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Recollections on projective space

We start with a field F, and a finite-dimensional F-vector space V .

Recall

P(V ) = {one-dimensional vector subspaces of V }
= V \ {0}/(v ∼ λv, λ ∈ F∗)

Assume dimV = n + 1, dimP(V ) = n.

If we fix a basis {e0, . . . , en} of V , then

V ∼= Fn+1.

We will denote

FPn = P(Fn+1).



Coordinates on projective space

Fixing a basis {e0, . . . , en} of V , for v ∈ V there is a unique decomposition

v =

n∑
i=0

xiei.

Then

v ∼ λv =⇒ (x0, . . . , xn) ∼ (λx0, . . . , λxn).

We get

FPn = Fn+1 \ {0}/(v ∼ λv, λ ∈ F∗).
Denote the equivalence class of this vector

[v] = [x0 : x1 : . . . : xn].



Coordinates on projective space

We get projective coordinates

p = [v] = [x0 : x1 : . . . : xn] ∈ FPn.

Rules on projective coordinates:

(1) a point in projective space p ∈ FPn has dimP(V )+1 coordinates (x0, . . . , xn);

(2) xi ∈ F;

(3) not all xi are 0;

(4) (x0, . . . , xn) ∼ (λx0, . . . , λxn) for λ ∈ F∗.



The projective line in coordinates

Take n = 1, so we are looking at FP1 = P(F2).

A point p ∈ FP1 has coordinates [x0 : x1].

(1) x0 6= 0. Then

p = [x0 : x1] = [1 : x1/x0] = [1 : α] for α ∈ F.

(2) x0 = 0. Then

p = [0 : x1] = [0 : 1] a unique point.

We get a bijection

FP1 ←→ F t {∗}
which we often write as

FP1 ←→ F t {∞}
with

[0 : 1] = the point at ∞.



The point at infinity

We have a bijection

FP1 ←→ F t {∞}.
We obtained this in the discussion of slopes of lines in F2 in the previous lecture!

Important: this decomposition depends on choices.

1. We chose a basis on our two-dimensional vector space V to get V ∼= F2.

2. Then we chose x0 to be our distinguished coordinate.

There is no distinguished point on P(V ) for V a two-dimensional vector space.

Any point p ∈ P(V ) could serve as the point ∞.

For if p = [v], then we can choose a basis

(e0, e1) = (v, w)

and then p = [0w + 1v] = [0 : 1].



The point at infinity in the complex projective line

For F = C, we get a bijection

CP1 ←→ C t {∞}.
This is nothing but the Riemann sphere!

Dfferent points of view on the Riemann sphere:

(1) CP1 is the complex projective line, a one-dimensional object

over C.

(2) Ct{∞} is a sphere (via stereographic projection), a two-dimensional

object in real coordinates, so over R.



The projective plane in coordinates

Next, take n = 2, so we are looking at FP2 = P(F3).

A point p ∈ FP2 has coordinates [x0 : x1 : x2].

(1) x0 6= 0. Then

p = [x0 : x1 : x2] = [1 : x1/x0 : x2/x0] = [1 : α : β] for α, β ∈ F.

(2) x0 = 0. Then

p = [0 : x1 : x2] a point in FP1.

We get a bijection

FP2 ←→ F2 t FP1

which we can think of as

FP2 ←→ F2 t {line at ∞}

with

[0 : x1 : x2] = ideal point on line at ∞ in direction [x1 : x2].



The line at infinity in the projective plane

Once again, the decomposition

FP2 ←→ F2 t {line at ∞}

depends on choices:

1. We chose a basis on our three-dimensional vector space V to get V ∼= F3.

2. Then we chose x0 to be our distinguished coordinate.

In the same way as before, any projective line (one-dimensional projective linear

subspace) L ⊂ FP2 can serve as line at infinity, with

FP2 ←→ F2 t L.



A decomposition of projective space

Take arbitrary n, with FPn = P(Fn+1).

A point p ∈ FPn has coordinates [x0 : x1 : . . . : xn].

(1) x0 6= 0. Then

p = [x0 : . . . : xn] = [1 : x1/x0 : . . . : xn/x0] = [1 : α1 : . . . : αn] for (αi) ∈ Fn.

(2) x0 = 0. Then

p = [0 : x1 : . . . xn] a point in FPn−1.

We get a bijection, depending on choices

FPn ←→ Fn t FPn−1

which we can think of as

FPn ←→ Fn t {hyperplane at ∞}
with

[0 : x1 : . . . : xn] = ideal point on hyperplane at ∞ in direction [x1 : . . . : xn].



Projective linear subspaces

Recall that projective linear subspaces in P(V ) are P(U) for U ≤ V ∼= Fn+1 a

linear subspace.

One way to view these is as zero-locus of linear, homogeneous equations

U =

{
v = (xi) :

n∑
i=0

αjixi = 0, j = 1, . . . ,m

}
= kerT ≤ V

for a linear map

T : V → Fm

given by the matrix A = (αji).

We can write directly

P(U) =

{
[xi] :

n∑
i=0

αjixi = 0, j = 1, . . . ,m

}
⊂ P(V )

Note that the equations in blue make sense on coordinates up to scale.



Lines in the plane, again

Go back to the case of the projective plane.

FP2 ←→ F2 t FP1

[x0 : x1 : x2] 7→ [1 : x1/x0 : x2/x0] if x0 6= 0

[0 : x1 : x2] 7→ [x1 : x2] ∈ FP1

[1 : x : y] ←[ (x, y)

Consider affine line

l = {y = 2x + 1} ⊂ F2.

To get the corresponding projective line in FP2, we substitute x = x1/x0,

y = x2/x0 to get, clearing denominator,

L = {x2 = 2x1 + x0} ⊂ FP2.

Then we have

L = l t {[0 : 1 : 2]}.



Lines in the plane, again

More generally, the “slope m” line

l = {y = mx + c} ⊂ F2

becomes the projective line

L = {x2 = mx1 + cx0} ⊂ FP2

with decomposition

L = l t {[0 : 1 : m]}.
The “vertical” line of ”slope infinity”

l = {x = d} ⊂ F2

becomes

L = {x1 = dx0} = l t [0 : 0 : 1] ⊂ F2.

Finally there is the ”ideal line at infinity”

L∞ = {x0 = 0} ⊂ FP2

which cannot be obtained from a line l ⊂ F2 in this picture.



Lines in the plane, again



Real projective spaces

Finally let us look at the case F = R. Recall the n-sphere

Sn = {x20 + . . . + x2n = 1} ⊂ Rn+1.

As we can scale real vectors to real vectors of unit length, we have

RPn = Rn+1 \ {0}/(v ∼ λv, λ ∈ R∗)
= Sn/(v ∼ −v).

Slogan: RPn is the same as Sn with its antipodal points identified.

Corollary As a topological space, RPn is connected and compact.

Proof The topological space Sn has these properties, and RPn is a surjective

image of Sn under a continuous map.



Real projective line

Example 1: RP1 is the same as S1 with direction (angle) θ identified with

direction (angle) θ + π.

In other words, points of the circle can be parametrized by θ ∈ R mod 2π,

whereas directions in the plane are parametrized by [θ] ∈ R mod π.



Real projective plane

Example 2: For the real projective plane RP2, we get

RP2 = S2/(v ∼ −v)

= U 2/(v ∼ −v)

where U 2 is the upper hemisphere, and the identification happens only

along its boundary.

This picture will be familiar to those who took the Topology course last term.


