx0(v) = ‖v‖ > 0,

and hence for all sufficiently small negative t, we have G(t) < G(0) = g(x0), contradicting
the minimality of g(x0).

�

Remark 7.4. Since the theorem asserts that λ0 , 0, one can, by rescaling the linear depen-
dence, assume that λ0 = 1.

Remark 7.5. If the we wish to optimize g over a set N = {x ∈ Rn : f (x) = 0}, where
f : V → Rn−k is a C1-function on an open subset V of Rn, but where we do not know
the rank of D f . If x0 is a local extremum, . The proof still shows, however, that at a
local extremum x0 ∈ N, ∇g(x0) must lie in the normal space Tx0 N⊥. However, without
the maximal rank condition, this gives less information: the gradient vector fields ∇ fi(x0)
of the components of f no longer have to be linearly independent, and the containment
Tx0 N ⊆ ker(D fx0) need not be an equality.

Remark 7.6. Despite the above remark, the Lagrange Multiplier theorem gives a remark-
ably powerful general technique for finding extrema in constrained optimization problems.

Example 7.7. Consider the problem of finding the extrema of the function g : R3 → R

given by g(x1, x2, x3) = x1 + x2 + 3x3, subject to the constraints that x = (x1, x2, x3) must
satisfy both f1(x) = x2

1 + x2
2 = 2 and f2(x) = x1 + x2 + x3 = 1, that is, x lies on the cylinder

of radius
√

2 centred along the x3-axis and on the plane perpendicular to (1, 1, 1) passing
through 1

3 (1, 1, 1). Let C = {x ∈ R3 : f1(x) = 2, f2(x) = 1} denote this locus, a level-set of
f : R3 → R2, where f = ( f1, f2).
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It is easy to check that C is bounded, and hence as any level-set is closed, it is compact.
It follows g attains a maximum and minimum on C. By the Lagrange multiplier theorem,
at such an extremum c = (c1, c2, c3) there must exist scalars λ1, λ2 ∈ R such that

∇g(c) = λ1∇ f1(c) + λ2∇ f2(c),

and hence
(1, 1, 3) = λ1(2c1, 2c2, 0) + λ2(1, 1, 1).

Thus λ2 = 3, and hence 2λ1c1 = 2λ1c2 = −2. It follows that c = (−λ−1
1 ,−(λ1)−1, c3). The

constraint f1(c) = 2 then implies λ1 = ±1 so that since f2(c) = 1 we see that if we set c± =

(±1,±1, 1 ∓ 2), the points c± are the only possibilities for extrema of g on C, and since we
know g attains a maximum and minimum value, we see that −1 = g(c+) ≤ g(x) ≤ g(c−) = 7
for all x ∈ C.

Example 7.8. Let us prove the Cauchy-Schwarz inequality using Lagrange multipliers.
Thus we wish to show that, for any two vectors a, b ∈ Rn we have |a · b| ≤ ‖a‖.‖b‖. This is
trivially true if either a or b is zero, so we may assume both are non-zero. But then we may
rewrite the inequality as (a/‖a‖) · (b/‖b‖) ≤ 1. Since a/‖a‖ and b/‖b‖ are unit vectors, we
are thus reduced to the following:

Problem: Maximize x · y for x, y ∈ Rn subject to the contraints that ‖x‖ = ‖y‖ = 1.

Let us formulate this in the language of Theorem 7.3. Let g : R2n = Rn ⊕ Rn
n be given

by g(x, y) = x · y (thus we use the same notational conventions as in Theorem 5.16) and
let f : R2n → R2 be given by f (x.y) = (x · x, y · y). We wish to maximize g subject to the
condition that (x, y) ∈ S = {(x, y) ∈ R2n : f (x.y) = (1, 1)}.

Now S is clearly compact (as it is closed and bounded) hence g attains a maximum
value on S . Now for any (x, y) ∈ S we have D f1,(x,y) = 2(x, 0) and D f2,(x,y) = 2(0, y), and
hence rank(D f(x0,y0) = 2, so that S is a 2n − 2-dimensional submanifold of R2n. Hence,
by Theorem 7.3, if p = (x0, y0) is a local maximum for g on S , there must exist scalars
λ1, λ2 ∈ R, not all zero, such that

∇g(x0, y0) = λ1∇ f1(x0, y0) + λ2∇ f2(x0, y0)

Now it is easy to see that Dg(x0, y0) = (y0, x0), hence the previous equation becomes

(y0, x0) = (2λ1.x0, 2λ2.y0),

so that, taking components in Rn and Rn
n we must have

y0 = 2λ1.x0, x0 = 2λ2.y0.

But then we must have y0 = λ1.x0 and x0 = λ2.y0, so that λ1λ2 = 1, and since ‖x0‖ = ‖y0‖ =

1, we must have |λ1| = |λ2| = 1 and hence either x0 = y0 or x0 = −y0. Since g(x0, x0) =

‖x0‖ = 1 and g(x0,−x0) = −‖x0‖ = −1, it follows immediately that −1 ≤ g(x, y) ≤ 1 on S
and we obtain the equalities g(x, y) = ±1 if and only if x = ±y.
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8 *Appendix

8.1 Proof of the Inverse Function Theorem

The following result is key to establishing the Inverse Function Theorem. It should be
interpreted as saying that if we perturb the identity map id : U → U by a small enough
function φ then the resulting function is still invertible.

Lemma 8.1. Suppose U is an open subset of Rn and that f : U → Rn is differentiable on
U. If 0 ∈ U and D f is continuous at 0 ∈ U, with D f0 = In, then if ϕ : U → Rn is given by
ϕ(x) = f (x) − x, there is an r > 0 such that for all x, y ∈ B̄(0, r) ⊂ U,

‖ϕ(x) − ϕ(y)‖ ≤
1
2
.‖x − y‖.

Proof. By definition, if f is differentiable at x ∈ U then Dϕx = D fx − In, so that Dϕ0 = 0.
Since Dϕ is continuous at a, there is an r > 0 such that ‖Dϕx‖∞ ≤ 1/2 for all x ∈ B(0, r1).
But then by the Mean Value Inequality (Theorem 4.22), we have ‖ϕ(x) − ϕ(y)‖ ≤ 1

2‖x − y‖
for all x, y ∈ B(0, r1) hence on B̄(0, r) for any r ∈ (0, r1). �

The next Proposition is the key step in proving Inverse Function Theorem. Roughly
speaking, it says that any function which is a small enough perturbation of the identity map
should remain a bijection – c.f. Q.5 on Problem Sheet 1.

Proposition 8.2. Let U ⊂ Rn be an open neighbourhood of 0, and let ϕ : U → Rn be a
function such that ϕ(0) = 0 and that, for some r > 0, we have

‖ϕ(x) − ϕ(y)‖ ≤
1
2
‖x − y‖ ∀x, y ∈ B(0, r).

Then if f : U → R is given by f (x) = x+ϕ(x), and y ∈ B̄(0, r/2), there is a unique x ∈ B̄(0, r)
such that f (x) = y. Moreover, the function g : B̄(0, r/2) → B̄(0, r) defined by f (g(y)) = y is
continuous.

Proof. Given y ∈ B̄(0, r/2), let ϕy(x) = y − ϕ(x). Then we have

‖ϕy(x)‖ = ‖y − ϕ(x)‖ ≤ ‖y‖ + ‖ϕ(x)‖ ≤ r/2 + r/2 = r,

so that ϕy maps B̄(0, r) to itself. Since B̄(0, r) ⊂ Rn is closed and Rn is complete, B̄(0, r)
itself is complete and non-empty. Moreover,

‖ϕy(x) − ϕy(x′)‖ = ‖ϕ(x′) − ϕ(x)‖ ≤
1
2
‖x − x′‖, ∀x, x′ ∈ B̄(0, r),

thus ϕy is a contraction on B̄(0, r). The Contraction Mapping Theorem thus implies that
there is a unique point xy with ϕy(xy) = xy, that is, f (xy) = xy+ϕ(xy) = y. Let g : B̄(0, r/2)→
B̄(0, r) be given by g(y) = xy.
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To see that g is continuous, let y1, y2 ∈ B̄(0, r). Then if x1 = g(y1), x2 = g(y2) we have

‖ f (x1) − f (x2‖ = ‖(x1 − x2) + (ϕ(x1) − ϕ(x2)‖ ≥ ‖x1 − x2‖ − ‖ϕ(x1) − ϕ(x2)‖

≥ ‖x1 − x2‖ −
1
2
‖x1 − x2‖ =

1
2
‖x1 − x2‖,

thus ‖y1 − y2‖ ≤ 2‖g(y1) − g(y2)‖ and hence g is Lipschitz continuous on B̄(0, r/2). �

Theorem 8.3. (Inverse Function Theorem.) Let U ⊂ Rn be an open set, and let f : U → Rn

be a differentiable function. Suppose that a ∈ U and f is continuously differentiable at a,
with D fa is invertible. Then there are open neighbourhoods U and V of a and b = f (a)
respectively, such that f restricts to a bijection between U and V . Moreover if g : V → U
is the inverse of f then g is differentiable with

Dg(y) = (D f (g(y)))−1.

and hence Dg is continuous at x if and only if D f is continuous at g(y).

Proof. By replacing f by x 7→ D f (a)−1( f (x + a)− f (a)), we may assume that a = f (a) = 0
and D f (a) = In. Then if we let ϕ(x) = f (x) − x, Lemma 8.1 shows that we may find an
r > 0 such that ‖D f − In‖∞ < 1/2 on B(0, r) and so ‖ϕ(x)−ϕ(y)‖ ≤ 1

2‖x−y‖. Thus it follows
from Proposition 8.2 that there is a Lipschitz continuous function g : B̄(0, r/2) → B̄(0, r),
with

f (g(y)) = y, ‖g(y1) − g(y2)‖ ≤ 2.‖y1 − y2‖, ∀y, y1, y2 ∈ B̄(0, r/2).

Set U = f −1(B(0, r/2))∩ B(0, r) which is open since f is continuous, and let V = f (U).
Then we have V = g−1(U) so that, as g is continuous, V is an open subset of B(0, r/2),
and f restricts to a homeomorphism between U and V . It remains to understand where g is
differentiable.

Fix y0 ∈ V and let x0 = g(y0), and T = D fx0 . We wish to show that g is differentiable at
y0 if f is differentiable at x0. Write g(y0 +k) = x0 +u(k), so that ‖u(k1)−u(k2)‖ ≤ 2.‖k1−k2‖.
If T = D fx0 then by definition we have

y0 + k = f (x0 + u(k)) = f (x0) + T (u(k)) + ‖u(k)‖.ε(x0 + u(k)),

where ε(x)→ 0 = ε(x0). and hence k = T (u(k))+‖u(k)‖.ε(u(k)). Now since ‖T−In‖∞ < 1/2,
by the Q.6 on the first Problem Sheet, T is invertible, and hence we have

u(k) = T−1(k) − ‖u(k)‖.T−1(ε(x0 + u(k))).

Thus g is differentiable at y0 with derivative T−1 provided

η(k) = −‖k‖−1‖u(k)‖.T−1(ε(u(k)))→ 0 as k → 0.

But since u is Lipschitz continuous, u(k)/‖k‖ is bounded – in fact ‖k‖−1‖u(k)‖ ≤ 2 – and
as u, ε are continuous at k = 0, x = x0 respectively, and T−1 is bounded, ‖η(k)‖ ≤
2.‖T−1(ε(u(k))

)
‖ → 0 as k → 0 as required.

Finally, note that we have shown that Dgy0 = (D fg(y0))−1 = ι◦D f ◦g, where ι denotes the
inversion map, which is continuous. It follows that Dg is continuous wherever D f is. �
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Remark 8.4. Notice also that the main difficulty in the proof is to show that f is locally
a homeomorphism – once the Lipschitz continuity of the inverse function g is known, it is
straight-forward to see where it must be differentiable. It is worth noticing that this was
true in the case of a single variable also: In Prelims Analysis you first prove a “continuous
inverse function theorem” and then deduce the differentiable inverse function theorem, but
the latter theorem is much easier given the continuous case.

Remark 8.5. If, instead of assuming that f : U → Rn is differentiable on U with D f
continuous at a = 0, we assume only that it is strongly differentiable at a (see Remark
4.15), then one can check that the hypotheses of Proposition 8.2 holds on B(0, r) for small
enough r. The arguments above then show that f is locally a homeomorphism at 0, and that
its inverse g is (strongly) differentiable at y if f is (strongly) differentiable at x = g(y).

8.2 Finite dimensional normed vector spaces

Here we give an alternative approach to the fact that all norms on a finite dimensional vector
space are equivalent.

8.2.1 Subspaces and quotient spaces

If (V, ‖.‖) is a normed vector space, then any linear subspace U clearly inherits the structure
of a normed vector space: the norm ‖.‖ restricts to a norm on U. A somewhat more delicate
question is whether the quotient vector space V/U inherits a norm. The first question is
to decide what the natural notion of a norm on V/U should be? A natural suggestion is to
consider how close the affine subspace x + U comes to the origin in V . This leads to the
definition of the function

x + U 7→ inf
{
‖x + u‖ : u ∈ U

}
.

Notice that while we might expect there to be a ”closest point” on x + U to the origin, it
is not necessary to determine whether or not that is indeed the case in order to check this
gives a norm on V/U, provided the subspace U is a closed subset of V .

Lemma 8.6. Let V be a normed vector space and let U be a closed subspace, that is, a
linear subspace which is also a closed subset of V . The the quotient vector space V/U
inherits a norm:

‖x + U‖ := inf{‖x + u‖ : u ∈ U}.

Moreover, the quotient map q : V → V/U is bounded, with ‖q‖∞ ≤ 1.

Proof. The requirement that U be a closed linear subspace is what ensures the positivity of
the norm ‖.‖ on V/U. Indeed since the norm on V is non-negative, certainly ‖x + U‖ ≥ 0,
but suppose now that ‖x+U‖ = 0. Then for any ε > 0, there is some u ∈ U with ‖x+u‖ < r.
But then −u ∈ B(x, ε), and since −u ∈ U, it follows that x is a limit point of U (that is, in
the notation of the metric spaces course, x ∈ L(U)). Since we are assuming U is closed, it
follows x ∈ U, and hence x + U = 0 + U, so that ‖.‖ satisfies the positivity condition for a
norm.
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The homogeneity of the function ‖.‖ on V/U is straight-forward, so we will only check
the triangle inequality here. Let x + U, y + U ∈ V/U. Then by the approximation property,
for any ε > 0, we may find u1, u2 ∈ U such that ‖x + U‖ ≤ ‖x + u1‖ < ‖x + U‖ + ε, and
‖y + U‖ ≤ ‖y + u2‖ < ‖y + U‖ + ε. But then since u1 + u2 ∈ U, by definition we have

‖(x + y) + U‖ ≤ ‖(x + y) + (u1 + u2)‖ = ‖(x + u1) + (y + u2)‖.

Thus, using the triangle inequality for the norm on V and our choice of u1 and u2 we have

‖(x + u1) + (y + u2)‖ ≤ ‖x + u1‖ + ‖y + u2‖ < (‖x + U‖ + ε) + (‖y + U‖ + ε)

= ‖x + U‖ + ‖y + U‖ + 2ε.

Combining these two inequalities, it follows that ‖(x + y) + U‖ < ‖x + U‖+ ‖y + U‖+ 2ε for
any ε > 0, and hence ‖(x + y) + U‖ ≤ ‖x + U‖ + ‖y + U‖, as required. �

Proposition 8.7. Let V and W be normed vector spaces and suppose that dim(V) < ∞.
Then any linear map α : V → W is automatically bounded, that is B(V,W) = L(V,W).

Proof. We prove this statement by induction on n = dim(V). First suppose dim(V) = 1,
and let α : V → W be a linear map. Pick e ∈ V a unit vector (so ‖u‖ = 1), so that if v ∈ V
is arbitrary, v = ±‖v‖.e and hence ‖α(v)‖ = ‖α(e)‖.‖v‖, so that ‖α‖∞ = ‖α(e)‖, that is, α is
bounded as required.

Now suppose that n = dim(V) > 1, and that we know any linear map whose domain is
a normed vector space of dimension less than n must be bounded. Let U < V be a subspace
of V of dimension k < n. Picking a basis {u1, . . . , uk} of U defines a linear isomorphism
φ : Rk → U where if x = (x1, . . . , xk) ∈ Rk then φ(x) =

∑k
i=1 xiui. By our inductive

hypothesis, φ is a topological isomorphism, and hence since Rk (viewed as a normed vector
space using the ‖.‖2 norm) is complete, so is U. It follows that U must therefore be closed
in V .

Now suppose α : V → W. Since dim(α(V)) ≤ n, we may pick a finite basis {w1, . . . ,wm}

of the image of α in W. Let αi : V → R be the components of α with respect to this basis,
that is, the functionals αi are defined by the equation α(v) =

∑m
i=1 αi(v).wi. Next note that α

is bounded if all of the αi are, since then

‖α(v)‖ ≤
m∑

i=1

|αi(v)|.‖wi‖ ≤

 m∑
i=1

‖αi‖∞.‖wi‖

 ‖v‖.
It thus suffices to show that any linear functional δ : V → R is bounded. This is clear

if δ = 0, so suppose δ , 0. Then H = ker(δ) is an (n − 1)-dimensional subspace of V , and
hence, as noted above, it is closed. But then the quotient space V/H is a normed vector space
and the quotient map q : V → V/H is bounded (with norm at most 1). But the functional
δ can be written as the composition δ = δ̄ ◦ q, where δ̄ : V/H → R is the injective linear
map induced by δ on V/H. But since dim(V/H) = 1 we know δ̄ is bounded, and hence its
composition with q is also bounded, and so δ is bounded as required. �
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Remark 8.8. This theorem shows that the topology T induced by any norm on a finite
dimensional vector space is independent of the choice of norm. In fact, with a bit more
thought it follows that this topology is determined by the linear functionals on V: the topol-
ogy T is determined by the condition that any linear functional on V is continuous.
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