PROJECTIVE GEOMETRY - TRINITY 2021 - SHEET 1

Projective Spaces. Homogeneous Co-ordinates. Projective Transformations. General Position. Cross-ratio. (Exercises on recorded lectures 1-5)

In these questions, \mathbb{F} denotes the base field.

- **1.**(i) If we identify $(x, y) \in \mathbb{F}^2$ with the point $[1: x: y] \in \mathbb{FP}^2$, what is the point at infinity shared by all lines of the form y = mx + c, where m is fixed?
- (ii) Show that those projective transformations in $PGL(3,\mathbb{F})$ which map the line at infinity to itself form a subgroup of $PGL(3,\mathbb{F})$ which is isomorphic to

$$AGL(2, \mathbb{F}) = \{ \mathbf{x} \mapsto A\mathbf{x} + \mathbf{b} : A \in GL(2, \mathbb{F}), \mathbf{b} \in \mathbb{F}^2 \}.$$

Which of these mappings fix the line at infinity pointwise?

2.(i) Let $\mathbb{P}(U_1)$ and $\mathbb{P}(U_2)$ be two non-intersecting lines in the 3-dimensional projective space $\mathbb{FP}^3 = \mathbb{P}(\mathbb{F}^4)$. Show that

$$\mathbb{F}^4 = U_1 \oplus U_2$$
.

- (ii) Deduce that three pairwise non-intersecting lines in \mathbb{FP}^3 have infinitely many transversals, i.e. projective lines meeting all three.
- **3.** Let L_1, L_2 be two (nonempty) projective linear subspaces of a projective space $\mathbb{P}(V)$, corresponding to linear subspaces $U_1, U_2 \subset V$. Show that the span

$$\langle L_1, L_2 \rangle = \mathbb{P}(U_1 + U_2)$$

is the union of projective lines P_1P_2 with $P_i \in L_i$.

- **4.**(i) List the elements of $PGL(2, \mathbb{F}_2)$. What is the order of $PGL(2, \mathbb{F})$ if $|\mathbb{F}| = q$?
- (ii) By considering the action of $PGL(2, \mathbb{F}_2)$ on $\mathbb{F}_2\mathbb{P}^1$, show that $PGL(2, \mathbb{F}_2) \cong S_3$. Is $PGL(2, \mathbb{F}_3) \cong S_4$? Is $PGL(2, \mathbb{F}_5) \cong S_6$?
- **5.** Let a, b, c, d be four distinct points in \mathbb{C} . Show that a, b, c, d lie on a circline if and only if the cross-ratio (ab:cd) is real
- **6.** We say x_0, x_1 and x_2, x_3 are harmonically separated if $(x_0x_1 : x_2x_3) = -1$, where the x_i are distinct points in a projective line \mathbb{FP}^1 . Let a, b, c, d be four points in general position in the projective plane \mathbb{FP}^2 and let e, f, g be the diagonal points, i.e. $e = ac \cap bd, f = ab \cap cd, g = ad \cap bc$. Let ge meet ab at h. Prove that a, b and h, f are harmonically separated.
- 7. (i) Let $\tau \in PGL(2,\mathbb{C})$, other than the identity. Show that τ fixes either one or two points. Show that this need not be true over other fields.
- (ii) If τ fixes two points, show that there is an inhomogeneous co-ordinate z on \mathbb{CP}^1 with respect to which

$$\tau(z) = \lambda z, \qquad \lambda \neq 0, 1.$$

Is the same true over other fields?

- (iii) Let A_1, A_2, A_3 be three distinct points in \mathbb{CP}^1 and let $n \ge 3$ be an integer. Show that there is $\tau \in PGL(2, \mathbb{C})$ such that $\tau(A_1) = A_2, \tau(A_2) = A_3$ and τ has order n.
- **8.** Use the strategy outlined in the lectures to prove Pappus's Theorem: Let A, B, C and A', B', C' be two collinear triples of distinct points in the projective plane \mathbb{FP}^2 . Then the three intersection points $AB' \cap A'B, BC' \cap B'C$ and $CA' \cap C'A$ are collinear. Proceed by the following steps.
 - (i) Prove the theorem in the degenerate case when A, B, C', B' are not in general position.
 - (ii) If these 4 points are in general position, explain why without loss of generality we may take them to be

$$A = [1, 0, 0], \quad B = [0, 1, 0], \quad C' = [0, 0, 1], \quad B' = [1, 1, 1].$$

9. (Optional) Every line in the real affine plane \mathbb{R}^2 can be written in the form ax + by + c = 0 where a, b are not both zero. Of course, $\lambda ax + \lambda by + \lambda c = 0$ is an equation of the same line where $\lambda \neq 0$. Hence the space of lines can be identified with

$$M = \frac{\mathbb{R}^2 \backslash \{(0,0)\} \times \mathbb{R}}{\mathbb{R}^*}.$$

Identify M as a subspace of \mathbb{RP}^2 . What is the topology of M?