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Recollections on projective space

We start with a field IF, and a finite-dimensional F-vector space V.

Recall

P(V) = {one-dimensional vector subspaces of V'}

= V\{0}/(v ~ Av, X €T

Assume dim V =n+ 1, dimP(V) = n.
If we fix a basis {eq,...,e,} of V, then

vV =F

We will denote
FP" = P(F").



Coordinates on projective space

Fixing a basis {eg, ..., e,} of V, for v € V there is a unique decomposition

n
UV = E Ti€;.
1=0

Then
VA= (20, .., Tp) ~ (Axg, ..., Ay,).

We get
FP" = F"*\ {0} /(v ~ Av, X € TF).

Denote the equivalence class of this vector

] =[zg 10 ...y



Coordinates on projective space

We get projective coordinates

p=[=xg:2z1:...: 2, € FP"
Rules on projective coordinates:
(1) apoint in projective space p € FP" has dim P(V')41 coordinates (x, . . . , T);
(2) z; € F;
(3
(

)
) not all x; are 0;
4) (xg, .., Tn) ~ (Axg, ..., Ax,) for A € F*.



The projective line in coordinates

Take n = 1, so we are looking at FP! = P(IF?).
A point p € FP! has coordinates [xg : 1].

(1) &g # 0. Then

p=lxo:x]=[1:21/20] =[1: 0] for a € F.

(2) £y = 0. Then
p=10:21] =[0: 1] a unique point.

We get a bijection
FP' «— F U {*}
which we often write as
FP! «+— F U {oo}
with
0 : 1] = the point at oo.



The point at infinity

We have a bijection

FP! < F U {oo}.
We obtained this in the discussion of slopes of lines in F? in the previous lecture!
Important: this decomposition depends on choices.
1. We chose a basis on our two-dimensional vector space V to get V = F?,
2. Then we chose xg to be our distinguished coordinate.

There is no distinguished point on P(V') for V' a two-dimensional vector space.

Any point p € P(V) could serve as the point oco.
For if p = [v], then we can choose a basis

(€0, e1) = (v, w)

and then p = [Ow + 1v] = [0 : 1].



The point at infinity in the complex projective line

For F = C, we get a bijection
CP' <— C U {oo}.

This is nothing but the Riemann sphere!

Dfferent points of view on the Riemann sphere:

(1) CP! is the complex projective line, a one-dimensional object
over C.

(2) CuU{oco} is a sphere (via stereographic projection), a two-dimensional
object in real coordinates, so over R.




The projective plane in coordinates

Next, take n = 2, so we are looking at FP? = P(F?).
A point p € FP? has coordinates [zq : 71 : T2].

(1) xy # 0. Then
p=lro:xx)=11:21/x0: 02/0)] =[1:0¢:B] for o, B €F.

(2) £y = 0. Then
p=10: 2 : 29 a point in FP!

We get a bijection
FP? «+— F? 1 FP!
which we can think of as
FP? «+— F? U {line at oo}

with
[0 : 21 : 9] = ideal point on line at co in direction [z : x4).



The line at infinity in the projective plane

Once again, the decomposition
FP? «+— F? U {line at oo}
depends on choices:
1. We chose a basis on our three-dimensional vector space V' to get V = 3.
2. Then we chose x( to be our distinguished coordinate.

In the same way as before, any projective line (one-dimensional projective linear
subspace) L C FIP? can serve as line at infinity, with

FP? «— F2 1 L.



A decomposition of projective space

Take arbitrary n, with FP" = P(F"*1).

A point p € FP" has coordinates [xg : @1 @ ... 1 x,)].
(1) 2y # 0. Then
p=lro:...ixy) =1 21/x0: ... xy/zo) =[1:1:...: q for (a;) € F".

(2) g = 0. Then
p=10:21:...2, apoint in Fpr—1,

We get a bijection, depending on choices
FP" «— F" UFP""!
which we can think of as
FP" +— F" U {hyperplane at oo}
with

0: 21 :...:x,] =ideal point on hyperplane at oo in direction [z1 : ... : x,)].



Projective linear subspaces

Recall that projective linear subspaces in P(V') are P(U) for U < V X Ftl 4
linear subspace.
One way to view these is as zero-locus of linear, homogeneous equations

U—{U—(Qﬁi)ZZOZﬁQZ‘Z‘—O, j—l,...,m}—kerTSV

1=0

for a linear map

T:V — F"

given by the matrix A = («aj;).
We can write directly

P(U) = {[:L’Z] ; ZOéjzl’z':O, j = 1,...,m} C P(V)
i=0

Note that the equations in blue make sense on coordinates up to scale.



Lines in the plane, again

Go back to the case of the projective plane.

FP? +— F?UTFP!
[$QZSU13£L"2] — [12331/3301332/[8()] 1f$()7é0
0: 21 :29) —  [z1:29) € FP!

l:z:yl < (z,y)
Consider affine line
| ={y=2z+1} CF~

To get the corresponding projective line in FP?, we substitute z = 21/,
y = x9/xq to get, clearing denominator,

L = {xy =221 + 39} C FP%

Then we have

L=1uU{[0:1:2]}.



Lines in the plane, again

More generally, the “slope m” line
| ={y=mz+c} CF
becomes the projective line
L = {zy = mx, + cxy} C FP?
with decomposition
L=1U{[0:1:m]}.
The “vertical” line of "slope infinity”
| ={z =d} C F?

becomes
L={x;=dxo} =10[0:0:1] C F
Finally there is the ”ideal line at infinity”
Lo = {x9 =0} C FP*

which cannot be obtained from a line { C F? in this picture.



Lines in the plane, again




Real projective spaces

Finally let us look at the case F = R. Recall the n-sphere
S"={ad+.. . +2> =1} CcR"
As we can scale real vectors to real vectors of unit length, we have
RP" = R"™\ {0}/(v ~ Av, X €R¥)
= S"/(v~ —v).
Slogan: RP” is the same as S” with its antipodal points identified.

Corollary As a topological space, RIP" is connected and compact.

Proof The topological space S™ has these properties, and RP" is a surjective
image of S™ under a continuous map.



Real projective line

Example 1: RP! is the same as S with direction (angle) 6 identified with
direction (angle) 6 + .

In other words, points of the circle can be parametrized by # € R mod 27,
whereas directions in the plane are parametrized by [#] € R mod 7.



Real projective plane

Example 2: For the real projective plane RP?, we get
RP? = S?/(v ~ —0)
= V(v ~ —v)

where U? is the upper hemisphere, and the identification happens only
along its boundary.

This picture will be familiar to those who took the Topology course last term.



