PROJECTIVE GEOMETRY - TRINITY 2021 - SHEET 2

Duality. Symmetric Bilinear Forms. Conics. Applications to Diophantine Equations. (Exercises on recorded lectures 5–9)

- 1. Write down the dual of Pappus' Theorem.
- **2**. Let P_0, P_1, P_2, P_3 be four distinct points in a projective plane $\mathbb{P}(V)$. Show that P_0, P_1, P_2, P_3 are in general position if and only if the lines $P_0P_1, P_1P_2, P_2P_3, P_3P_0$ are in general position in $\mathbb{P}(V^*)$.
- 3. Use general position arguments to show that given five points in the projective plane, such that no three are collinear, there is a unique conic through these five points.
- **4.** Let C, D be conics in a projective plane $\mathbb{P}(V)$, where V is a 3-dimensional real vector space, and suppose that $C \cap D = \{p_1, p_2, p_3, p_4\}$, where p_1, \ldots, p_4 are distinct points in $\mathbb{P}(V)$.
- (a) Show that p_1, \ldots, p_4 are in general position. Prove that there exist homogeneous coordinates $[x_0 \colon x_1 \colon x_2]$ on $\mathbb{P}(V)$ for which

$$p_1 = \begin{bmatrix} 1 \colon 1 \colon 1 \end{bmatrix}, \qquad p_2 = \begin{bmatrix} 1 \colon -1 \colon 1 \end{bmatrix}, \qquad p_3 = \begin{bmatrix} 1 \colon 1 \colon -1 \end{bmatrix}, \qquad p_4 = \begin{bmatrix} 1 \colon -1 \colon -1 \end{bmatrix}.$$

(b) Show that any conic through p_1, \ldots, p_4 has equation

$$\lambda x_0^2 + \mu x_1^2 + \nu x_2^2 = 0$$

where $\lambda + \mu + \nu = 0$.

- (c) Find four projective transformations τ of $\mathbb{P}(V)$ that form a group, and for which $\tau(C) = C$ and $\tau(D) = D$.
- **5**. Let $F(x_0, x_1, x_2)$ be a homogeneous polynomial of degree n. Let \mathcal{C} be the set of points $[a_0, a_1, a_2]$ in \mathbb{RP}^2 such that $F(a_0, a_1, a_2) = 0$. Let **a** be a point on \mathcal{C} . Provided that $\nabla F(\mathbf{a}) \neq \mathbf{0}$, the *tangent line* to \mathcal{C} at $\mathbf{a} = [a_0, a_1, a_2]$ is the line

$$x_0 \frac{\partial F}{\partial x_0}(\mathbf{a}) + x_1 \frac{\partial F}{\partial x_1}(\mathbf{a}) + x_2 \frac{\partial F}{\partial x_2}(\mathbf{a}) = 0$$

in \mathbb{RP}^2 and **a** is said to be *singular* if $\nabla F(\mathbf{a}) = \mathbf{0}$.

- (i) Show that **a** lies on the tangent line to **a**.
- (ii) Given a 3×3 symmetric real matrix B its associated *conic* is the set of solutions to the equation $\mathbf{x}^T B \mathbf{x} = 0$ where $\mathbf{x} = [x_0 : x_1 : x_2]$ and the conic is said to be *singular* if B is singular. Show that a conic is singular if and only if it has a singular point.
- (iii) Sketch the curves $y^2 = x^3$ and $y^2 = x^2(x+1)$ in \mathbb{R}^2 . What singular points do these curves have? Show that $y = x^3$ has a singular point at infinity.
- **6.** Find all rational numbers x, y such that $x^2 + y^2 xy = 1$.
- 7. Let V be a 3-dimensional real vector space and suppose that L_0, L_1, L_2, L_3 are four lines in the projective plane $\mathbb{P}(V)$ all intersecting in a common point x. Explain why
- (i) if L is a line in $\mathbb{P}(V)$ that does not pass though x, but intersects L_i in a point x_i (so x_0, x_1, x_2, x_3 are four distinct collinear points), then the cross-ratio $(x_0x_1 : x_2x_3)$ is independent of the choice of L;
- (ii) the cross-ratio defined in (i) equals the cross-ratio $(L_0L_1:L_2L_3)$ formed by regarding L_0, L_1, L_2, L_3 as collinear points of the dual projective plane $\mathbb{P}(V^*)$.