Projective Geometry Lecture 3: Projective coordinates

Balázs Szendrői, University of Oxford, Trinity term 2021

We start with a field $\mathbb F,$ and a finite-dimensional $\mathbb F\text{-vector space }V.$ Recall

$$\mathbb{P}(V) = \{ \text{one-dimensional vector subspaces of } V \}$$

= $V \setminus \{0\}/(v \sim \lambda v, \ \lambda \in \mathbb{F}^*)$

Assume dim V = n + 1, dim $\mathbb{P}(V) = n$.

If we fix a basis $\{e_0, \ldots, e_n\}$ of V, then

$$V \cong \mathbb{F}^{n+1}.$$

We will denote

$$\mathbb{FP}^n = \mathbb{P}(\mathbb{F}^{n+1}).$$

Fixing a basis $\{e_0, \ldots, e_n\}$ of V, for $v \in V$ there is a unique decomposition

$$v = \sum_{i=0}^{n} x_i e_i.$$

Then

$$v \sim \lambda v \Longrightarrow (x_0, \ldots, x_n) \sim (\lambda x_0, \ldots, \lambda x_n).$$

We get

$$\mathbb{FP}^n = \mathbb{F}^{n+1} \setminus \{0\} / (v \sim \lambda v, \ \lambda \in \mathbb{F}^*).$$

Denote the equivalence class of this vector

$$[v] = [x_0 : x_1 : \ldots : x_n].$$

We get **projective coordinates**

$$p = [v] = [x_0 : x_1 : \ldots : x_n] \in \mathbb{FP}^n.$$

Rules on projective coordinates:

- (1) a point in projective space $p \in \mathbb{FP}^n$ has dim $\mathbb{P}(V)+1$ coordinates (x_0, \ldots, x_n) ;
- (2) $x_i \in \mathbb{F};$
- (3) not all x_i are 0;
- (4) $(x_0, \ldots, x_n) \sim (\lambda x_0, \ldots, \lambda x_n)$ for $\lambda \in \mathbb{F}^*$.

The projective line in coordinates

Take n = 1, so we are looking at $\mathbb{FP}^1 = \mathbb{P}(\mathbb{F}^2)$. A point $p \in \mathbb{FP}^1$ has coordinates $[x_0 : x_1]$.

(1) $x_0 \neq 0$. Then $p = [x_0 : x_1] = [1 : x_1/x_0] = [1 : \alpha]$ for $\alpha \in \mathbb{F}$. (2) $x_0 = 0$. Then $p = [0 : x_1] = [0 : 1]$ a unique point.

We get a bijection

$$\mathbb{FP}^1 \longleftrightarrow \mathbb{F} \sqcup \{*\}$$

which we often write as

$$\mathbb{FP}^1 \longleftrightarrow \mathbb{F} \sqcup \{\infty\}$$

with

[0:1] = the point at ∞ .

We have a bijection

$$\mathbb{FP}^1 \longleftrightarrow \mathbb{F} \sqcup \{\infty\}.$$

We obtained this in the discussion of slopes of lines in \mathbb{F}^2 in the previous lecture! Important: this decomposition depends on **choices**.

- 1. We chose a basis on our two-dimensional vector space V to get $V \cong \mathbb{F}^2$.
- 2. Then we chose x_0 to be our distinguished coordinate.

There is no distinguished point on $\mathbb{P}(V)$ for V a two-dimensional vector space. **Any point** $p \in \mathbb{P}(V)$ **could serve as the point** ∞ . For if p = [v], then we can choose a basis

$$(e_0, e_1) = (v, w)$$

and then p = [0w + 1v] = [0:1].

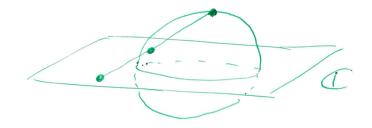
The point at infinity in the complex projective line

For $\mathbb{F} = \mathbb{C}$, we get a bijection

```
\mathbb{CP}^1\longleftrightarrow\mathbb{C}\sqcup\{\infty\}.
```

This is nothing but the Riemann sphere! Dfferent points of view on the Riemann sphere:

- (1) \mathbb{CP}^1 is the complex projective line, a one-dimensional object over \mathbb{C} .
- (2) C⊔{∞} is a sphere (via stereographic projection), a two-dimensional object in real coordinates, so over R.



The projective plane in coordinates

Next, take n = 2, so we are looking at $\mathbb{FP}^2 = \mathbb{P}(\mathbb{F}^3)$. A point $p \in \mathbb{FP}^2$ has coordinates $[x_0 : x_1 : x_2]$. (1) $x_0 \neq 0$. Then

$$p = [x_0 : x_1 : x_2] = [1 : x_1/x_0 : x_2/x_0] = [1 : \alpha : \beta] \text{ for } \alpha, \beta \in \mathbb{F}.$$

(2) $x_0 = 0$. Then $p = [0 : x_1 : x_2]$ a point in \mathbb{FP}^1 .

We get a bijection

$$\mathbb{FP}^2 \longleftrightarrow \mathbb{F}^2 \sqcup \mathbb{FP}^1$$

which we can think of as

$$\mathbb{FP}^2 \longleftrightarrow \mathbb{F}^2 \sqcup \{ \text{line at } \infty \}$$

with

 $[0: x_1: x_2] = \text{ideal point on line at } \infty \text{ in direction } [x_1: x_2].$

Once again, the decomposition

$$\mathbb{FP}^2 \longleftrightarrow \mathbb{F}^2 \sqcup \{ \text{line at } \infty \}$$

depends on choices:

- 1. We chose a basis on our three-dimensional vector space V to get $V \cong \mathbb{F}^3$.
- 2. Then we chose x_0 to be our distinguished coordinate.

In the same way as before, any projective line (one-dimensional projective linear subspace) $L \subset \mathbb{FP}^2$ can serve as line at infinity, with

 $\mathbb{FP}^2 \longleftrightarrow \mathbb{F}^2 \sqcup L.$

A decomposition of projective space

Take arbitrary n, with $\mathbb{FP}^n = \mathbb{P}(\mathbb{F}^{n+1})$. A point $p \in \mathbb{FP}^n$ has coordinates $[x_0 : x_1 : \ldots : x_n]$. (1) $x_0 \neq 0$. Then $p = [x_0 : \ldots : x_n] = [1 : x_1/x_0 : \ldots : x_n/x_0] = [1 : \alpha_1 : \ldots : \alpha_n]$ for $(\alpha_i) \in \mathbb{F}^n$. (2) $x_0 = 0$. Then $p = [0 : x_1 : \ldots : x_n]$ a point in \mathbb{FP}^{n-1} .

We get a bijection, **depending on choices**

$$\mathbb{FP}^n\longleftrightarrow\mathbb{F}^n\sqcup\mathbb{FP}^{n-1}$$

which we can think of as

$$\mathbb{FP}^n \longleftrightarrow \mathbb{F}^n \sqcup \{\text{hyperplane at } \infty\}$$

with

 $[0: x_1: \ldots: x_n]$ = ideal point on hyperplane at ∞ in direction $[x_1: \ldots: x_n]$.

Projective linear subspaces

Recall that projective linear subspaces in $\mathbb{P}(V)$ are $\mathbb{P}(U)$ for $U \leq V \cong \mathbb{F}^{n+1}$ a linear subspace.

One way to view these is as zero-locus of linear, homogeneous equations

$$U = \left\{ v = (x_i) : \sum_{i=0}^{n} \alpha_{ji} x_i = 0, \ j = 1, \dots, m \right\} = \ker T \le V$$

for a linear map

$$T\colon V\to \mathbb{F}^m$$

given by the matrix $A = (\alpha_{ji})$. We can write directly

$$\mathbb{P}(U) = \left\{ [x_i] : \sum_{i=0}^n \alpha_{ji} x_i = 0, \ j = 1, \dots, m \right\} \subset \mathbb{P}(V)$$

Note that the equations in blue make sense on coordinates **up to scale**.

Go back to the case of the projective plane.

$$\mathbb{FP}^2 \longleftrightarrow \mathbb{F}^2 \sqcup \mathbb{FP}^1$$

$$[x_0 : x_1 : x_2] \mapsto [1 : x_1/x_0 : x_2/x_0] \text{ if } x_0 \neq 0$$

$$[0 : x_1 : x_2] \mapsto [x_1 : x_2] \in \mathbb{FP}^1$$

$$[1 : x : y] \longleftrightarrow (x, y)$$

Consider affine line

$$l = \{y = 2x + 1\} \subset \mathbb{F}^2.$$

To get the corresponding projective line in \mathbb{FP}^2 , we substitute $x = x_1/x_0$, $y = x_2/x_0$ to get, clearing denominator,

$$L = \{x_2 = 2x_1 + x_0\} \subset \mathbb{FP}^2.$$

Then we have

$$L = l \sqcup \{ [0:1:2] \}.$$

More generally, the "slope m" line

$$l = \{y = mx + c\} \subset \mathbb{F}^2$$

becomes the projective line

$$L = \{x_2 = mx_1 + cx_0\} \subset \mathbb{FP}^2$$

with decomposition

$$L = l \sqcup \{ [0:1:m] \}.$$

The "vertical" line of "slope infinity"

$$l=\{x=d\}\subset \mathbb{F}^2$$

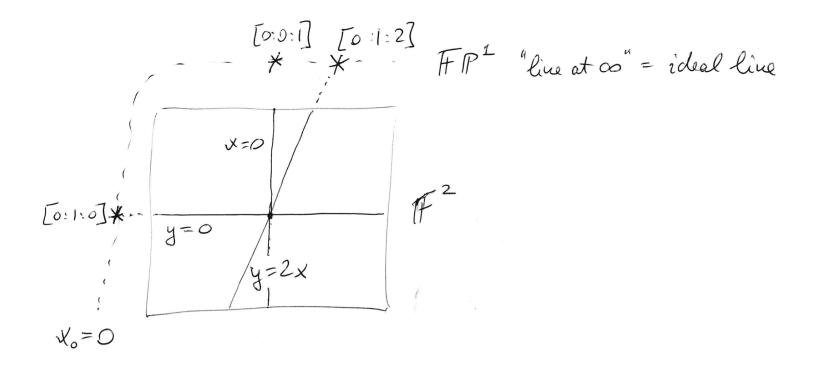
becomes

$$L = \{x_1 = dx_0\} = l \sqcup [0:0:1] \subset \mathbb{F}^2.$$

Finally there is the "ideal line at infinity"

$$L_{\infty} = \{x_0 = 0\} \subset \mathbb{FP}^2$$

which cannot be obtained from a line $l \subset \mathbb{F}^2$ in this picture.



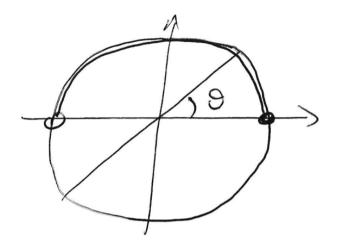
Finally let us look at the case $\mathbb{F} = \mathbb{R}$. Recall the *n*-sphere

$$S^n = \{x_0^2 + \ldots + x_n^2 = 1\} \subset \mathbb{R}^{n+1}.$$

As we can scale real vectors to real vectors of unit length, we have

$$\mathbb{RP}^n = \mathbb{R}^{n+1} \setminus \{0\}/(v \sim \lambda v, \ \lambda \in \mathbb{R}^*)$$
$$= S^n/(v \sim -v).$$

Slogan: \mathbb{RP}^n is the same as S^n with its antipodal points identified. Corollary As a topological space, \mathbb{RP}^n is connected and compact. **Proof** The topological space S^n has these properties, and \mathbb{RP}^n is a surjective image of S^n under a continuous map. **Example 1:** \mathbb{RP}^1 is the same as S^1 with direction (angle) θ identified with direction (angle) $\theta + \pi$.



In other words, points of the circle can be parametrized by $\theta \in \mathbb{R} \mod 2\pi$, whereas directions in the plane are parametrized by $[\theta] \in \mathbb{R} \mod \pi$.

Real projective plane

Example 2: For the real projective plane \mathbb{RP}^2 , we get

$$\mathbb{RP}^2 = S^2/(v \sim -v)$$
$$= U^2/(v \sim -v)$$

where U^2 is the **upper hemisphere**, and the identification happens only along its boundary.

This picture will be familiar to those who took the Topology course last term.