Part A: Introduction to Manifolds Mathematical Institute, University of Oxford

Problem Sheet 2

(i) Show that there exists a real-valued \mathcal{C}^1 -function g defined on a neighbourhood of the origin in 1. \mathbbm{R} such that

$$g(x) = (g(x))^3 + 2e^{g(x)}\sin(x).$$

(ii) Show that the equations

$$e^{x} + e^{2y} + e^{3u} + e^{4v} = 4$$

 $e^{x} + e^{y} + e^{u} + e^{v} = 4.$

can be solved (implicitly) for u, v in terms of x, y near the origin.

2. Let $G_n = \operatorname{GL}_n(\mathbb{R})^+$ be the open subset of $\operatorname{Mat}_n(\mathbb{R})$ consisting of those $n \times n$ invertible matrices over \mathbb{R} with positive determinant. Show, directly from the definitions, that $f(A) = A^2$ is continuously differentiable on G_n . Deduce that there is some r > 0 for which there is a continuously differentiable function $q: B(I_n, r)$ such that $q(A)^2 = A$. Does such a function exist on all of G_n ?

3. Let $S = \{X \in \operatorname{Mat}_2(\mathbb{R}) : \operatorname{tr}(X) = 0\}$. The group $\operatorname{SL}_2(\mathbb{R})$ acts on S by conjugation, that is $g \cdot X = gXg^{-1}$. Describe the orbits of this action determining when they are submanifolds of S and what their dimension is.

[*Hint*: consider the characteristic polynomial of X. You may assume that $SL_2(\mathbb{R})$ is connected.]

4. By considering the function $f(x) = x + 2x^2 \sin(1/x)$ (extended by continuity to x = 0), show that the hypothesis that the derivative f'(x) is continuous cannot be removed.

Optional: If f strongly differentiable at x = 0? That is, is it true that $f(x) - f(y) = \alpha \cdot (x - y) + o(|x - y|)$ for some $\alpha \in \mathbb{R}$?

5. Deduce the Inverse Function Theorem from the Implicit Function Theorem. (Hint: Consider the graph of the function in the statement of the Inverse Function Theorem.)

6. Let $g: \mathbb{R}^n \to \mathbb{R}$ be given by $g(x_1, \ldots, x_n) = x_1.x_2.\ldots.x_n$. Find the maximum value of g on the set $S = \{x \in \mathbb{R}^n : x_i > 0, \forall i \in \{1, \ldots, n\}, \sum_{i=1}^n x_i = 1\}.$ Deduce the *arithmetic mean-geometric mean inequality*, that is, show that for positive real num-

bers x_1, \ldots, x_n the geometric mean $(x_1, \ldots, x_n)^{1/n}$ is always less than or equal to the arithmetic mean $n^{-1} \sum_{i=1}^{n} x_i$.